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Equivalence relations in computable structure theory

In computable structure theory, structures are usually
considered up to isomorophism (or its effective versions).

This talk is a survey of our results and open questions up to
bi-embeddability.

2



Computable structure theory

Motivating Question 1
How hard is it to determine that two effectively given structures
are equivalent?

Motivating Question 2
Does there exist an equivalent effective copy of a given
structure?

Motivating Question 3
If we know that two effectively given structures are equivalent,
what does this fact say about the effectiveness properties of the
equivalence relation?

Motivating Question 4
Seeing a finite part of a structure from a fixed class, can we
determine which of the structures we are observing? 3
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Question 1: classification problems

Motivating question 1
How hard is it to determine that two effectively given structures
are equivalent?
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Reducibility

1 Consider a (nice) class of structures K .

2 Identify K c with the set I(K ) ⊆ ω of indices of the
computable members of K .

3 Identify a relation E on K c with the binary relation
{(i , j)|i , j ∈ I(K )andAiEAj} ⊆ ω2.

Definition
Let E ,F be equivalence relations on (hyperarithmetical)
subsets X ,Y of ω respectively. Then E is reducible to F , E ≤ F
if there exists a partial computable function h, such that
X ⊆ dom(h),h(X ) ⊆ Y and for all i , j ∈ X ,

iEj ⇐⇒ h(i)Fh(j).
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Bi–embeddability is Σ1
1 complete

Theorem (F. and S. Friedman)
The equivalence relation of bi-embeddability on computable
graphs is Σ1

1 complete among equivalence relations.

Question
Let E be an arbitrary Σ1

1 equivalence relation on ω. Is there a
class of structures K with hyperarithmetical I(K ) and closed
under isomorphism, such that the bi-embeddability relation on
K c is equivalent to E?
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Isomorphism

Theorem (F., S. Friedman, Harizanov, Knight, McCoy,
Montalbán)
The equivalence relation of isomorphism on computable
structures from the following classes is complete for all Σ1

1
equivalence relations on ω:

1 graphs and trees,
2 torsion–free abelian groups,
3 abelian p–groups,
4 fields, and others.
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Effective isomorphism

Theorem (F., S. Friedman, Nies)

The computable isomorphism on computable structures is a Σ0
3

complete equivalence relation for the following classes:
• trees,
• equivalence structures,
• Boolean algebras, and others.

The result relativizes for any computable successor ordinal.

Theorem (Greenberg, Turetsky)
The relation of hyperarithmetical isomorphism is complete for
Π1

1 equivalence relations.
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Open question

Let E be a natural equivalence relation. Assume that for any
class K , E on computable structures from K must have
complexity Γ (where Γ is Σ1

1,Π
1
1,Σ

0
3, etc.).

Question
For an arbitrary equivalence relation F of complexity Γ, does
there exist a nicely defined class K c closed under isomorphism,
such that the relation E on K c is equivalent to F?
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Question 2: degree spectra

Motivating question 2
Does there exist an equivalent (usually, isomorphic) effective
copy of a given structure?
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Spectra for equivalence relations

Let A be a countable structure and E be an equivalence
relation on structures.

Definition (F., Semukhin, Turetsky)
The degree spectrum of A under the relation E to be

DgSp(A,E) = {deg(D(B))|B is E − equivalent to A}.

We also call DgSp(A,E) the E-spectrum of A.
What are possible degree spectra for various equivalence
relations?
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Degree spectra of structures

Definition (Richter)
The degree spectrum of a structureM is:

DgSp(A) = {deg(D(B)) | A ∼= B,dom(B) = ω}.

Then DgSp(A) = DgSp(A,∼=) is the ∼=-spectrum of A.

Theorem (Knight)
In all nontrivial cases the ∼=-spectrum is closed upwards.

Example
• The cone above a degree d;
• No countable union of upper cones;
• Slaman; Wehner: all non-computable degrees;
• Greenberg, Montalbán, Slaman: non-hyperarithmetical

degrees.
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Degree spectra of theories

Definition (U. Andrews, J. Miller)
The degree spectrum of a theory T is the set

DgSp(T ) = {deg(D(B))|B |= T}

of Turing degrees of all models of T .

Example
• Cones are spectra of theories.
• A union of two cones can be a spectrum of a theory.
• All the non-computable degrees form a spectrum of a

theory.
• The non-hyperarithmetical degrees do not form a spectrum

of a theory.

If A is a structure, then DgSp(Th(A)) = DgSp(A,≡) is the
≡-spectrum of A.
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Degree spectra for ≡Σn

Definition (F., Semukhin, Turetsky)
For a structure A, define

DgSp(A,≡Σn )) = {deg(D(B))|Σn−theories of A and B coinside}

simply the Σn-spectrum of A.

Example
• For every n, for every d, the cone above d
• For every n ≥ 2, a union of two cones may be a

Σn-spectrum.
• For every n ≥ 2, the Σn-spectrum may consist of exactly

the non-computable degrees.
• There exists a structure A such that its Σ1-spectrum

cannot be presented as a cone above a degree a.
• There exists a theory spectrum that is not a Σn spectrum. 15



Bi-embeddability spectra

Let ≈ be the relation of bi-embeddability between two
countable structures.

Definition
The bi-embeddability spectrum of A is the following set of
Turing-degrees

DgSp≈(A) = {deg(B) : B is bi-embeddable with A}.

Observation

DgSp≈(A) =
⋃
B≈A

(DgSp∼=(B)).

Question
What are the relations between ∼=-spectra and ≈-spectra for
countable structures?
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Bi-embeddability spectra

Theorem
Every hyperarithmetical structure A from the following classes
is bi-embeddable with a computable structure, thus
0 ∈ DgSp≈(A).

1 Montalbán, 2005: linear orders;
2 Greenberg, Montalbán, 2008: abelian p-groups;
3 F., Rossegger, San Mauro, 2016: equivalence structures.

With Rossegger and San Mauro we studied the relations
between ∼=-spectra and ≈-spectra for strongly locally finite
graphs.

17



Properties of bi-embeddability spectra

Theorem (F., Rossegger, San Mauro)
• The ≈-spectrum of a structure A is either a singleton or

upwards closed.
• A cone above a degree d .
• All but computable
• All the hyperimmune degrees

Reason: b.e. triviality:

Definition
A structure A is b.e. trivial if any bi-embeddable copy B of A is
isomorphic to A.

Question
Can a union of two cones be realized as a bi-embeddability
spectrum?
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Strongly locally finite graphs

Definition
A graph G is strongly locally finite if all its components are finite.

Definition
A s.l.f.g. graph G is open-ended if for any of its components C1
there is a component C2 such that C1 is isomorphic to a proper
substructure of C2.

With Rossegger and San Mauro we characterized the
isomorphism types of computable open-enden s.l.f.g.’s in terms
of sets and functions describing the behaviour of components
of the graphs.
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Bi-embeddability spectra I

Theorem (FRS)
• Let G be open-ended. Then Y computes a bi-embeddable

copy of G if and only if Tr(G) is c.e. in Y .

Theorem
The two following facts hold.

1 There is an open-ended G such that DgSp≈(G) is not a
cone of degrees.

2 For all open-ended G, DgSp′≈(G) = {d′ : d ∈ DgSp≈(G)} is
a cone of degrees.
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Bi-embeddability spectra II

Definition
Let A be a structure. If there is a structure B such that A and B
are bi-embeddable and

DgSp≈(A) = DgSp∼=(B),

then we say that B is a bi-embeddability basis for A.

Theorem
• If a s.l.f. graph is open-ended, then it has a b.e.-basis.
• There is an s.l.f. graph with no b.e.-basis.

Question
Is there a ∼=-spectrum that is not a ≈-spectrum of any
structure? Is there an ≈-spectrum that is not a ∼=-spectrum of
any structure? The same question restricted to particular
classes of structures. 21



Elementary bi-embeddability

Denote by � the relation of elementary bi-embeddability.

Rossegger showed that the known counterexamples for
isomorphism spectra are also counterexamples for e.b.e.
spectra, in particular two cones are impossible.

Theorem (Rossegger)

Let G be a graph, then there is a graph Ĝ such that

DgSp�(Ĝ) = {X : X ′ ∈ DgSp≈(G)}.
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Question 3: Bi-embeddable categoricity

Motivating question 3
If we know that two effectively given structures are equivalent,
what does this fact say about the effectiveness properties of the
equivalence relation?

Classical line of research: computable categoricity (complexity
of isomorphisms).
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Think about equivalence structures

The equivalence structure A with infinitely many classes of
sizes 1 and 2 is not computably categorical but is 0′-categorical.

On the other hand:
Let B be a computable equivalence structure with infinitely
many classes of size 2 and any number of classes of size 1.
Then A and B are bi-embeddable, and the embeddings are in
fact computable. In other words, A is computably
bi-embeddably categorical.

Definition
A computable structure A is computably bi-embeddably
categorical if any computable bi-embeddable copy of A is
bi-embeddable with A by computable embeddings.
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Relative bi-embeddable categoricity

Bazhenov, Fokina, Rossegger, San Mauro:

Definition
A computable structure A is 0(n) bi-embeddably categorical if
any computable bi-embeddable copy of A is bi-embeddable
with A by 0(n) embeddings.

Definition
A countable (not necessarily computable) structure A is
relatively 0(n) bi-embeddably categorical if for any
bi-embeddable copy B, A and B are bi-embeddable by 0(n)

relative to A⊕ B embeddings.

A structure is (relatively) computably b.e. categorical if n = 0.

Question
Syntactic description of relative b.e. categoricity?
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Categoricity vs. B.e. categoricity

Theorem (Calvert, Cenzer, Harizanov, Morozov)
An equivalence structure is computably categorical iff it is relatively
computably categorical.

Theorem (Kach and Turetsky)
There is a 0′ categorical equivalence structure that is not relatively 0′

categorical.

Proposition (Calvert, Cenzer, Harizanov, Morozov)
All equivalence structures are relatively 0′′ categorical.

Theorem (BFRS)
All equivalence structures are relatively 0′′ bi-embeddably categorical. 26



Computable b.e. categoricity
An equivalence structure is unbounded if it has arbitrarily large finite
equivalence classes. It is bounded otherwise.

Theorem (BFRS)
A computable equivalence structure A is computably bi-embeddably
categorical if and only if
• A has finitely many infinite equivalence classes and is bounded.

Theorem (Calvert, Cenzer, Harizanov, and Morozov)
A computable equivalence structure A is computably categorical if and only if
• A has finitely many finite equivalence classes, or
• A has finitely many infinite classes, is bounded, and there is at most

one finite k such that there are infinitely many classes of size k.

Corollary
There is a computably bi-embeddably categorical equivalence structure that
is not computably categorical, and vice versa.
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0′ and 0′′ bi-embeddable categoricity

Theorem (BFRS)
A computable equivalence structureA is 0

′
b.e. categorical iff

• A has finitely many infinite equivalence classes.

If A is unbounded and has finitely many infinite classes, then it is 0
′

b.e.
categorical and not computably b.e. categorical.

Theorem (CCHM)

A countable equivalence structure A is relatively 0
′

categorical if and only if
A has finitely many infinite equivalence classes or A is bounded.

Corollary
If A is bounded and has infinitely many infinite classes, then it is 0

′

categorical but not 0
′

b.e. categorical.

Theorem (BFRS)
Equivalence structures are relatively 0

′′
bi-embeddably categorical.
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Degrees of bi-embeddable categoricity

Definition
The degree of bi-embeddable categoricity of a computable
structure A is the least Turing degree d that, if it exists,
computes embeddings between any computable
bi-embeddable copies of A.

If, in addition, A has two computable bi-embeddable copies
A0,A1 such that for all embeddings µ : A0 ↪→ A1, ν : A1 ↪→ A0,
µ⊕ ν ≥T d, then d is the strong degree of bi-embeddable
categoricity of A.

F., Kalimullin, and R. Miller gave the analogous definition for
isomorphism.

Theorem (F., Kalimullin, R. Miller)
Every d-c.e. Turing degree is the degree of categoricity of a
computable graph.

29
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Degrees of b.e. categoricity of equivalence structures

Theorem (Csima and Ng)
The degree of categoricity of a computable equivalence
structure is either 0,0′, or 0′′.

Theorem (BFRS)
Let A be a computable equivalence structure.

1 If A has bounded character and finitely many infinite
equivalence classes, then its degree of bi-embeddable
categoricity is 0.

2 If A has unbounded character and finitely many infinite
equivalence classes, then its degree of bi-embeddable
categoricity is 0′.

3 If A has infinitely many infinite equivalence classes, then
its degree of bi-embeddable categoricity is 0′′.
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Strongly locally finite graphs

Proposition
Every computable strongly locally finite graph is 0

′′
-categorical.

Theorem (BFRS)
There is a computable strongly locally finite graph that is not
hyperarithmetically bi-embeddably categorical.

Theorem (BFRS)
• A computable linear order L is computably b.e. categorical iff L is finite.
• A computable Boolean algebra B is computably b.e. categorical iff B is

finite.

Corollary
There exists a computably categorical LO (BA) that is not computably b.e.
categorical.
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Linear orders and Boolean algebras

Theorem (Bazhenov, Rossegger, Zubkov)

Linear orders of finite Hausdorff rank n are relatively ∆0
2n+2

bi-embeddably categorical, but not relatively ∆0
2n+1

bi-embeddably categorical.

Theorem (Bazhenov, Rossegger, Zubkov)
Let B be a computable Boolean algebra. Then B satisfies one
of the following two conditions:
(a) There is a computable ordinal α such that 0(α) is the

degree of b.e. categoricity for B.
(b) B is not hyperarithmetically b.e. categorical, and B does

not have degree of b.e. categoricity.
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Questions

Theorem (Bazhenov)

Every degree d ≥ 0′, which contains a Π1
0 function singleton, is

a degree of bi-embeddable categoricity.

Theorem (Csima, Rossegger)
A degree d ≥ 0′′ is a strong degree of bi-embeddable
categoricity iff it is a strong degree of categoricity.

Question
What are possible degrees of bi-embeddable categoricity?

Question
Is there a degree of b.e.-categoricity that is not a degree of
categoricity (and vice versa)?
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Question 4: Learning structures up to bi-embeddability

Question
Seeing larger and larger finite pieces of a structure from a fixed
class, can we determine which of the structures we are
observing?

34



Learning structures up to bi-embeddability

Combining computable structures and algorithmic learning:
• Let K be a class of structures with some uniform effective

enumeration {Ci}i∈ω of the computable structures from K,
up to isomorphism.

• A learner M is a total function which takes for its inputs
finite substructures of a given structure § from K.
• For an equivalence relation ∼, M InfEx∼-learns S if, for all
T ∼= S, there exists n ∈ ω such that T ∼ Cn and
M(T i) ↓= n, for all but finitely many i .
• A family of structures A is InfEx∼-learnable if there is M

that learns all A ∈ A.
• InfEx∼(K) denotes the class of families of K-structures

that are InfEx∼=-learnable.

35



Learning structures up to bi-embeddability

Combining computable structures and algorithmic learning:
• Let K be a class of structures with some uniform effective

enumeration {Ci}i∈ω of the computable structures from K,
up to isomorphism.
• A learner M is a total function which takes for its inputs

finite substructures of a given structure § from K.

• For an equivalence relation ∼, M InfEx∼-learns S if, for all
T ∼= S, there exists n ∈ ω such that T ∼ Cn and
M(T i) ↓= n, for all but finitely many i .
• A family of structures A is InfEx∼-learnable if there is M

that learns all A ∈ A.
• InfEx∼(K) denotes the class of families of K-structures

that are InfEx∼=-learnable.

35



Learning structures up to bi-embeddability

Combining computable structures and algorithmic learning:
• Let K be a class of structures with some uniform effective

enumeration {Ci}i∈ω of the computable structures from K,
up to isomorphism.
• A learner M is a total function which takes for its inputs

finite substructures of a given structure § from K.
• For an equivalence relation ∼, M InfEx∼-learns S if, for all
T ∼= S, there exists n ∈ ω such that T ∼ Cn and
M(T i) ↓= n, for all but finitely many i .

• A family of structures A is InfEx∼-learnable if there is M
that learns all A ∈ A.
• InfEx∼(K) denotes the class of families of K-structures

that are InfEx∼=-learnable.

35



Learning structures up to bi-embeddability

Combining computable structures and algorithmic learning:
• Let K be a class of structures with some uniform effective

enumeration {Ci}i∈ω of the computable structures from K,
up to isomorphism.
• A learner M is a total function which takes for its inputs

finite substructures of a given structure § from K.
• For an equivalence relation ∼, M InfEx∼-learns S if, for all
T ∼= S, there exists n ∈ ω such that T ∼ Cn and
M(T i) ↓= n, for all but finitely many i .
• A family of structures A is InfEx∼-learnable if there is M

that learns all A ∈ A.

• InfEx∼(K) denotes the class of families of K-structures
that are InfEx∼=-learnable.

35



Learning structures up to bi-embeddability

Combining computable structures and algorithmic learning:
• Let K be a class of structures with some uniform effective

enumeration {Ci}i∈ω of the computable structures from K,
up to isomorphism.
• A learner M is a total function which takes for its inputs

finite substructures of a given structure § from K.
• For an equivalence relation ∼, M InfEx∼-learns S if, for all
T ∼= S, there exists n ∈ ω such that T ∼ Cn and
M(T i) ↓= n, for all but finitely many i .
• A family of structures A is InfEx∼-learnable if there is M

that learns all A ∈ A.
• InfEx∼(K) denotes the class of families of K-structures

that are InfEx∼=-learnable.

35



Learning structures up to bi-embeddability

Theorem (F., Kötzing, San Mauro)
For the class K of equivalence structures:

InfEx∼=0 InfEx∼=

InfEx≈0 InfEx≈
(

( (

(
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Question
Investigate b.e.-learnability for other classes.

Question
Investigate b.e.-learnability for other sources of information and
convergence behaviour.

Question
Is there a syntactic description of learnability up to
bi-embeddability?
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Thank you!
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