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Computable structure theory

An algebraic structure A = (N, f m1
1 , . . . , f mM

M ,Pn1
1 , . . . ,PnN

N ) is
identi�ed with the function

FA = f1 ⊕ · · · ⊕ fM ⊕ P1 ⊕ · · · ⊕ PN ≡ A,

i.e.,

FA(i , 〈x1, . . . , xmi 〉) = fi(x1, . . . , xmi ), for 1 ≤ i ≤ M,

FA(i + M, 〈x1, . . . , xni 〉) = Pi(x1, . . . , xni ), for 1 ≤ i ≤ N.

We also usually consider A ≡ D(A)�the atomic diagram of A,
or replace the operations fi by their graphs.
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Computable structure theory

An algebraic structure A = (N, f m1
1 , . . . , f mM

M ,Pn1
1 , . . . ,PnN

N ) is
computable if FA is computable.

An algebraic structure A = (N, f m1
1 , . . . , f mM

M ,Pn1
1 , . . . ,PnN

N ) is
punctual (fully primitive recursive) if FA is primitive recursive

(KMN, 2017).

Note that in the last case we can not replace FA by a set (i.e.,

by a {0,1}-valued function).
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Two de�nitions of degree spectrum

The degree spectrum of a countable structure B is usually

de�ned as either

I the collection of Turing degrees of isomorphic copies of B
on the domain N:

DS(B) = {X | (∃A ∼= B)[ the domain of A is N & A ≡T X ]}, or

I the collection of Turing oracles which compute an

isomorphic copy of B on the domain N:

DS(B) = {X | (∃A ∼= B)[ the domain of A is N & A ≤T X ]}.
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Two de�nitions of degree spectrum

But in most cases two these de�nitions are the same:

Theorem. (Knight, 1986). Let B be a structure on the domain

N. Then exactly one of the following holds:

I for every X ≥T B there is a structure A ∼= B on the domain

N such that A ≡T X ;

I there is a �nite subset S ⊂ N such that all permutations of

N which �x S are the automorphisms of B (in this case all

copies A ∼= B on the domain N are computable).
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Primitive recursive reducibility

A function f is computable in a function g, if there is a Turing

machine with the oracle g which computes f (f ≤T g).

A function f is primitive recursive in a function g, if there is a
primitive recursive scheme which uses g and produces f
(f ≤PR g).

Note that in the last case we can not replace functions by sets

(e.g., by their graphs).

But if f is primitive recursively bounded (i.e., f (x) ≤ p(x) for
some primitive recursive p) then f ≡PR graph(f ).
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Punctual degree spectrum

Theorem. (K, not checked, 2022). There is a primitive recursive

permutation p 6=∗ id on N and a computable set C ⊆ N such

that for every permutation q on N we have

(N,q) ∼= (N,p) =⇒ q 6≡PR C.

We will use the following de�nition:

The punctual degree spectrum of a countable structure B is the

collection of primitive recursive oracles which primitive

recursively compute an isomorphic copy of B on the domain N:

DSPR(B) = {f | (∃A ∼= B)[ the domain of A is N & A ≤PR f ]}.
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Set basis property

Proposition. (KMM, 2021). For every structure B on the domain

N there is a primitive recursively bounded A ∼= B such that

A ≤PR B.

Thus, for every f ∈ DSPR(B) there is a set X ≤PR f (i.e., a
{0,1}-valued function) such that X ∈ DSPR(B).
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Upper cones as the degree spectra (Turing case)

Observation. There is a lot of possibilities to code a set C into a

structure AC such that

DS(AC) = {X | C ≤T X}.

Theorem. (Ash, Knight). Let A be a structure. A set C is

computable in every copy B ∼= A on the universe N if and only if

for some �xed parameters ~a ∈ A there are computable mappings

into quanti�er-free formulae n 7→ Φn and n 7→ Ψn such that

n ∈ C ⇐⇒ A |= (∃~x)Φn(~x , ~a),

n /∈ C ⇐⇒ A |= (∃~x)Ψn(~x , ~a).
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Upper cones as the degree spectra (punctual case)

Observation. There are possibilities to code a set C into a

structure AC such that

DSPR(AC) = {f | C ≤PR f}.

For example, we can de�ne the �nitely generated structure

AC = (N, s(x) ≡ x + 1,C(x)).

Alternatively, we can de�ne the locally �nite structure

AC = (N, t(x , y) ≡ min(x + 1, y),C(x)).
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Upper cones as the degree spectra (punctual case)

Theorem. (KMM, 2021). Let A be a structure. A set C is

primitive recursive in every copy B ∼= A on the universe N if and

only if for some �xed parameters ~a ∈ A there are primitive

recursive mappings into quanti�er-free formulae n 7→ Φn and

n 7→ Ψn such that for every tuple ~x of pairwisely distinct

elements

n ∈ C ⇐⇒ A |= Φn(~x , ~a),

n /∈ C ⇐⇒ A |= Ψn(~x , ~a).
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Degree spectra of relational structures

A reformulation of Ramsey's Theorem states that every in�nite

relational structure contains an in�nite �homogeneous�

substructure. Therefore,

Corollary. (KMM, 2021). If DSPR(A) = {f | C ≤PR f} for a
relational structure A then C is primitive recursive.

Note that, a description of degree spectra of relational

structures can be hard. An example of computable relational

structure without punctual presentations is not straightforward

(KMN, 2017).
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Unions of upper cones

Folklore Theorem. If C1 |T C2 then the collection

{X | C1 ≤T X} ∪ {X | C2 ≤T X}

is not a degree spectrum of a structure.

The similar forcing arguments give

Theorem. If C1 |PR C2 then the collection

{f | C1 ≤PR f} ∪ {f | C2 ≤PR f}

is not a punctual degree spectrum of a structure.
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Complements of lower cones (Turing case)

Theorem. (Slaman, Wehner, 1999). There is a structure A such

that

DS(A) = {X | X 6≤T ∅}.

Theorem. (K, 2008). There is a structure A such that

DS(A) = {X | X 6≤T ∅′}.

Theorem. (ACKLMM, 2016). There is no structure A such that

DS(A) = {X | X 6≤T ∅(n)},

where n ≥ 2.
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Complements of lower cones (Turing case)

Theorem. (Slaman, Wehner, 1999). There is a structure A such

that

DS(A) = {X | X 6≤T ∅}.

In fact, Wehner used a coding the family

W = {{n} ⊕ F | F is �nite & F 6= Wn}

into a structure, where Wn is the n-th c.e. set.
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Complements of lower cones (punctual case)

Question. Is there a structure A such that

DSPR(A) = {f | f 6≤PR ∅}?

Question. For which functions g there is a structure A such that

DSPR(A) = {f | f 6≤PR g}?
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Testing the set basis property

Proposition. (K, 2022). If a function g is not primitive recursive

then there is a set X ≤PR g which is not primitive recursive.

So

the test passes for g = ∅.

Let h be a function which is not bounded by a primitive

recursive function. Let {Ph
n}n∈N be a Gödel numbering of all

sets P ≤PR h. Then for the �universal� set

Uh = {〈n,m〉 | m ∈ Ph
n}

we have h 6≤PR Uh but X ≤PR Uh for every set X ≤PR h.

Proposition. (K, 2022). The test fails if g = Uh. So the collection

{f | f 6≤PR Uh}

is not the punctual degree spectrum of a structure.
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Coding a family into a structure

Let F be a countable family of subsets of N.

De�ne the structure

AF on the domain N× N×F with the unary operations

r(x , y ,U) = (0, y ,U),

s(x , y ,U) = (x + 1, y ,U),

and the unary predicate

P(x , y ,U) = �x ∈ U �,

where x , y ∈ N and U ∈ F .

Proposition. (K, 2022). f ∈ DSPR(AF ) i� there is a Y ≤PR f
such that

F = {Y (n) | n ∈ N}.

Kalimullin I.Sh. Punctual structures relative to oracles



Coding a family into a structure

Let F be a countable family of subsets of N. De�ne the structure
AF on the domain N× N×F with the unary operations

r(x , y ,U) = (0, y ,U),

s(x , y ,U) = (x + 1, y ,U),

and the unary predicate

P(x , y ,U) = �x ∈ U �,

where x , y ∈ N and U ∈ F .

Proposition. (K, 2022). f ∈ DSPR(AF ) i� there is a Y ≤PR f
such that

F = {Y (n) | n ∈ N}.

Kalimullin I.Sh. Punctual structures relative to oracles



Coding a family into a structure

Let F be a countable family of subsets of N. De�ne the structure
AF on the domain N× N×F with the unary operations

r(x , y ,U) = (0, y ,U),

s(x , y ,U) = (x + 1, y ,U),

and the unary predicate

P(x , y ,U) = �x ∈ U �,

where x , y ∈ N and U ∈ F .

Proposition. (K, 2022). f ∈ DSPR(AF ) i� there is a Y ≤PR f
such that

F = {Y (n) | n ∈ N}.

Kalimullin I.Sh. Punctual structures relative to oracles



An analogue of the result of Wehner, 1999

Let {ϕn}n∈N be the Gödel numbering of all partially computable

functions, and let {Pn}n∈N be the Gödel numbering of all

primitive recursive sets.

Then we can de�ne the family

V = {{n} ⊕ F | F is �nite & [ϕn(0) ↓ =⇒ F 6= Pϕn(0)]}.

Theorem. (K, 2022). DSPR(AV) = {f | f 6≤PR ∅}.

Theorem. (K, 2022). If graph(g) is primitive recursive then

there is a structure A such that

DSPR(A) = {f | f 6≤PR g}.
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Complements of lower cones (punctual case)

Question. Is there a structure A such that

DSPR(A) = {f | f 6≤PR ∅}?

Question. For which functions g there is a structure A such that

DSPR(A) = {f | f 6≤PR g}?
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Complements of lower cones (punctual case)

Question. Is there a structure A such that

DSPR(A) = {f | f 6≤PR ∅}?

Yes.

Question. For which functions g there is a structure A such that

DSPR(A) = {f | f 6≤PR g}?

Yes, for some primitive recursively unbounded g.
No, for some primitive recursively bounded g.
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Unions of degree spectra

Theorem. (K, 2007) If C′1 ≡T C′2 ≡T ∅′ then the collection

{X | X 6≤T C1} ∪ {X | X 6≤T C2}

is the degree spectrum of a structure.

Theorem. (K, 2022) If graph(g1) and graph(g2) are primitive

recursive then the collection

{f | f 6≤PR g1} ∪ {f | f 6≤PR g2}

is the punctual degree spectrum of a structure.
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