Planar graph colouring

Keng Meng Ng

Nanyang Technological University, Singapore

New Directions in Computability Theory CIRM, Marseille (9 March 2022)

Overview

- > Colouring of graphs
- Recursive graphs studied for a long time (Bean, Schmerl, etc).
- > All work is joint with H.T. Koh.

Theorem (Appel, Haken (1976))

Every simple planar graph (on the plane) can be coloured with at most 4 colours.

> Algorithmic content/strength of the 4 colour theorem.

Overview

- > Colouring of graphs
- Recursive graphs studied for a long time (Bean, Schmerl, etc).
- > All work is joint with H.T. Koh.

Theorem (Appel, Haken (1976))

Every simple planar graph (on the plane) can be coloured with at most 4 colours.

> Algorithmic content/strength of the 4 colour theorem.

Map colouring

A four colouring of the map of the states of the US

- > Problem is to colour each region so that no two contiguous regions have the same colour.
- > Nevada has five neighbours, so the US map cannot be coloured using only three colours.

Map colouring

A four colouring of the map of the states of the US

- > Problem is to colour each region so that no two contiguous regions have the same colour.
- > Nevada has five neighbours, so the US map cannot be coloured using only three colours.

The four colour theorem

- > Francis Guthrie proposed this conjecture in 1852 while trying to colour the map of England.
- Kempe (1879) and Tait (1880) gave incorrect proofs, which got turned into the five colour theorem by Heawood in 1890.
- Appel and Haken finally proved the theorem in 1976, building on the computer-assisted methods developed by Heesch.
- Simplified and reproved by Robertson, Sanders, Seymour and Thomas in 1996.

The four colour theorem

- > Francis Guthrie proposed this conjecture in 1852 while trying to colour the map of England.
- Kempe (1879) and Tait (1880) gave incorrect proofs, which got turned into the five colour theorem by Heawood in 1890.
- > Appel and Haken finally proved the theorem in 1976, building on the computer-assisted methods developed by Heesch.
- Simplified and reproved by Robertson, Sanders, Seymour and Thomas in 1996.

The five colour theorem

- > The five colour theorem is easy to prove: By Euler characteristic, ∃v such that deg(v) ≤ 5.
- > Then $G \{v\}$ can be coloured with five colours.

The five colour theorem

Fix a 1-3 chain between the two vertices

- > All graphs considered are simple, i.e. no loops and no multiple edges. (A graph in general might not be connected).
- A k-coloring of a graph (V, E) is a function c : V → k such that if c(v) = c(v') then (v, v') ∉ E.
- > We of course consider infinite (countable) graphs. By compactness, Tychonoff's Theorem, etc:

Fact (De-Bruijn, Erdős)

An infinite graph is *k*-colorable iff every finite subgraph is *k*-colorable (locally *k*-colorable).

Theorem (Hirst)

Over RCA₀, for each $2 \le k$, we have WKL₀ \Leftrightarrow Every locally *k*-colorable graph is *k*-colorable.

Theorem (Gasarch, Hirst)

Over RCA₀, for each $2 \le k$, we have WKL₀ \Leftrightarrow Every locally k-colorable graph is 2k - 1-colorable.

Theorem (Schmerl)

Over RCA₀, for each $2 \le k \le m$, we have WKL₀ \Leftrightarrow Every locally *k*-colorable graph is *m*-colorable.

Theorem (Bean)

Every *k*-colorable computable graph has a low *k*-coloring.

- > Represent vertices as nodes of a tree and edges of the tree as a possible color of the node.
- Any computable 2-colorable graph has a computable 2-coloring.

Theorem (Bean)

There is a computable 3-colorable planar graph that has no computable *k*-coloring for any *k*.

In other words, the four colour theorem is not computably true.

Theorem (Bean)

Every *k*-colorable computable graph has a low *k*-coloring.

- > Represent vertices as nodes of a tree and edges of the tree as a possible color of the node.
- Any computable 2-colorable graph has a computable 2-coloring.

Theorem (Bean)

There is a computable 3-colorable planar graph that has no computable *k*-coloring for any *k*.

In other words, the four colour theorem is not computably true.

Highly recursive graphs and colourings

> A locally finite graph is highly recursive if it is computable and the degree of each vertex is computable.

Theorem (Bean)

Given each separating Π_1^0 -class P and each $k \ge 3$, there is a k-colorable highly recursive graph G such that the k-colorings of G correspond to the paths of P in a degree-preserving way.

> This theorem almost establishes a relationship between WKL₀ and graph coloring principles. (For k = 3, G is planar).

Highly recursive graphs and colourings

Theorem (Bean)

Every highly recursive planar graph has a computable 6-coloring.

Does every highly recursive planar graph have a computable 4or 5-coloring?

Theorem (Schmerl)

Every highly recursive k-colorable graph has a computable 2k - 1-coloring, and this result is sharp.

Theorem (Kierstead)

Every highly recursive k-colorable perfect graph has a computable k + 1-coloring.

Highly recursive graphs and colourings

Theorem (Bean)

Every highly recursive planar graph has a computable 6-coloring.

Does every highly recursive planar graph have a computable 4or 5-coloring?

Theorem (Schmerl)

Every highly recursive *k*-colorable graph has a computable

2k - 1-coloring, and this result is sharp.

Theorem (Kierstead)

Every highly recursive k-colorable perfect graph has a computable k + 1-coloring.

Edge colourings

- Kierstead) Every highly recursive k-edge-colorable perfect graph has a computable k + 1-edge coloring.
- > Vizing's theorem: Every k-regular graph has a k + 1-edge colouring.
- Hence, every k-regular graph has a computable k + 2-edge colouring.
- Schmerl) Some computable 3-regular graph has no computable 3-edge colouring.
- > (Schmerl) Is Vizing's theorem computably true?
- > (Mummert, unpublished) WKL₀ is equivalent to Konig's line coloring theorem: Every bipartite graph with degree bounded by k has a k-edge-colouring.

- > All graphs are simple. They do not have to be locally finite or connected, unless specified.
- > All results (and definitions) are over RCA₀.
- > A countable graph G is planar iff neither $K_{3,3}$ nor K_5 is a minor (or a subdivision) of G.
- > (Wagner and Kuratowski-Pontryagin) For finite graphs, this is equivalent to having a plane diagram/embedding.
- > Here we represent a plane diagram of a planar graph as a countable set of rational coordinates representing the coordinates of vertices, and edges. Each edge is made up of finitely many line segments.

- > All graphs are simple. They do not have to be locally finite or connected, unless specified.
- > All results (and definitions) are over RCA₀.
- > A countable graph G is planar iff neither $K_{3,3}$ nor K_5 is a minor (or a subdivision) of G.
- > (Wagner and Kuratowski-Pontryagin) For finite graphs, this is equivalent to having a plane diagram/embedding.
- > Here we represent a plane diagram of a planar graph as a countable set of rational coordinates representing the coordinates of vertices, and edges. Each edge is made up of finitely many line segments.

- > All graphs are simple. They do not have to be locally finite or connected, unless specified.
- > All results (and definitions) are over RCA₀.
- > A countable graph G is planar iff neither $K_{3,3}$ nor K_5 is a minor (or a subdivision) of G.
- > (Wagner and Kuratowski-Pontryagin) For finite graphs, this is equivalent to having a plane diagram/embedding.
- > Here we represent a plane diagram of a planar graph as a countable set of rational coordinates representing the coordinates of vertices, and edges. Each edge is made up of finitely many line segments.

- Each planar graph has a plane diagram with straight line as the edges (See Wagner, Fary, Stein for finite graphs, and Thomassen for infinite graphs).
- > (Erdős, see Dirac, Schuster)
 WKL₀ ⊢ Every countable planar graph has a plane diagram.
- > Is this computably true?

Plane diagrams

Proposition

There is a computable planar graph with no computable plane diagram.

Four possible plane drawings of the gadget

Plane diagrams

Adding the new vertex v_6 in each case

Proposition

$\mathsf{WKL}_0 \Leftrightarrow \mathsf{Every}\ \mathsf{planar}\ \mathsf{graph}\ \mathsf{admits}\ \mathsf{a}\ \mathsf{plane}\ \mathsf{diagram}.$

> If we're working over WKL₀, we can interchangeably use the various definitions of a planar graph.

Definition

For each $k \ge 4$, define the principles:

COL(*k*): Every countable planar graph is *k*-colourable.

COL*(k): Every countable planar graph with a computable planar diagram is k-colourable.

ConnCOL(*k*): Every countable connected planar graph is *k*-colourable.

Proposition

$\mathsf{WKL}_0 \Leftrightarrow \mathsf{Every}\ \mathsf{planar}\ \mathsf{graph}\ \mathsf{admits}\ \mathsf{a}\ \mathsf{plane}\ \mathsf{diagram}.$

> If we're working over WKL₀, we can interchangeably use the various definitions of a planar graph.

Definition

For each $k \ge 4$, define the principles:

COL(k): Every countable planar graph is k-colourable.

 $COL^*(k)$: Every countable planar graph with a computable planar diagram is *k*-colourable.

ConnCOL(*k*): Every countable connected planar graph is *k*-colourable.

Recall:

Theorem (Bean)

There is a computable 3-colorable planar graph that has no computable *k*-coloring for any *k*.

> Thus COL(k) is not computably true for any k ≥ 4, but follows from WKL₀.

Theorem

WKL₀ is equivalent to each of COL(4), COL*(4) and ConnCOL(4).

Recall:

Theorem (Bean)

There is a computable 3-colorable planar graph that has no computable *k*-coloring for any *k*.

> Thus COL(k) is not computably true for any k ≥ 4, but follows from WKL₀.

Theorem

 WKL_0 is equivalent to each of COL(4), $COL^*(4)$ and ConnCOL(4).

Given a tree T we encode $\langle \rangle$, 0, 1 into the three gadgets respectively.

If σ 0 dies, we add three new nodes:

Now any four colouring c of the graph must satisfy

$$c(v_{\sigma}) = c(w_{\sigma}) = c(n_{\sigma 1}) \neq c(n_{\sigma 0}).$$

Theorem

For each $k \ge 4$, WKL₀ is equivalent to each of COL(k), COL^{*}(k) and ConnCOL(k).

- In the reversal RCA₀ + COL(4) ⊢ WKL₀, we used K₄ in our constructed graph G to force any 4-colouring of G to have little choice.
- > Obviously, we can't use K_5 to show $RCA_0 + COL(5) \vdash WKL_0$.
- RCA₀ + COL(k) ⊢ WKL₀ can be proved non-uniformly, and for k ≥ 7 this is provably necessary.
- > Recall that DNR(k): $\exists g : \omega \to \{0, 1, 2, \dots, k-1\}$ s.t. $\forall x, g(x) \neq \varphi_x(x)$.

Theorem

For each $k \ge 4$, WKL₀ is equivalent to each of COL(k), COL^{*}(k) and ConnCOL(k).

- In the reversal RCA₀ + COL(4) ⊢ WKL₀, we used K₄ in our constructed graph G to force any 4-colouring of G to have little choice.
- > Obviously, we can't use K_5 to show $RCA_0 + COL(5) \vdash WKL_0$.
- RCA₀ + COL(k) ⊢ WKL₀ can be proved non-uniformly, and for k ≥ 7 this is provably necessary.
- > Recall that DNR(k): $\exists g : \omega \to \{0, 1, 2, \dots, k-1\}$ s.t. $\forall x, g(x) \neq \varphi_x(x).$

To encode $\varphi_e(e)$, we start with the gadget:

If $\varphi_e(e) \downarrow = 0$, we add 6 new vertices and connect them to each K_3 . (This diagram can be made planar).

If $\varphi_e(e) \downarrow = 1$, we add 2 new vertices.

If $\varphi_e(e) \downarrow = 2$, we add 1 new vertex and connect to all old vertices.

Now given a 5-colouring of the graph, if the left set of 9 black vertices are coloured with only 3 colours, then $\varphi_e(e) \neq 0$.

If the left and right set of 9 black vertices are coloured with 4 colours, then $\varphi_e(e) \neq 1$.

If the black vertices are coloured with all 5 colours, then $\varphi_e(e) \neq 2$.

- > This shows that $RCA_0 + COL(5) \vdash DNR(3)$, and thus WKL₀ ↔ COL(4) and WKL₀ ↔ COL(5).
- > To further calibrate the complexity of statements which might be equivalent in the RM sense, we use the tools from computable analysis.

Weihrauch reducibility

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer, after Weihrauch)

Let *P* and *Q* be Π_2^1 statements of second-order arithmetic.

- > $P \leq_W Q$, if $\exists \Phi, \Psi$ where Φ, Ψ are Turing reductions s.t. whenever A is an instance of P, $B = \Phi(A)$ is an instance of Q and if T is a solution to B, then $S = \Psi(T \oplus A)$ is a solution of P.
- > $P \leq_{sW} Q$, if we require $S = \Psi(T)$ is a solution of P.
- > If $P \leq_W Q$, then usually one can turn it into a "uniform" proof of $RCA_0 \vdash Q \rightarrow P$.

Theorem

- > WKL \leq_{sW} COL(4).
- > DNR(3) \leq_{sW} COL(5).
- > DNR(4) \leq_{sW} COL(6).
- > DNR(8) \leq_{sW} COL(7).

Obviously we should have $DNR(?) \leq_{sW} COL(8)$?

Theorem

DNR \leq_W COL(8).

Theorem

- > WKL \leq_{sW} COL(4).
- > DNR(3) \leq_{sW} COL(5).
- > DNR(4) \leq_{sW} COL(6).
- > DNR(8) \leq_{sW} COL(7).

Obviously we should have $DNR(?) \leq_{sW} COL(8)$?

Theorem

DNR \leq_W COL(8).

Theorem

- > WKL \leq_{sW} COL(4).
- > DNR(3) \leq_{sW} COL(5).
- > DNR(4) \leq_{sW} COL(6).
- > DNR(8) \leq_{sW} COL(7).

Obviously we should have $DNR(?) \leq_{sW} COL(8)$?

Theorem DNR ≰_W COL(8

Theorem

- > WKL \leq_{sW} COL(4).
- > DNR(3) \leq_{sW} COL(5).
- > DNR(4) \leq_{sW} COL(6).
- > DNR(8) \leq_{sW} COL(7).

Obviously we should have $DNR(?) \leq_{sW} COL(8)$?

Theorem DNR $\not\leq_W$ COL(8).

Theorem

- > WKL \leq_{sW} COL(4).
- > DNR(3) \leq_{sW} COL(5).
- > DNR(4) \leq_{sW} COL(6).
- > DNR(8) \leq_{sW} COL(7).

Obviously we should have $DNR(?) \leq_{sW} COL(8)$?

Theorem

DNR $\leq W$ COL(8).

DNR \leq_W COL(8)

- Suppose that there is a computable planar G and some Ψ such that Ψ^c(x) ≠ φ_x(x) for every x and every 8-colouring c of G.
- By the Recursion Theorem, define φ_e(e) = Ψ^σ(e) where σ is a 4-colouring of a finite subgraph H of G.
- Since G H is planar, we can 4-colour G H with a different set of 4 colours, and so σ can be extended to an 8-colouring c of G.
- > This is a contradiction since $\Psi^{c}(e) = \varphi_{e}(e)$.

> DNR $(k) \leq W$ COL(8) for any k, how can we get the reversal to WKL₀?

Definition

For $k, l \in \omega$, let DNR(k, l): \exists an *l*-approximable function $g: \omega \to \{0, 1, \dots, k-1\}$ such that $\forall x, g(x) \neq J(x)$, where J(x) is universal c.e. trace with l + 1 many possibilities. Hence DNR(k, 0) = DNR(k).

Theorem

- > For any $l \ge 0$, DNR(k, l + 1) ⊢ DNR $(k) \lor$ DNR(k, l).
- > For any n > 3, there are constants k_n , l_n such that DNR $(k_n, l_n) \leq_{sW} COL(n)$.

> DNR $(k) \leq W$ COL(8) for any k, how can we get the reversal to WKL₀?

Definition

For $k, l \in \omega$, let DNR(k, l): \exists an *l*-approximable function $g: \omega \to \{0, 1, \dots, k-1\}$ such that $\forall x, g(x) \neq J(x)$, where J(x) is universal c.e. trace with l + 1 many possibilities. Hence DNR(k, 0) = DNR(k).

Theorem

- > For any $l \ge 0$, $DNR(k, l+1) \vdash DNR(k) \lor DNR(k, l)$.
- > For any n > 3, there are constants k_n , l_n such that DNR $(k_n, l_n) \leq_{sW} COL(n)$.

Corollary

Over RCA₀, for each n > 3, WKL₀ is equivalent to each of COL(n), $COL^*(n)$, ConnCOL(n).

- > Which of the principles COL(n), COL*(n), ConnCOL(n) and WKL is uniformly obtainable from another?
- > We've seen that DNR \leq_W COL(8) and therefore WKL \leq_W COL(*n*) for any $n \geq 8$.
- > On the other hand, WKL \leq_{sW} COL(4).

Proposition

WKL $\leq W$ COL(7).

Corollary

Over RCA₀, for each n > 3, WKL₀ is equivalent to each of COL(n), $COL^*(n)$, ConnCOL(n).

- > Which of the principles COL(n), COL*(n), ConnCOL(n) and WKL is uniformly obtainable from another?
- > We've seen that DNR \leq_W COL(8) and therefore WKL \leq_W COL(*n*) for any $n \geq 8$.
- > On the other hand, $WKL \leq_{sW} COL(4)$.

Proposition

WKL $\leq W$ COL(7).

Corollary

Over RCA₀, for each n > 3, WKL₀ is equivalent to each of COL(n), $COL^*(n)$, ConnCOL(n).

- > Which of the principles COL(n), COL*(n), ConnCOL(n) and WKL is uniformly obtainable from another?
- > We've seen that DNR \leq_W COL(8) and therefore WKL \leq_W COL(*n*) for any $n \geq 8$.
- > On the other hand, $WKL \leq_{sW} COL(4)$.

Proposition

WKL $\not\leq_W$ COL(7).

WKL $\not\leq_W$ COL(7)

Since $DNR(8) \leq_{sW} COL(7)$, the diagonalisation here must be different from what we used for $DNR \leq_W COL(8)$.

Lemma

It suffices to prove that for any finite planar $G \subset G_0, G_1$, there is a 7-coloring of G that extend to 7-colorings of G_0 and G_1 .

Proof.

- > Suppose that WKL $\leq_W COL(7)$ with some reductions Φ, Ψ .
- > Take $G = \Phi(2^{\omega})$, $G_0 = \Phi([0])$ and $G_1 = \Phi([1])$.
- > Now fix 7-colorings $h \subset h_0, h_1$ of G, G_0, G_1 respectively.
- Wait for Ψ(h) ⊃ 0 or Ψ(h) ⊃ 1
 (Ψ(h) must pick a path on 2^ω).

WKL \leq_W COL(7)

Lemma

It suffices to prove that for any finite planar $G \subset G_0, G_1$, there is a 7-coloring of G that extend to 7-colorings of G_0 and G_1 .

Proof.

- > If $\Psi(h) \supset 0$ we remove [0] from our input tree.
- Since $h_1 \supset h, \Psi(h_1) \supset 0$ which isn't a path on $\Psi^{-1}(G_1)$.

Now using the lemma, we fix finite planar $G \subset G_0, G_1$.

- > Fix a 4-coloring g_0 of G_0 and a 4-colouring g_1 of G_1 .
- > We will have $g_0 \upharpoonright G \neq g_1 \upharpoonright G$. How to define a 7-colouring h on G?

WKL $\not\leq_W$ COL(7)

- G
- > Define h on G and h_0 , h_1 on G_0 , G_1 as shown.
- > Clearly they are 7-colourings.

Theorem

Every four levels of COL(k) is proper wrt \leq_W , i.e.

 $\operatorname{COL}(4n), \operatorname{COL}(4n+1), \operatorname{COL}(4n+2), \operatorname{COL}(4n+3) \not\leq_W \operatorname{COL}(4n+4).$

- It works because given planar graphs G ⊂ Ĝ (G is finite), then any k-colouring of G extends to a k + 4-colouring of Ĝ.
- > We have similar extension theorems for ConnCOL and COL*:

Weihrauch reductions

Lemma

- > Given connected planar graphs G ⊂ Ĝ (G is finite), then any k-colouring of G extends to a k + 3-colouring of Ĝ.
- > Given planar graphs $G \subset \hat{G}$ (G is finite), with respective computable plane diagrams $D \subset \hat{D}$ then any 3k + 1-colouring of G extends to a 3k + 4-colouring of \hat{G} .

Corollary

For almost every k,

- > $COL(k) \not\leq_W ConnCOL(k)$.
- > $COL(k) \not\leq_W COL^*(k)$.

- > Does WKL \leq_{sW} COL(5) or COL(6)?
- > Generally, are any of the reductions proper? $COL(4n+3) \leq_{sW} COL(4n+2) \leq_{sW} COL(4n+1) \leq_{sW} COL(4n).$
- Calibrating the exact relationships between COL(k), COL*(n) and ConnCOL(m) for various k, n, m.
- > For instance, for each k, what is the least n such that $COL(k) \leq_{sW} COL^*(n)$ or ConnCOL(n)?
- > Principles arising from other restrictions on the planar graph, such as locally finite or highly recursive?
- > Strength of Fary-Thomassen's theorem, or Grötzsch's theorem.
- > Compare the colouring principles with other Weihrauch degrees, closure under parallelization, etc?

- > Does WKL \leq_{sW} COL(5) or COL(6)?
- > Generally, are any of the reductions proper? $COL(4n+3) \leq_{sW} COL(4n+2) \leq_{sW} COL(4n+1) \leq_{sW} COL(4n).$
- Calibrating the exact relationships between COL(k), COL*(n) and ConnCOL(m) for various k, n, m.
- > For instance, for each k, what is the least n such that COL(k) ≤_{sW} COL*(n) or ConnCOL(n)?
- > Principles arising from other restrictions on the planar graph, such as locally finite or highly recursive?
- > Strength of Fary-Thomassen's theorem, or Grötzsch's theorem.
- > Compare the colouring principles with other Weihrauch degrees, closure under parallelization, etc?

- > Does WKL \leq_{sW} COL(5) or COL(6)?
- > Generally, are any of the reductions proper? $COL(4n+3) \leq_{sW} COL(4n+2) \leq_{sW} COL(4n+1) \leq_{sW} COL(4n).$
- Calibrating the exact relationships between COL(k), COL*(n) and ConnCOL(m) for various k, n, m.
- For instance, for each k, what is the least n such that COL(k) ≤_{sW} COL*(n) or ConnCOL(n)?
- > Principles arising from other restrictions on the planar graph, such as locally finite or highly recursive?
- > Strength of Fary-Thomassen's theorem, or Grötzsch's theorem.
- > Compare the colouring principles with other Weihrauch degrees, closure under parallelization, etc?

- > Does WKL \leq_{sW} COL(5) or COL(6)?
- > Generally, are any of the reductions proper? $COL(4n+3) \leq_{sW} COL(4n+2) \leq_{sW} COL(4n+1) \leq_{sW} COL(4n).$
- Calibrating the exact relationships between COL(k), COL*(n) and ConnCOL(m) for various k, n, m.
- For instance, for each k, what is the least n such that COL(k) ≤_{sW} COL*(n) or ConnCOL(n)?
- > Principles arising from other restrictions on the planar graph, such as locally finite or highly recursive?
- Strength of Fary-Thomassen's theorem, or Grötzsch's theorem.
- > Compare the colouring principles with other Weihrauch degrees, closure under parallelization, etc?

Selwyn Ng