Planar graph colouring

Keng Meng Ng

Nanyang Technological University, Singapore
New Directions in Computability Theory
CIRM, Marseille
(9 March 2022)

Overview

> Colouring of graphs
> Recursive graphs studied for a long time (Bean, Schmerl, etc).
> All work is joint with H.T. Koh.

Overview

> Colouring of graphs
> Recursive graphs studied for a long time (Bean, Schmerl, etc).
> All work is joint with H.T. Koh.
Theorem (Appel, Haken (1976))
Every simple planar graph (on the plane) can be coloured with at most 4 colours.
$>$ Algorithmic content/strength of the 4 colour theorem.

Map colouring

A four colouring of the map of the states of the US
> Problem is to colour each region so that no two contiguous regions have the same colour.

Map colouring

A four colouring of the map of the states of the US
> Problem is to colour each region so that no two contiguous regions have the same colour.
> Nevada has five neighbours, so the US map cannot be coloured using only three colours.

The four colour theorem

> Francis Guthrie proposed this conjecture in 1852 while trying to colour the map of England.
> Kempe (1879) and Tait (1880) gave incorrect proofs, which got turned into the five colour theorem by Heawood in 1890.

Appel and Haken finally proved the theorem in 1976, building on the computer-assisted methods developed by Heesch.

Simplified and reproved by Robertson, Sanders, Seymour and Thomas in 1996.

The four colour theorem

> Francis Guthrie proposed this conjecture in 1852 while trying to colour the map of England.
> Kempe (1879) and Tait (1880) gave incorrect proofs, which got turned into the five colour theorem by Heawood in 1890.
> Appel and Haken finally proved the theorem in 1976, building on the computer-assisted methods developed by Heesch.
> Simplified and reproved by Robertson, Sanders, Seymour and Thomas in 1996.

The five colour theorem

> The five colour theorem is easy to prove: By Euler characteristic, $\exists v$ such that $\operatorname{deg}(v) \leq 5$.
> Then $G-\{v\}$ can be coloured with five colours.

The five colour theorem

Fix a 1-3 chain between the two vertices

Recursive graphs and colourings

> All graphs considered are simple, i.e. no loops and no multiple edges. (A graph in general might not be connected).
$>$ A k-coloring of a graph (V, E) is a function $c: V \rightarrow k$ such that if $c(v)=c\left(v^{\prime}\right)$ then $\left(v, v^{\prime}\right) \notin E$.
> We of course consider infinite (countable) graphs. By compactness, Tychonoff's Theorem, etc:

Fact (De-Bruijn, Erdős)
An infinite graph is k-colorable iff every finite subgraph is k-colorable (locally k-colorable).

Recursive graphs and colourings

Theorem (Hirst)
Over $R C A_{0}$, for each $2 \leq k$, we have
$W K L_{0} \Leftrightarrow$ Every locally k-colorable graph is k-colorable.
Theorem (Gasarch, Hirst)
Over $R C A_{0}$, for each $2 \leq k$, we have
$W K L_{0} \Leftrightarrow$ Every locally k-colorable graph is $2 k-1$-colorable.
Theorem (Schmerl)
Over $R C A_{0}$, for each $2 \leq k \leq m$, we have
$W K L_{0} \Leftrightarrow$ Every locally k-colorable graph is m-colorable.

Recursive graphs and colourings

Theorem (Bean)

Every k-colorable computable graph has a low k-coloring.
> Represent vertices as nodes of a tree and edges of the tree as a possible color of the node.
> Any computable 2-colorable graph has a computable 2-coloring.

Theorem (Bean)
There is a computable 3-colorable planar graph that has no
computable k-coloring for any k.
> In other words, the four colour theorem is not computably
true.

Recursive graphs and colourings

Theorem (Bean)

Every k-colorable computable graph has a low k-coloring.
> Represent vertices as nodes of a tree and edges of the tree as a possible color of the node.
> Any computable 2-colorable graph has a computable 2-coloring.

Theorem (Bean)
There is a computable 3-colorable planar graph that has no computable k-coloring for any k.
> In other words, the four colour theorem is not computably true.

Highly recursive graphs and colourings

> A locally finite graph is highly recursive if it is computable and the degree of each vertex is computable.

Theorem (Bean)

Given each separating Π_{1}^{0}-class P and each $k \geq 3$, there is a k-colorable highly recursive graph G such that the k-colorings of G correspond to the paths of P in a degree-preserving way.
> This theorem almost establishes a relationship between WKL_{0} and graph coloring principles. (For $k=3, G$ is planar).

Highly recursive graphs and colourings

Theorem (Bean)
Every highly recursive planar graph has a computable 6-coloring.
Does every highly recursive planar graph have a computable 4or 5-coloring?

Theorem (Schmerl)
Every highly recursive k-colorable graph has a computable $2 k-1$-coloring, and this result is sharp.

Theorem (Kierstead)
Every highly recursive k-colorable perfect graph has a computable $k+1$-coloring.

Highly recursive graphs and colourings

Theorem (Bean)

Every highly recursive planar graph has a computable 6-coloring.
Does every highly recursive planar graph have a computable 4or 5-coloring?

Theorem (Schmerl)

Every highly recursive k-colorable graph has a computable $2 k-1$-coloring, and this result is sharp.

Theorem (Kierstead)
Every highly recursive k-colorable perfect graph has a computable $k+1$-coloring.

Edge colourings

> (Kierstead) Every highly recursive k-edge-colorable perfect graph has a computable $k+1$-edge coloring.
> Vizing's theorem: Every k-regular graph has a $k+1$-edge colouring.
> Hence, every k-regular graph has a computable $k+2$-edge colouring.
> (Schmerl) Some computable 3-regular graph has no computable 3-edge colouring.
> (Schmerl) Is Vizing's theorem computably true?
> (Mummert, unpublished) WKL_{0} is equivalent to Konig's line coloring theorem: Every bipartite graph with degree bounded by k has a k-edge-colouring.

Formalising planar graphs

> All graphs are simple. They do not have to be locally finite or connected, unless specified.
> All results (and definitions) are over RCA_{0}.
> A countable graph G is planar iff neither $K_{3,3}$ nor K_{5} is a minor (or a subdivision) of G.
(Wagner and Kuratowski-Pontryagin) For finite graphs, this is equivalent to having a plane diagram/embedding. Here we represent a plane diagram of a planar graph as a countable set of rational coordinates representing the coordinates of vertices, and edges. Each edge is made up of finitely many line segments.

Formalising planar graphs

> All graphs are simple. They do not have to be locally finite or connected, unless specified.
> All results (and definitions) are over RCA_{0}.
> A countable graph G is planar iff neither $K_{3,3}$ nor K_{5} is a minor (or a subdivision) of G.
> (Wagner and Kuratowski-Pontryagin) For finite graphs, this is equivalent to having a plane diagram/embedding.

Here we represent a plane diagram of a planar graph as a countable set of rational coordinates representing the coordinates of vertices, and edges. Each edge is made up of finitely many line segments.

Formalising planar graphs

> All graphs are simple. They do not have to be locally finite or connected, unless specified.
> All results (and definitions) are over RCA_{0}.
> A countable graph G is planar iff neither $K_{3,3}$ nor K_{5} is a minor (or a subdivision) of G.
> (Wagner and Kuratowski-Pontryagin) For finite graphs, this is equivalent to having a plane diagram/embedding.
> Here we represent a plane diagram of a planar graph as a countable set of rational coordinates representing the coordinates of vertices, and edges. Each edge is made up of finitely many line segments.

Formalising planar graphs

> Each planar graph has a plane diagram with straight line as the edges (See Wagner, Fary, Stein for finite graphs, and Thomassen for infinite graphs).
> (Erdős, see Dirac, Schuster)
$\mathrm{WKL}_{0} \vdash$ Every countable planar graph has a plane diagram.
> Is this computably true?

Plane diagrams

Proposition

There is a computable planar graph with no computable plane diagram.

Four possible plane drawings of the gadget

Plane diagrams

Adding the new vertex v_{6} in each case

The k-color theorem

Proposition

$W K L_{0} \Leftrightarrow$ Every planar graph admits a plane diagram.
> If we're working over WKL_{0}, we can interchangeably use the various definitions of a planar graph.

Definition
For each $k \geq 4$, define the principles:
$\operatorname{COL}(k)$: Every countable planar graph is k-colourable.
COL*(k): Every countable planar graph with a computable planar diagram is k-colourable.

ConnCOL(k): Every countable connected planar graph is k-colourable.

The k-color theorem

Proposition

$W K L_{0} \Leftrightarrow$ Every planar graph admits a plane diagram.
> If we're working over WKL_{0}, we can interchangeably use the various definitions of a planar graph.

Definition

For each $k \geq 4$, define the principles:
$\operatorname{COL}(k)$: Every countable planar graph is k-colourable.
COL* (k) : Every countable planar graph with a computable planar diagram is k-colourable.

ConnCOL(k): Every countable connected planar graph is k-colourable.

The k-color theorem

Recall:

Theorem (Bean)

There is a computable 3-colorable planar graph that has no computable k-coloring for any k.
> Thus $\operatorname{COL}(k)$ is not computably true for any $k \geq 4$, but follows from WKL_{0}.

Theorem
$W K L_{0}$ is equivalent to each of $\operatorname{COL}(4), \operatorname{COL}^{*}(4)$ and $\operatorname{ConnCOL}(4)$.

The k-color theorem

Recall:

Theorem (Bean)

There is a computable 3-colorable planar graph that has no
computable k-coloring for any k.
> Thus COL (k) is not computably true for any $k \geq 4$, but follows from $W_{K} L_{0}$.

Theorem
$W K L_{0}$ is equivalent to each of $\operatorname{COL}(4), \operatorname{COL}^{*}(4)$ and $\operatorname{ConnCOL}(4)$.

Reversing COL(4) to WKL_{0}

Given a tree T we encode $\rangle, 0,1$ into the three gadgets respectively.

Reversing COL(4) to WKL_{0}

If $\sigma 0$ dies, we add three new nodes:

Reversing COL(4) to WKL_{0}

If $\sigma 0$ dies, we add three new nodes:

Reversing COL(4) to WKL_{0}

If $\sigma 0$ dies, we add three new nodes:

Reversing COL(4) to WKL_{0}

If $\sigma 0$ dies, we add three new nodes:

Reversing COL(4) to WKL_{0}

If $\sigma 0$ dies, we add three new nodes:

Reversing COL(4) to WKL_{0}

If $\sigma 0$ dies, we add three new nodes:

Now any four colouring c of the graph must satisfy

$$
c\left(v_{\sigma}\right)=c\left(w_{\sigma}\right)=c\left(n_{\sigma 1}\right) \neq c\left(n_{\sigma 0}\right) .
$$

The k-color theorem

Theorem

For each $k \geq 4, W K L_{0}$ is equivalent to each of $\operatorname{COL}(k), \operatorname{COL}^{*}(k)$ and ConnCOL(k).
> In the reversal $\mathrm{RCA}_{0}+\operatorname{COL}(4) \vdash \mathrm{WKL}_{0}$, we used K_{4} in our constructed graph G to force any 4 -colouring of G to have little choice.
> Obviously, we can't use K_{5} to show $\mathrm{RCA}_{0}+\operatorname{COL}(5) \vdash \mathrm{WKL}_{0}$.
> $\mathrm{RCA}_{0}+\operatorname{COL}(k) \vdash \mathrm{WKL}_{0}$ can be proved non-uniformly, and for $k \geq 7$ this is provably necessary.

The k-color theorem

Theorem

For each $k \geq 4, W K L_{0}$ is equivalent to each of $\operatorname{COL}(k), \operatorname{COL}^{*}(k)$ and ConnCOL(k).
> In the reversal $\mathrm{RCA}_{0}+\operatorname{COL}(4) \vdash \mathrm{WKL}_{0}$, we used K_{4} in our constructed graph G to force any 4 -colouring of G to have little choice.
> Obviously, we can't use K_{5} to show $\mathrm{RCA}_{0}+\operatorname{COL}(5) \vdash \mathrm{WKL}_{0}$.
> $\mathrm{RCA}_{0}+\operatorname{COL}(k) \vdash \mathrm{WKL}_{0}$ can be proved non-uniformly, and for $k \geq 7$ this is provably necessary.
> Recall that $\operatorname{DNR}(k): \exists g: \omega \rightarrow\{0,1,2, \ldots, k-1\}$ s.t.

$$
\forall x, g(x) \neq \varphi_{x}(x) .
$$

Reversing COL(5) to $\operatorname{DNR}(3)$

To encode $\varphi_{e}(e)$, we start with the gadget:

Reversing COL(5) to $\operatorname{DNR}(3)$

If $\varphi_{e}(e) \downarrow=0$, we add 6 new vertices and connect them to each K_{3}. (This diagram can be made planar).

$$
\varphi_{e}(e) \downarrow=0
$$

Reversing COL(5) to $\operatorname{DNR}(3)$

If $\varphi_{e}(e) \downarrow=1$, we add 2 new vertices.

Reversing COL(5) to $\operatorname{DNR}(3)$

If $\varphi_{e}(e) \downarrow=2$, we add 1 new vertex and connect to all old vertices.

$$
\varphi_{e}(e) \downarrow=2
$$

Reversing COL(5) to $\operatorname{DNR}(3)$

Now given a 5-colouring of the graph, if the left set of 9 black vertices are coloured with only 3 colours, then $\varphi_{e}(e) \neq 0$.

Reversing COL(5) to $\operatorname{DNR}(3)$

If the left and right set of 9 black vertices are coloured with 4 colours, then $\varphi_{e}(e) \neq 1$.

Reversing COL(5) to $\operatorname{DNR}(3)$

If the black vertices are coloured with all 5 colours, then $\varphi_{e}(e) \neq 2$.

The k-color theorem and uniformity

> This shows that $\mathrm{RCA}_{0}+\operatorname{COL}(5) \vdash \operatorname{DNR}(3)$, and thus $\mathrm{WKL}_{0} \leftrightarrow \operatorname{COL}(4)$ and $\mathrm{WKL}_{0} \leftrightarrow \operatorname{COL}(5)$.
> To further calibrate the complexity of statements which might be equivalent in the RM sense, we use the tools from computable analysis.

Weihrauch reducibility

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer, after Weihrauch)
Let P and Q be Π_{2}^{1} statements of second-order arithmetic.
$>P \leq w Q$, if $\exists \Phi, \Psi$ where Φ, Ψ are Turing reductions s.t. whenever A is an instance of $P, B=\Phi(A)$ is an instance of Q and if T is a solution to B, then $S=\Psi(T \oplus A)$ is a solution of P.
> $P \leq_{s W} Q$, if we require $S=\Psi(T)$ is a solution of P.
> If $P \leq w Q$, then usually one can turn it into a "uniform" proof of $\mathrm{RCA}_{0} \vdash Q \rightarrow P$.

The k-color theorem and uniformity

Theorem
$>\mathrm{WKL} \leq_{s W} \operatorname{COL}(4)$.
$>\operatorname{DNR}(3) \leq_{s W} \operatorname{COL}(5)$.
$>\operatorname{DNR}(4) \leq_{s W} \operatorname{COL}(6)$.
$>\operatorname{DNR}(8) \leq_{s W} \operatorname{COL}(7)$.
Obviously we should have $\operatorname{DNR}(?) \leq_{s W} \operatorname{COL}(8) ?$
Theorem
DNR $<w_{w}$ COT (8).

The k-color theorem and uniformity

Theorem
$>\mathrm{WKL} \leq_{s W} \operatorname{COL}(4)$.
$>\operatorname{DNR}(3) \leq_{s W} \operatorname{COL}(5)$.
$>\operatorname{DNR}(4) \leq_{s W} \operatorname{COL}(6)$.
$>\operatorname{DNR}(8) \leq_{s W} \operatorname{COL}(7)$.
Obviously we should have $\operatorname{DNR}(?) \leq_{s W} \operatorname{COL}(8)$?
Theorem
DNR $\not \leq w \operatorname{COL}(8)$.

The k-color theorem and uniformity

Theorem
$>W K L \leq_{s W} \operatorname{COL}(4)$.
$>\operatorname{DNR}(3) \leq_{s W} \operatorname{COL}(5)$.
$>\operatorname{DNR}(4) \leq_{s W} \operatorname{COL}(6)$.
$>\operatorname{DNR}(8) \leq_{s W} \mathrm{COL}(7)$.
Obviously we should have $\operatorname{DNR}(?) \leq_{s W} \operatorname{COL}(8) ?$
Theorem
DNR $\neq W$ COI (8).

The k-color theorem and uniformity

Theorem
$>\mathrm{WKL} \leq_{s W} \operatorname{COL}(4)$.
$>\operatorname{DNR}(3) \leq_{s W} \operatorname{COL}(5)$.
$>\operatorname{DNR}(4) \leq_{s W} \operatorname{COL}(6)$.
$>\operatorname{DNR}(8) \leq_{s W} \mathrm{COL}(7)$.
Obviously we should have $\operatorname{DNR}(?) \leq_{s W} \operatorname{COL}(8)$?
Theorem
DNR $\not \leq W$ COL(8).

The k-color theorem and uniformity

Theorem
$>\mathrm{WKL} \leq_{s W} \operatorname{COL}(4)$.
$>\operatorname{DNR}(3) \leq_{s W} \operatorname{COL}(5)$.
$>\operatorname{DNR}(4) \leq_{s W} \operatorname{COL}(6)$.
$>\operatorname{DNR}(8) \leq_{s W} \mathrm{COL}(7)$.
Obviously we should have $\operatorname{DNR}(?) \leq_{s W} \operatorname{COL}(8)$?
Theorem
DNR $\not \approx w \operatorname{COL}(8)$.

DNR $\not \leq w \operatorname{COL}(8)$

> Suppose that there is a computable planar G and some ψ such that $\Psi^{c}(x) \neq \varphi_{x}(x)$ for every x and every 8-colouring c of G.
$>$ By the Recursion Theorem, define $\varphi_{e}(e)=\Psi^{\sigma}(e)$ where σ is a 4-colouring of a finite subgraph H of G.
> Since $G-H$ is planar, we can 4 -colour $G-H$ with a different set of 4 colours, and so σ can be extended to an 8 -colouring c of G.
$>$ This is a contradiction since $\Psi^{c}(e)=\varphi_{e}(e)$.

Reversing COL(k) for $k \geq 8$

$>\operatorname{DNR}(k) \nsubseteq w \operatorname{COL}(8)$ for any k, how can we get the reversal to WKL ?

Definition

For $k, l \in \omega$, let $\operatorname{DNR}(k, /): \exists$ an $/$-approximable function
$g: \omega \rightarrow\{0,1, \cdots, k-1\}$ such that $\forall x, g(x) \neq J(x)$, where $J(x)$
is universal c.e. trace with $I+1$ many possibilities. Hence $\operatorname{DNR}(k, 0)=\operatorname{DNR}(k)$.

Theorem
$>$ For any $I \geq 0, \operatorname{DNR}(k, I+1) \vdash \operatorname{DNR}(k) \vee \operatorname{DNR}(k, I)$.
$>$ For any $n>3$, there are constants k_{n}, l_{n} such that $\operatorname{DNR}\left(k_{n}, l_{n}\right) \leq_{s W} \operatorname{COL}(n)$.

Reversing COL(k) for $k \geq 8$

$>\operatorname{DNR}(k) \nsubseteq w \operatorname{COL}(8)$ for any k, how can we get the reversal to WKL ?

Definition

For $k, l \in \omega$, let $\operatorname{DNR}(k, /): \exists$ an $/$-approximable function
$g: \omega \rightarrow\{0,1, \cdots, k-1\}$ such that $\forall x, g(x) \neq J(x)$, where $J(x)$
is universal c.e. trace with $I+1$ many possibilities. Hence $\operatorname{DNR}(k, 0)=\operatorname{DNR}(k)$.

Theorem

$$
>\text { For any } I \geq 0, \operatorname{DNR}(k, I+1) \vdash \operatorname{DNR}(k) \vee \operatorname{DNR}(k, I) \text {. }
$$

$>$ For any $n>3$, there are constants k_{n}, l_{n} such that $\operatorname{DNR}\left(k_{n}, I_{n}\right) \leq_{s W} \operatorname{COL}(n)$.

Reversing COL(k) for $k \geq 8$

Corollary

Over $R C A_{0}$, for each $n>3$, WKL L_{0} is equivalent to each of $\operatorname{COL}(n), \operatorname{COL}^{*}(n), \operatorname{ConnCOL}(n)$.
> Which of the principles $\operatorname{COL}(n), \operatorname{COL}^{*}(n), \operatorname{ConnCOL}(n)$ and WKL is uniformly obtainable from another?

$$
\begin{aligned}
& >\text { We've seen that DNR } \not \leq W \operatorname{COL}(8) \text { and therefore } \\
& \text { WKL } \not \leq W \operatorname{COL}(n) \text { for any } n \geq 8 \text {. } \\
& >\text { On the other hand, } \mathrm{WKL} \leq_{s W} \operatorname{COL}(4) \text {. }
\end{aligned}
$$

\square
WKL $\neq w \operatorname{COL}(7)$.

Reversing COL(k) for $k \geq 8$

Corollary

Over $R C A_{0}$, for each $n>3, W K L_{0}$ is equivalent to each of $\operatorname{COL}(n), \operatorname{COL}^{*}(n), \operatorname{ConnCOL}(n)$.
> Which of the principles $\operatorname{COL}(n), \operatorname{COL}^{*}(n), \operatorname{ConnCOL}(n)$ and WKL is uniformly obtainable from another?
> We've seen that DNR $\not \approx w \operatorname{COL}$ (8) and therefore WKL $\not \leq W \operatorname{COL}(n)$ for any $n \geq 8$.
$>$ On the other hand, WKL $\leq_{s W} \operatorname{COL}(4)$.
Proposition
$W K L \not \leq W \operatorname{COL}(7)$.

Reversing COL(k) for $k \geq 8$

Corollary

Over $R C A_{0}$, for each $n>3, W K L_{0}$ is equivalent to each of $\operatorname{COL}(n), \operatorname{COL}^{*}(n), \operatorname{ConnCOL}(n)$.
$>$ Which of the principles $\operatorname{COL}(n), \operatorname{COL}^{*}(n), \operatorname{ConnCOL}(n)$ and WKL is uniformly obtainable from another?
> We've seen that DNR $\not \leq w \operatorname{COL}$ (8) and therefore WKL $\not \leq W \operatorname{COL}(n)$ for any $n \geq 8$.
$>$ On the other hand, WKL $\leq_{s W} \operatorname{COL}(4)$.

Proposition

WKL $\not \leq W$ COL(7).

$W K L \not \leq W \operatorname{COL}(7)$

Since $\operatorname{DNR}(8) \leq_{s W} \operatorname{COL}(7)$, the diagonalisation here must be different from what we used for $\operatorname{DNR} \not \not \neq W \operatorname{COL}$ (8).

Lemma

It suffices to prove that for any finite planar $G \subset G_{0}, G_{1}$, there is a 7 -coloring of G that extend to 7 -colorings of G_{0} and G_{1}.

Proof.

> Suppose that $\mathrm{WKL} \leq w \operatorname{COL}(7)$ with some reductions Φ, Ψ.
> Take $G=\Phi\left(2^{\omega}\right), G_{0}=\Phi([0])$ and $G_{1}=\Phi([1])$.
> Now fix 7-colorings $h \subset h_{0}, h_{1}$ of G, G_{0}, G_{1} respectively.
> Wait for $\Psi(h) \supset 0$ or $\psi(h) \supset 1$ ($\Psi(h)$ must pick a path on 2^{ω}).

$W K L \not \approx W \operatorname{COL}(7)$

Lemma

It suffices to prove that for any finite planar $G \subset G_{0}, G_{1}$, there is a 7 -coloring of G that extend to 7 -colorings of G_{0} and G_{1}.

Proof.

> If $\Psi(h) \supset 0$ we remove [0] from our input tree.
> Since $h_{1} \supset h, \Psi\left(h_{1}\right) \supset 0$ which isn't a path on $\Psi^{-1}\left(G_{1}\right)$.
Now using the lemma, we fix finite planar $G \subset G_{0}, G_{1}$.
> Fix a 4-coloring g_{0} of G_{0} and a 4-colouring g_{1} of G_{1}.
> We will have $g_{0} \upharpoonright G \neq g_{1} \upharpoonright G$. How to define a 7 -colouring h on G ?

$W K L \not \approx w \operatorname{COL}(7)$

$>$ Define h on G and h_{0}, h_{1} on G_{0}, G_{1} as shown.
> Clearly they are 7-colourings.

Weihrauch reductions

Theorem
Every four levels of $\operatorname{COL}(k)$ is proper wrt $\leq w$, i.e.
$\operatorname{COL}(4 n), \operatorname{COL}(4 n+1), \operatorname{COL}(4 n+2), \operatorname{COL}(4 n+3) \not \leq w \operatorname{COL}(4 n+4)$.
$>$ It works because given planar graphs $G \subset \hat{G}$ (G is finite), then any k-colouring of G extends to a $k+4$-colouring of \hat{G}.
> We have similar extension theorems for ConnCOL and COL*:

Weihrauch reductions

Lemma

> Given connected planar graphs $G \subset \hat{G}$ (G is finite), then any k-colouring of G extends to a $k+3$-colouring of \hat{G}.
$>$ Given planar graphs $G \subset \hat{G}$ (G is finite), with respective computable plane diagrams $D \subset \hat{D}$ then any $3 k+1$-colouring of G extends to a $3 k+4$-colouring of \hat{G}.

Corollary
For almost every k,

$$
\begin{aligned}
& >\operatorname{COL}(k) \not \pm w \operatorname{ConnCOL}(k) . \\
& >\operatorname{COL}(k) \not \leq W \operatorname{COL}^{*}(k) .
\end{aligned}
$$

Questions

$>$ Does $\mathrm{WKL} \leq_{s W} \operatorname{COL}(5)$ or COL(6)?
> Generally, are any of the reductions proper? $\operatorname{COL}(4 n+3) \leq_{s W} \operatorname{COL}(4 n+2) \leq_{s W} \operatorname{COL}(4 n+1) \leq_{s W} \operatorname{COL}(4 n)$.
> Calibrating the exact relationships between COL(k), COL*(n) and ConnCOL (m) for various k, n, m.
> For instance, for each k, what is the least n such that $\operatorname{COL}(k) \leq_{s W}$ COL $^{*}(n)$ or ConnCOL(n)?
> Principles arising from other restrictions on the planar graph, such as locally finite or highly recursive?
> Strength of Fary-Thomassen's theorem, or Grötzsch's theorem.
> Compare the colouring principles with other Weihrauch degrees, closure under parallelization, etc?

Questions

$>$ Does $\mathrm{WKL} \leq_{s W} \operatorname{COL}(5)$ or COL(6)?
> Generally, are any of the reductions proper? $\operatorname{COL}(4 n+3) \leq_{s W} \operatorname{COL}(4 n+2) \leq_{s W} \operatorname{COL}(4 n+1) \leq_{s W} \operatorname{COL}(4 n)$.
> Calibrating the exact relationships between $\operatorname{COL}(k), \operatorname{COL}^{*}(n)$ and $\operatorname{Conn} \operatorname{COL}(m)$ for various k, n, m.
> For instance, for each k, what is the least n such that $\operatorname{COL}(k) \leq_{s W} \operatorname{COL}^{*}(n)$ or $\operatorname{ConnCOL}(n)$?
> Principles arising from other restrictions on the planar graph, such as locally finite or highly recursive? Strength of Fary-Thomassen's theorem, or Grötzsch's theorem. Compare the colouring principles with other Weihrauch degrees, closure under parallelization, etc?

Questions

> Does WKL $\leq_{s W} \operatorname{COL}(5)$ or $\operatorname{COL}(6)$?
> Generally, are any of the reductions proper? $\operatorname{COL}(4 n+3) \leq_{s W} \operatorname{COL}(4 n+2) \leq_{s W} \operatorname{COL}(4 n+1) \leq_{s W} \operatorname{COL}(4 n)$.
> Calibrating the exact relationships between $\operatorname{COL}(k), \operatorname{COL}^{*}(n)$ and $\operatorname{Conn} \operatorname{COL}(m)$ for various k, n, m.
> For instance, for each k, what is the least n such that $\operatorname{COL}(k) \leq_{s W} \operatorname{COL}^{*}(n)$ or $\operatorname{ConnCOL}(n)$?
> Principles arising from other restrictions on the planar graph, such as locally finite or highly recursive?
> Strength of Fary-Thomassen's theorem, or Grötzsch's theorem.

Compare the colouring principles with other Weihrauch degrees, closure under parallelization, etc?

Questions

> Does WKL $\leq_{s W} \operatorname{COL}(5)$ or $\operatorname{COL}(6)$?
> Generally, are any of the reductions proper?

$$
\operatorname{COL}(4 n+3) \leq_{s W} \operatorname{COL}(4 n+2) \leq_{s W} \operatorname{COL}(4 n+1) \leq_{s W} \operatorname{COL}(4 n) .
$$

> Calibrating the exact relationships between $\operatorname{COL}(k), \operatorname{COL}^{*}(n)$ and $\operatorname{ConncOL}(m)$ for various k, n, m.
> For instance, for each k, what is the least n such that $\operatorname{COL}(k) \leq_{s W} \operatorname{COL}^{*}(n)$ or $\operatorname{ConnCOL}(n)$?
> Principles arising from other restrictions on the planar graph, such as locally finite or highly recursive?
> Strength of Fary-Thomassen's theorem, or Grötzsch's theorem.
> Compare the colouring principles with other Weihrauch degrees, closure under parallelization, etc?

