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1. Feeble subsets and fireworks



Nostalgia...
July 2009, my first time at the CIRM, in this very room, I attended a
talk by Bjørn Kjos-Hanssen, entitled Feeble subsets.

He presented the following result:

Theorem
If X is sufficiently random (2-Schnorr random is enough), then there
exists an infinite Y ⊆ X such that Y does not compute any
Martin-Löf random.

This was an important first step towards proving the following
conjecture: if X is Martin-Löf random, then there exists an infinite
Y ⊆ X such that Y does not compute any Martin-Löf random.
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Kjos-Hanssen’s argument

The proof is very elegant and has two distinct components.

Step 1: a computability-theoretic part.

Proposition
There exists a ∅’-computable 3-bushy tree T ⊆ ωω such that no
path of T computes a Martin-Löf random.
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Kjos-Hanssen’s argument

Recall: a tree is (perfectly) k-bushy if every node in the tree has at
least k children.

If f : ω → ω is a function, a tree T is (perfectly) f-bushy if any
node σ ∈ T has at least f(|σ|) many children.
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Kjos-Hanssen’s argument

To prove the ‘Step 1’ theorem, one uses bushy tree forcing,
where a forcing condition is a pair (τ,B) where τ is a finite bushy
tree and B is a ‘small’ set of strings to be avoided, and

(τ ′,B ′) ≤ (τ,B)

when τ ′ extends τ and B ′ ⊇ B.

A very powerful tool, see M. Khan and J.S. Miller, Forcing with
bushy trees.
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Kjos-Hanssen’s argument

In order to force the non-computation of MLR, one needs to avoid
some ‘small’ c.e. sets B,

and the construction can be performed
below ∅ ′...

... but this where there is some wiggle room! (we’ll come back to
this)
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Kjos-Hanssen’s argument

Step 2: a purely probabilistic argument.

Proposition
Start with a perfect infinite ternary tree. For each node, flip a coin.
Heads: remove the node; Tail: keep the node. Then with positive
probability some path X of the original tree is intact (no node of X is
removed).
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Kjos-Hanssen’s argument

This is because, in terms of survival of paths, this process is
equivalent to a Galton-Watson process:

• Start wih a root node.
• This node produces 0, 1, 2 or 3 children, with respective

probabilities 1/8, 3/8, 3/8, 1/8.
• These children themselves produce 0, 1, 2 or 3 children with

the same probability, etc.

A well-known result in probability theory is that the process
produces an infinite tree with positive probability when the
expectation of the number of children is > 1 (which is the case
here: expectation is 3/2).
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Kjos-Hanssen’s argument

This second step effectivizes easily. Take a perfect ternary tree T
and identify its nodes with integers so that T ⊆ ω.

Now take X ⊂ ω that is Schnorr random relative to T. Then some
path of T is in X∗ ∩ T, where X∗ is equal to X except for a finite
symmetric difference.

This finishes the proof: take a ∅’-computable tree ternary T none
of whose paths computes a random. Let X be Schnorr random
relative to ∅ ′. Then X∗ ∩ T contains a path Y which does not
compute a 1-random, thus Y ∩ X does not either. This X ∩ Y is the
desired subset of X.
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The full result holds true

It turns out that a stronger result mentioned as a conjecture is true:

Theorem (Kjos-Hanssen and Liu, 2019)
For every 1-random X, there is an infinite subset Y of X such that Y
does not compute any 1-random.

We present an alternative proof using the fireworks machinery.
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Fireworks

The fireworks method is a template to perform some forcing
arguments in a probabilistic setting. With a different viewpoint
(a.k.a. “measure-risking” argument), Kautz used it to prove the
following

Theorem (Kautz,1991)
Every 2-random computes a 1-generic.
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Fireworks

Kautz’s argument generalizes easily (once reformulated as
‘fireworks’ by Shen and Rumyantsev) to any computable order.

Theorem
Let (P,≤) be a computable (or c.e.) order. Then every 2-random
computes a decreasing sequence p0 > p1 > p2 > . . . such that
for every c.e. subset W of P, there is some i such that either (1)
pi ∈ W or (2) for all q ≤ pi, q /∈ W.

(Note: In fact Demuth randomness is enough, as shown by B. and
Porter).
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Fireworks

Bushy tree forcing can be performed in this setting (with some
subtlety to make the order c.e.). This was for example used by B.
and Patey to show

Theorem (B., Patey, 2014)
Every 2-random X computes some DNC function f which itself
does not compute a 1-random.

Note: here 2-random is needed, Demuth random will not do
because there is an extra layer of randomness on top of the
fireworks argument.
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Fireworks

At the core of the B.-Patey proof:

Every 2-random computes an h-perfectly bushy tree T with large h
and a sequence of small c.e. sets (Bi) such that for any path X of T
that is not in any Bi, X does not compute a 1-random.

Moreover, h can be taken as fast-growing as we want, and the Bi

as small as we want (compared to h-bushiness).
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Fireworks
So how to get the KH-Liu result now?

• Take X 1-random.
• Take a 2-random Z such that X is 1-random relative to Z (by

van Lambalgen).
• Below Z build, for h very fast growing, an h-bushy tree and

small c.e. sets such that no path of the tree avoiding these
small sets computes a 1-random.

• Intersect T with X and argue that X ∩ T must remain (modulo
finite change) h ′-bushy for some h ′ large enough to keep the
small sets small enough.

• So X ∩ T must still have a path avoiding the small sets!
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Improving to Schnorr randomness?
Do we get anything more? After all X must only be T-Schnorr
random...

• Take X Schnorr-random.
• Take a 2-random Z such that X is Schnorr-random relative

to Z.
• Below Z build, for h very fast growing, an h-bushy tree and

small c.e. sets such that no path of the tree avoiding these
small sets computes a 1-random.

• Intersect T with X and argue that X ∩ T must remain (modulo
finite change) h ′-bushy for some h ′ large enough to keep the
small sets small enough.

• So X ∩ T must still have a path avoiding the small sets!
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Improving to Schnorr randomness?
We know that van Lambalgen theorem fails for Schnorr
randomness (Yu 2006), but is it still the case that

If X is Schnorr random then
for almost all Y, X is Schnorr random relative to Y?

And the same question for any notion for which van Lambalgen
fails: computable randomness, partial computable randomness?
(recall: partial computably random⇒ computably random⇒
Schnorr random.

The answer turns out to be no for these three notions, which
merits a story of its own.

1. Feeble subsets and fireworks 18/31



Improving to Schnorr randomness?
We know that van Lambalgen theorem fails for Schnorr
randomness (Yu 2006), but is it still the case that

If X is Schnorr random then
for almost all Y, X is Schnorr random relative to Y?

And the same question for any notion for which van Lambalgen
fails: computable randomness, partial computable randomness?
(recall: partial computably random⇒ computably random⇒
Schnorr random.

The answer turns out to be no for these three notions, which
merits a story of its own.

1. Feeble subsets and fireworks 18/31



Improving to Schnorr randomness?
We know that van Lambalgen theorem fails for Schnorr
randomness (Yu 2006), but is it still the case that

If X is Schnorr random then
for almost all Y, X is Schnorr random relative to Y?

And the same question for any notion for which van Lambalgen
fails: computable randomness, partial computable randomness?
(recall: partial computably random⇒ computably random⇒
Schnorr random.

The answer turns out to be no for these three notions, which
merits a story of its own.

1. Feeble subsets and fireworks 18/31



2. Martingales and fireworks



Probabilistic martingales

For computable randomness, for a real X, asking whether X is
Y-computably random for almost all Y amounts to asking whether
there exists a probabilistic martingale d such that with positive
probability over Z:

• dZ is total
• dZ succeeds on X
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Probabilistic martingales

This setting was actually considered before by Buss and Minnes,
but with with the stronger condition that dZ must be total with
probability 1 (and succeed on X).

In that case, we just get computable randomness:

Proposition (Buss and Minnes, 2013)
The following are equivalent:
(i) X is computably random
(ii) If d is a probabilistic martingale which is total with

probability 1, then it also fails on X with probability 1.
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Probabilistic martingales

This is essentially because when d is such a martingale, the
expectation

∫
Z d

Z is also a total computable martingale. But this
trick no longer holds for martingales that can be partial with
positive probability...

and indeed in the general setting, we get the opposite result, in a
strong sense.

Theorem (B, DR, S, 2022)
There exists a partial computably random X such that for almost
every Y, X is not even Schnorr random relative to Y!
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Probabilistic martingales

The proof uses... fireworks again!

Forcing notion: functions f : 2<ω → Q+ with finite domain,
f(∅) = 1 and with the fairness condition f(σ0) + f(σ1) = 2f(σ).

The order is the obvious one: f ≥ g if f extends g.

This allows us to talk about generic martingales (they are in
particular total), which can be generated via fireworks.
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Building a partial computably random
What is the usual construction of a partial computably random?
Consider an effective listing d1, d2, . . . of all partial computable
martingales.
We build a partial computable sequence as follows:

• For a while, diagonalize against d1 (as long as you want).
• At some stage, add (1/2) · d2 and diagonalize against

d1 + (1/2)d2 (as long as you want).
• Continue on: after diagonalizing against

d1 + (1/2)d2 + . . .+ (1/2i)di, add (1/2i+1)di+1 etc.
• Note: if at some point some di becomes undefined, all the

better! Just remove it from the set of martingales being
diagonalized against.
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Probabilistic martingales, continued

At each phase of the construction (between the addition of two
martingales), we simply follow a computable path, as long as we
want.

But generic martingales can win money against computable paths!
(when playing long enough).

Lemma
If d is a generic martingale and Re is a computable set, there exists
n = n(e, d) such that d(Re ↾ ne) > ne.
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Probabilistic martingales, continued

Let Γ be a functional which implements a fireworks algorithm to
generate a martingale and produces a generic martingale with
positive probability.

Γ induces a measure (not a probability measure!) ξ on generic
martingales. Now, we can find a sequence (Ne) such that

ξ{d | (∀e) n(e, d) < Ne} > 0

It thus suffices to use this sequence Ne as a guideline when
building our partial computably random: when following a path Re,
continue until bit Ne is reached.
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Probabilistic martingales, continued

Combining everything together, we thus obtain an X which is
partial computably random, but such that

ξ {d | (∃∞e)d(X ↾ Ne) > Ne} > 0

Thus, for a positive measure of Y, Γ Y is a total martingale which
wins against X with some linear speed, hence X is not Y-Schnorr
random.
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Newcomers at the zoo

So we need to add at least three new members to the randomness
zoo: a.e.-Schnorr randomness, a.e.-computable randomness and
a.e-partial computable randomness, where a.e.-blah-random
means we are Y-blah-random with respect to almost all Y.

And these newcomers behave as they should...

2. Martingales and fireworks 28/31



Newcomers at the zoo

So we need to add at least three new members to the randomness
zoo: a.e.-Schnorr randomness, a.e.-computable randomness and
a.e-partial computable randomness, where a.e.-blah-random
means we are Y-blah-random with respect to almost all Y.

And these newcomers behave as they should...

2. Martingales and fireworks 28/31



Newcomers at the zoo

(implications are strict, no other implication)
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Back to feeble subsets

So we can now state a small improvement of Kjos-Hanssen and
Liu’s result:

Theorem
If X is a.e. Schnorr random, then some infinite Y ⊆ X does not
compute any 1-random.

Which begs the question: can we replace the conclusion by ‘a.e.
Schnorr random’? What about Schnorr randomness?
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Thank you!

Good to see you all, and hope to see you in Paris in June!
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