Two applications of the fireworks method

Laurent Bienvenu (CNRS \& Université de Bordeaux)
Valentino Delle Rose (Università degli Studi di Siena)
Tomasz Steifer (Universidad Católica de Chile)

New Directions in Computability Theory
CIRM, Marseille
March 7, 2022

1. Feeble subsets and fireworks

Nostalgia...

July 2009, my first time at the CIRM, in this very room, I attended a talk by Bjørn Kjos-Hanssen, entitled Feeble subsets.

He presented the following result:

Nostalgia...

July 2009, my first time at the CIRM, in this very room, I attended a talk by Bjørn Kjos-Hanssen, entitled Feeble subsets.

He presented the following result:

Theorem
If X is sufficiently random (2-Schnorr random is enough), then there exists an infinite $Y \subseteq X$ such that Y does not compute any Martin-Löf random.

Nostalgia...

July 2009, my first time at the CIRM, in this very room, I attended a talk by Bjørn Kjos-Hanssen, entitled Feeble subsets.

He presented the following result:

Theorem

If X is sufficiently random (2-Schnorr random is enough), then there exists an infinite $Y \subseteq X$ such that Y does not compute any Martin-Löf random.

This was an important first step towards proving the following conjecture: if X is Martin-Löf random, then there exists an infinite $Y \subseteq X$ such that Y does not compute any Martin-Löf random.

Kjos-Hanssen's argument

The proof is very elegant and has two distinct components.

Kjos-Hanssen's argument

The proof is very elegant and has two distinct components.
Step 1: a computability-theoretic part.

Proposition

There exists a Ø'-computable 3-bushy tree $T \subseteq \omega^{\omega}$ such that no path of T computes a Martin-Löf random.

Kjos-Hanssen's argument

Recall: a tree is (perfectly) k-bushy if every node in the tree has at least k children.

Kjos-Hanssen's argument

Recall: a tree is (perfectly) k-bushy if every node in the tree has at least k children.

If $f: \omega \rightarrow \omega$ is a function, a tree T is (perfectly) f-bushy if any node $\sigma \in T$ has at least $f(|\sigma|)$ many children.

Kjos-Hanssen's argument

To prove the 'Step 1' theorem, one uses bushy tree forcing, where a forcing condition is a pair (τ, \mathcal{B}) where τ is a finite bushy tree and \mathcal{B} is a 'small' set of strings to be avoided, and

$$
\left(\tau^{\prime}, \mathcal{B}^{\prime}\right) \leq(\tau, \mathcal{B})
$$

when τ^{\prime} extends τ and $\mathcal{B}^{\prime} \supseteq \mathcal{B}$.

Kjos-Hanssen's argument

To prove the 'Step 1' theorem, one uses bushy tree forcing, where a forcing condition is a pair (τ, \mathcal{B}) where τ is a finite bushy tree and \mathcal{B} is a 'small' set of strings to be avoided, and

$$
\left(\tau^{\prime}, \mathcal{B}^{\prime}\right) \leq(\tau, \mathcal{B})
$$

when τ^{\prime} extends τ and $\mathcal{B}^{\prime} \supseteq \mathcal{B}$.
A very powerful tool, see M. Khan and J.S. Miller, Forcing with bushy trees.

Kjos-Hanssen's argument

In order to force the non-computation of MLR, one needs to avoid some 'small' c.e. sets \mathcal{B},

Kjos-Hanssen's argument

In order to force the non-computation of MLR, one needs to avoid some 'small' c.e. sets \mathcal{B}, and the construction can be performed below \emptyset^{\prime}...

Kjos-Hanssen's argument

In order to force the non-computation of MLR, one needs to avoid some 'small' c.e. sets \mathcal{B}, and the construction can be performed below \emptyset^{\prime}...
... but this where there is some wiggle room! (we'll come back to this)

Kjos-Hanssen's argument

Step 2: a purely probabilistic argument.

Kjos-Hanssen's argument

Step 2: a purely probabilistic argument.

Proposition

Start with a perfect infinite ternary tree. For each node, flip a coin. Heads: remove the node; Tail: keep the node. Then with positive probability some path X of the original tree is intact (no node of X is removed).

Kjos-Hanssen's argument

This is because, in terms of survival of paths, this process is equivalent to a Galton-Watson process:

- Start wih a root node.
- This node produces $0,1,2$ or 3 children, with respective probabilities $1 / 8,3 / 8,3 / 8,1 / 8$.
- These children themselves produce $0,1,2$ or 3 children with the same probability, etc.

Kjos-Hanssen's argument

This is because, in terms of survival of paths, this process is equivalent to a Galton-Watson process:

- Start wih a root node.
- This node produces $0,1,2$ or 3 children, with respective probabilities $1 / 8,3 / 8,3 / 8,1 / 8$.
- These children themselves produce $0,1,2$ or 3 children with the same probability, etc.

A well-known result in probability theory is that the process produces an infinite tree with positive probability when the expectation of the number of children is >1 (which is the case here: expectation is $3 / 2$).

Kjos-Hanssen's argument

This second step effectivizes easily. Take a perfect ternary tree T and identify its nodes with integers so that $T \subseteq \omega$.

Kjos-Hanssen's argument

This second step effectivizes easily. Take a perfect ternary tree T and identify its nodes with integers so that $T \subseteq \omega$.

Now take $X \subset \omega$ that is Schnorr random relative to T. Then some path of T is in $X^{*} \cap T$, where X^{*} is equal to X except for a finite symmetric difference.

Kjos-Hanssen's argument

This second step effectivizes easily. Take a perfect ternary tree T and identify its nodes with integers so that $T \subseteq \omega$.

Now take $X \subset \omega$ that is Schnorr random relative to T. Then some path of T is in $X^{*} \cap T$, where X^{*} is equal to X except for a finite symmetric difference.

This finishes the proof: take a \emptyset '-computable tree ternary T none of whose paths computes a random. Let X be Schnorr random relative to \emptyset^{\prime}. Then $X^{*} \cap T$ contains a path Y which does not compute a 1-random, thus $Y \cap X$ does not either. This $X \cap Y$ is the desired subset of X.

The full result holds true

It turns out that a stronger result mentioned as a conjecture is true:

Theorem (Kjos-Hanssen and Liu, 2019)
For every 1-random X, there is an infinite subset Y of X such that Y does not compute any 1-random.

The full result holds true

It turns out that a stronger result mentioned as a conjecture is true:

Theorem (Kjos-Hanssen and Liu, 2019)
For every 1-random X, there is an infinite subset Y of X such that Y does not compute any 1-random.

We present an alternative proof using the fireworks machinery.

Fireworks

The fireworks method is a template to perform some forcing arguments in a probabilistic setting. With a different viewpoint (a.k.a. "measure-risking" argument), Kautz used it to prove the following

Fireworks

The fireworks method is a template to perform some forcing arguments in a probabilistic setting. With a different viewpoint (a.k.a. "measure-risking" argument), Kautz used it to prove the following

Theorem (Kautz, 1991)

Every 2-random computes a 1-generic.

Fireworks

Kautz's argument generalizes easily (once reformulated as 'fireworks' by Shen and Rumyantsev) to any computable order.

Fireworks

Kautz's argument generalizes easily (once reformulated as 'fireworks' by Shen and Rumyantsev) to any computable order.

Theorem

Let (\mathbb{P}, \leq) be a computable (or c.e.) order. Then every 2-random computes a decreasing sequence $p_{0}>p_{1}>p_{2}>\ldots$ such that for every c.e. subset W of \mathbb{P}, there is some i such that either (1) $p_{i} \in W$ or (2) for all $q \leq p_{i}, q \notin W$.

Fireworks

Kautz's argument generalizes easily (once reformulated as 'fireworks' by Shen and Rumyantsev) to any computable order.

Theorem

Let (\mathbb{P}, \leq) be a computable (or c.e.) order. Then every 2-random computes a decreasing sequence $p_{0}>p_{1}>p_{2}>\ldots$ such that for every c.e. subset W of \mathbb{P}, there is some i such that either (1) $p_{i} \in W$ or (2) for all $q \leq p_{i}, q \notin W$.
(Note: In fact Demuth randomness is enough, as shown by B. and Porter).

Fireworks

Bushy tree forcing can be performed in this setting (with some subtlety to make the order c.e.). This was for example used by B. and Patey to show

Fireworks

Bushy tree forcing can be performed in this setting (with some subtlety to make the order c.e.). This was for example used by B. and Patey to show

Theorem (B., Patey, 2014)
Every 2-random X computes some DNC function f which itself does not compute a 1-random.

Fireworks

Bushy tree forcing can be performed in this setting (with some subtlety to make the order c.e.). This was for example used by B. and Patey to show

Theorem (B., Patey, 2014)
Every 2-random X computes some DNC function f which itself does not compute a 1-random.

Note: here 2-random is needed, Demuth random will not do because there is an extra layer of randomness on top of the fireworks argument.

Fireworks

At the core of the B.-Patey proof:

Fireworks

At the core of the B.-Patey proof:

Every 2-random computes an h-perfectly bushy tree T with large h and a sequence of small c.e. sets $\left(B_{i}\right)$ such that for any path X of T that is not in any B_{i}, X does not compute a 1-random.

Fireworks

At the core of the B.-Patey proof:

Every 2-random computes an h-perfectly bushy tree T with large h and a sequence of small c.e. sets $\left(B_{i}\right)$ such that for any path X of T that is not in any B_{i}, X does not compute a 1-random.

Moreover, h can be taken as fast-growing as we want, and the B_{i} as small as we want (compared to h-bushiness).

Fireworks

So how to get the KH-Liu result now?

Fireworks

So how to get the KH-Liu result now?

- Take X 1-random.

Fireworks

So how to get the KH-Liu result now?

- Take X 1-random.
- Take a 2-random Z such that X is 1-random relative to Z (by van Lambalgen).

Fireworks

So how to get the KH-Liu result now?

- Take X 1-random.
- Take a 2-random Z such that X is 1-random relative to Z (by van Lambalgen).
- Below Z build, for h very fast growing, an h-bushy tree and small c.e. sets such that no path of the tree avoiding these small sets computes a 1-random.

Fireworks

So how to get the KH-Liu result now?

- Take X 1-random.
- Take a 2-random Z such that X is 1-random relative to Z (by van Lambalgen).
- Below Z build, for h very fast growing, an h-bushy tree and small c.e. sets such that no path of the tree avoiding these small sets computes a 1-random.
- Intersect T with X and argue that $X \cap T$ must remain (modulo finite change) h^{\prime}-bushy for some h^{\prime} large enough to keep the small sets small enough.

Fireworks

So how to get the KH-Liu result now?

- Take X 1-random.
- Take a 2-random Z such that X is 1 -random relative to Z (by van Lambalgen).
- Below Z build, for h very fast growing, an h-bushy tree and small c.e. sets such that no path of the tree avoiding these small sets computes a 1-random.
- Intersect T with X and argue that $X \cap T$ must remain (modulo finite change) h^{\prime}-bushy for some h^{\prime} large enough to keep the small sets small enough.
- So $X \cap T$ must still have a path avoiding the small sets!

Improving to Schnorr randomness?

Do we get anything more? After all X must only be T-Schnorr random...

Improving to Schnorr randomness?

Do we get anything more? After all X must only be T-Schnorr random...

- Take X Schnorr-random.

Improving to Schnorr randomness?

Do we get anything more? After all X must only be T-Schnorr random...

- Take X Schnorr-random.
- Take a 2-random Z such that X is Schnorr-random relative to Z.

Improving to Schnorr randomness?

Do we get anything more? After all X must only be T-Schnorr random...

- Take X Schnorr-random.
- Take a 2-random Z such that X is Schnorr-random relative to Z.
- Below Z build, for h very fast growing, an h-bushy tree and small c.e. sets such that no path of the tree avoiding these small sets computes a 1-random.

Improving to Schnorr randomness?

Do we get anything more? After all X must only be T-Schnorr random...

- Take X Schnorr-random.
- Take a 2-random Z such that X is Schnorr-random relative to Z.
- Below Z build, for h very fast growing, an h-bushy tree and small c.e. sets such that no path of the tree avoiding these small sets computes a 1-random.
- Intersect T with X and argue that $X \cap T$ must remain (modulo finite change) h^{\prime}-bushy for some h^{\prime} large enough to keep the small sets small enough.

Improving to Schnorr randomness?

Do we get anything more? After all X must only be T-Schnorr random...

- Take X Schnorr-random.
- Take a 2-random Z such that X is Schnorr-random relative to Z.
- Below Z build, for h very fast growing, an h-bushy tree and small c.e. sets such that no path of the tree avoiding these small sets computes a 1-random.
- Intersect T with X and argue that $X \cap T$ must remain (modulo finite change) h^{\prime}-bushy for some h^{\prime} large enough to keep the small sets small enough.
- So $X \cap T$ must still have a path avoiding the small sets!

Improving to Schnorr randomness?

Do we get anything more? After all X must only be T-Schnorr random...

- Take X Schnorr-random.
- Take a 2-random Z such that X is Schnorr-random relative to Z. ?????????
- Below Z build, for h very fast growing, an h-bushy tree and small c.e. sets such that no path of the tree avoiding these small sets computes a 1-random.
- Intersect T with X and argue that $X \cap T$ must remain (modulo finite change) h^{\prime}-bushy for some h^{\prime} large enough to keep the small sets small enough.
- So $X \cap T$ must still have a path avoiding the small sets!

Improving to Schnorr randomness?

We know that van Lambalgen theorem fails for Schnorr randomness (Yu 2006), but is it still the case that

If X is Schnorr random then
for almost all Y, X is Schnorr random relative to Y ?

Improving to Schnorr randomness?

We know that van Lambalgen theorem fails for Schnorr randomness (Yu 2006), but is it still the case that

If X is Schnorr random then
for almost all Y, X is Schnorr random relative to Y ?

And the same question for any notion for which van Lambalgen fails: computable randomness, partial computable randomness? (recall: partial computably random \Rightarrow computably random \Rightarrow Schnorr random.

Improving to Schnorr randomness?

We know that van Lambalgen theorem fails for Schnorr randomness (Yu 2006), but is it still the case that

If X is Schnorr random then
for almost all Y, X is Schnorr random relative to Y ?

And the same question for any notion for which van Lambalgen fails: computable randomness, partial computable randomness? (recall: partial computably random \Rightarrow computably random \Rightarrow Schnorr random.

The answer turns out to be no for these three notions, which merits a story of its own.
2. Martingales and fireworks

Probabilistic martingales

For computable randomness, for a real X, asking whether X is Y-computably random for almost all Y amounts to asking whether there exists a probabilistic martingale d such that with positive probability over Z :

- d^{z} is total
- d^{z} succeeds on X

Probabilistic martingales

This setting was actually considered before by Buss and Minnes, but with with the stronger condition that d^{z} must be total with probability 1 (and succeed on X).

Probabilistic martingales

This setting was actually considered before by Buss and Minnes, but with with the stronger condition that d^{z} must be total with probability 1 (and succeed on X).

In that case, we just get computable randomness:

Proposition (Buss and Minnes, 2013)

The following are equivalent:
(i) X is computably random
(ii) If d is a probabilistic martingale which is total with probability 1, then it also fails on X with probability 1.

Probabilistic martingales

This is essentially because when d is such a martingale, the expectation $\int_{z} d^{z}$ is also a total computable martingale. But this trick no longer holds for martingales that can be partial with positive probability...

Probabilistic martingales

This is essentially because when d is such a martingale, the expectation $\int_{z} d^{z}$ is also a total computable martingale. But this trick no longer holds for martingales that can be partial with positive probability...
and indeed in the general setting, we get the opposite result, in a strong sense.

Theorem (B, DR, S, 2022)

There exists a partial computably random X such that for almost

 every Y, X is not even Schnorr random relative to Y !
Probabilistic martingales

The proof uses... fireworks again!

Probabilistic martingales

The proof uses... fireworks again!
Forcing notion: functions $f: 2^{<\omega} \rightarrow \mathbb{Q}^{+}$with finite domain, $f(\emptyset)=1$ and with the fairness condition $f(\sigma 0)+f(\sigma 1)=2 f(\sigma)$.

The order is the obvious one: $f \geq g$ if f extends g.

Probabilistic martingales

The proof uses... fireworks again!
Forcing notion: functions $f: 2^{<\omega} \rightarrow \mathbb{Q}^{+}$with finite domain, $f(\emptyset)=1$ and with the fairness condition $f(\sigma 0)+f(\sigma 1)=2 f(\sigma)$.

The order is the obvious one: $f \geq g$ if f extends g.
This allows us to talk about generic martingales (they are in particular total), which can be generated via fireworks.

Building a partial computably random

What is the usual construction of a partial computably random?
Consider an effective listing d_{1}, d_{2}, \ldots of all partial computable martingales.
We build a partial computable sequence as follows:

Building a partial computably random

What is the usual construction of a partial computably random?
Consider an effective listing d_{1}, d_{2}, \ldots of all partial computable martingales.
We build a partial computable sequence as follows:

- For a while, diagonalize against d_{1} (as long as you want).

Building a partial computably random

What is the usual construction of a partial computably random?
Consider an effective listing d_{1}, d_{2}, \ldots of all partial computable martingales.
We build a partial computable sequence as follows:

- For a while, diagonalize against d_{1} (as long as you want).
- At some stage, add $(1 / 2) \cdot d_{2}$ and diagonalize against $d_{1}+(1 / 2) d_{2}$ (as long as you want).

Building a partial computably random

What is the usual construction of a partial computably random?
Consider an effective listing d_{1}, d_{2}, \ldots of all partial computable martingales.
We build a partial computable sequence as follows:

- For a while, diagonalize against d_{1} (as long as you want).
- At some stage, add $(1 / 2) \cdot d_{2}$ and diagonalize against $d_{1}+(1 / 2) d_{2}$ (as long as you want).
- Continue on: after diagonalizing against $d_{1}+(1 / 2) d_{2}+\ldots+\left(1 / 2^{i}\right) d_{i}$, add $\left(1 / 2^{i+1}\right) d_{i+1}$ etc.

Building a partial computably random

What is the usual construction of a partial computably random? Consider an effective listing d_{1}, d_{2}, \ldots of all partial computable martingales.
We build a partial computable sequence as follows:

- For a while, diagonalize against d_{1} (as long as you want).
- At some stage, add $(1 / 2) \cdot d_{2}$ and diagonalize against $d_{1}+(1 / 2) d_{2}$ (as long as you want).
- Continue on: after diagonalizing against $d_{1}+(1 / 2) d_{2}+\ldots+\left(1 / 2^{i}\right) d_{i}$, add $\left(1 / 2^{i+1}\right) d_{i+1}$ etc.
- Note: if at some point some d_{i} becomes undefined, all the better! Just remove it from the set of martingales being diagonalized against.

Probabilistic martingales, continued

At each phase of the construction (between the addition of two martingales), we simply follow a computable path, as long as we want.

Probabilistic martingales, continued

At each phase of the construction (between the addition of two martingales), we simply follow a computable path, as long as we want.

But generic martingales can win money against computable paths! (when playing long enough).

Lemma

If d is a generic martingale and R_{e} is a computable set, there exists $n=n(e, d)$ such that $d\left(R_{e} \upharpoonright n_{e}\right)>n_{e}$.

Probabilistic martingales, continued

Let Γ be a functional which implements a fireworks algorithm to generate a martingale and produces a generic martingale with positive probability.

Probabilistic martingales, continued

Let Γ be a functional which implements a fireworks algorithm to generate a martingale and produces a generic martingale with positive probability.
Γ induces a measure (not a probability measure!) ξ on generic martingales. Now, we can find a sequence $\left(N_{e}\right)$ such that

$$
\xi\left\{d \mid(\forall e) n(e, d)<N_{e}\right\}>0
$$

It thus suffices to use this sequence N_{e} as a guideline when building our partial computably random: when following a path R_{e}, continue until bit N_{e} is reached.

Probabilistic martingales, continued

Combining everything together, we thus obtain an X which is partial computably random, but such that

$$
\xi\left\{d \mid\left(\exists^{\infty} e\right) d\left(X \mid N_{e}\right)>N_{e}\right\}>0
$$

Probabilistic martingales, continued

Combining everything together, we thus obtain an X which is partial computably random, but such that

$$
\xi\left\{d \mid\left(\exists^{\infty} e\right) d\left(X \mid N_{e}\right)>N_{e}\right\}>0
$$

Thus, for a positive measure of Y, Γ^{Y} is a total martingale which wins against X with some linear speed, hence X is not Y-Schnorr random.

Newcomers at the zoo

So we need to add at least three new members to the randomness zoo: a.e.-Schnorr randomness, a.e.-computable randomness and a.e-partial computable randomness, where a.e.-blah-random means we are Y-blah-random with respect to almost all Y.

Newcomers at the zoo

So we need to add at least three new members to the randomness zoo: a.e.-Schnorr randomness, a.e.-computable randomness and a.e-partial computable randomness, where a.e.-blah-random means we are Y-blah-random with respect to almost all Y.

And these newcomers behave as they should...

Newcomers at the zoo

(implications are strict, no other implication)

Back to feeble subsets

So we can now state a small improvement of Kjos-Hanssen and Liu's result:

Theorem
If X is a.e. Schnorr random, then some infinite $Y \subseteq X$ does not compute any 1-random.

Back to feeble subsets

So we can now state a small improvement of Kjos-Hanssen and Liu's result:

Theorem

If X is a.e. Schnorr random, then some infinite $Y \subseteq X$ does not compute any 1-random.

Which begs the question: can we replace the conclusion by 'a.e. Schnorr random'? What about Schnorr randomness?

Thank you!

Good to see you all, and hope to see you in Paris in June!

