Cousin's lemma in second-order arithmetic

Noam Greenberg

Victoria University of Wellington

11th March 2022

Joint work with J. Barrett and R. Downey

Cousin's lemma

Cousin's lemma is a principle of compactness:

▶ Let $J = \{I_x : x \in [0, 1]\}$ be a collection of intervals, open in [0, 1], with $x \in I_x$ for all x. Then J has a finite sub-cover.

Compare with *countable compactness*:

▶ If $\mathcal{I} = \{I_n : n \in \mathbb{N}\}$ is a countable collection of intervals, open in [0,1], and $[0,1] = \bigcup_n I_n$, then \mathcal{I} has a finite sub-cover.

Recall that countable compactness is equivalent to WKL_0 [Simpson IV.1.2].

A reformulation

Definition

- ► A *gauge* is a function $\delta : [a, b] \rightarrow (0, \infty)$.
- A δ -fine partition is a tagged partition $a = x_0 \leq \xi_1 \leq x_1 \leq \xi_2 \leq x_2 \leq \cdots \leq \xi_n \leq x_n = b$ such that for all $i = 1, \dots, n$,

$$\delta(\xi_i) > \mathbf{x}_i - \mathbf{x}_{i-1}.$$

This generalises the *mesh size* of a partition: if δ is a constant, then a δ -fine partition is one with mesh size $< \delta$.

Lemma (Cousin's lemma)

For every gauge δ there is a δ -fine partition.

The gauge integral

Also known as the Henstock-Kurzweil integral; equivalent to the Denjoy integral and the Perron integral.

Definition Let $f: [a, b] \rightarrow \mathbb{R}$ be a function.

$$\int_{a}^{b} f = r$$

if for every $\epsilon > 0$ there is a gauge δ such that for any δ -fine tagged partition *P*, the associated partial sum is within ϵ of *r*.

This clearly generalises the Riemann integral.

An example

Let $\mathbf{1}_{\mathbb{Q}}$ be Dirichlet's function.

Fix an enumeration $\langle q_k \, : \, k \in \mathbb{N}
angle$ of $\mathbb{Q} \cap [0, 1]$.

Given $\epsilon > 0$, let

•
$$\delta(q_k) = \epsilon 2^{-k};$$

▶ for irrational $x \in [0, 1]$, $\delta(x) = 1$.

This shows that

$$\int_0^1 \mathbf{1}_\mathbb{Q} = 0$$

(but it is not Riemann integrable).

Another example

The reason *f* is not Riemann integrable is that no matter how small a mesh size δ , we can choose a tag ξ with $f(\xi) \gg \delta$. This is prevented if $\delta(\xi) \ll f(x)$.

Nice properties

The gauge integral:

- Extends the Lebesgue integrals;
- For the formula of [a, b] then f' is gauge integrable and

$$\int_a^b f' = f(b) - f(a).$$

▶ No improper integrals: if for all $\epsilon > 0$, f is gauge integral on $[a + \epsilon, b]$, then f is gauge integrable on [a, b] and $\int_{a}^{b} f = \lim_{\epsilon \to 0} \int_{a+\epsilon}^{b} f$.

Cousin's lemma is required for the notion not to be vacuous.

The strength of Cousin's lemma

The similarities between the proof of the existence of δ -fine tagged partitions of [a, b] and the proof (at least one of the standard proofs) that the interval [a, b] is a compact set are evident. This is no accident — the two statements are actually equivalent.

-Russell A. Gordon, The use of tagged partitions in elementary real analysis

Gordon's evidence

Cousin's lemma implies:

- The intermediate value theorem;
- A continuous function on a closed interval is bounded;
- A continuous function on a closed interval obtains a maximum;
- A continuous function on a closed interval is unifomrly continuous;
- A continuous function on a closed interval is Riemann integrable;
- Mean value inequalities.

Note that most are equivalent to WKL₀.

For example

Theorem

If f is differentiable on [a,b] and f' > 0 on [a,b] then f is increasing on [a,b].

Proof.

By applying the argument on each sub-interval, it suffices to show that f(b) > f(a).

For every $\xi \in [a, b]$, since $f'(\xi) > 0$, there is some $\delta(\xi) > 0$ such that if $\xi \in [x, y]$ and $|y - x| < \delta(\xi)$ then f(y) - f(x) > 0.

If (x_k, ξ_k) is a δ -fine partition then $f(x_0) < f(x_1) < \cdots < f(x_n)$.

Second-order?

Cousin's lemma is a statement of *third*-order arithmetic. In this context, Normann and Sanders showed that it is equivalent to full second-order arithmetic.

Within second-order arithmetic, we need to restrict ourselves to classes of countably-coded functions. We will look at classes of Borel functions.

The proof of Cousin's lemma

Let δ be a gauge on [0, 1].

- ► An interval *I* is *good* if it can be a part of a δ -fine partition: there is some $z \in I$ with $\delta(z) > |I|$.
- Let *T* be the tree of all bad binary rational intervals $I = [k2^{-n}, (k+1)2^{-n}].$
- If T is finite then the children of the leaves of T form a δ -fine partition of [0, 1].
- *T* cannot be infinite: say the intersection of an infinite path is a singleton $\{z^*\}$; since $\delta(z^*) > 0$, any sufficiently small interval on the path is good.

Conclusion:

 ${\scriptstyle \succ}\,$ Cousin's lemma for Borel functions is provable in $\Pi^1_1-\mathsf{CA}_0.$

Continuous functions

Theorem

Cousin's lemma for continuous functions is equivalent to WKL₀.

Proof from WKL₀:

Since δ is continuous, if *I* is good then there is a rational witness. Hence *T* is Π_1^0 .

Easier proof from WKL₀:

In WKL₀, a continuous gauge δ has a minimum, which is positive. So any partition with sufficiently small mesh size suffices.

Continuous functions: the reversal

Suppose that M is a model of RCA₀ in which WKL₀ fails.

- There is a closed set C ⊆ [0, 1] with code in M which is nonempty "in the real world", but M thinks that C is empty.
- ▶ Let $\delta(x) = \frac{1}{2}d(x, C)$; then δ is not a gauge, but *M* thinks that it is.
- In the real world, there is no δ -fine partition, as such a partition cannot cover any points in *C*.
- But being a δ -fine partition is absolute, so there are none in *M*.

Baire class 1

Recall: A *Baire class 1* function is a pointwise limit of continuous functions.

Theorem

Cousin's lemma for Baire class 1 functions is equivalent to ACA₀.

Proof from ACA₀:

- A Baire class 1 function pulls back open sets to Σ_2^0 sets.
- \emptyset'' can tell whether a given Σ_2^0 set is empty or not.
- Hence in ACA_0 , the tree T of the proof of Cousin's lemma exists.

Nonstandard model complication: the set of leaves of *T* is *M*-finite. We need to choose a point $\xi_l \in I$ with $\delta(\xi_l) > |I|$ for each child *I* of a leaf. In ACA₀, we can choose points from a sequence of nonempty Σ_2^0 sets.

Baire class 1: the reversal

Let M be a model in which ACA₀ fails.

- There is a left-c.e. real z^* which is not in M.
- Let $\delta(x) = \frac{1}{2}|z^* x|$. Then *M* thinks that δ is a gauge.
- *M* does not have a code of δ as a continuous function: but it has a definition of δ as a Baire class 1 function.
- There cannot be a δ -fine partition, as no such partition can cover z^* . So again, there are none in *M*.

Nonstandard model complication: we use Σ_1^0 induction to argue that if *P* is a partition then z^* must lie in one of the *P*-intervals. We need z^* to be left-c.e. rather than any Δ_2^0 real.

Borel functions

Theorem

The following are equivalent (modulo some induction):

- 1. Cousin's lemma for Baire class 2 functions
- 2. Cousin's lemma for Borel functions
- **3.** ATR₀.

Proof from ATR₀+induction:

▶ In $ATR_0 + \Sigma_1^1$ -induction: if $T \subseteq 2^{<\omega}$ is Π_1^1 and infinite, then it has a path.

Note that *T* need not exist in the model.

- ▶ In ATR₀+a bit more than Σ_1^1 -induction: if $T \subseteq 2^{<\omega}$ is Π_1^1 and has bounded height, then it exists.
- Choosing a tag for each leaf: use Σ_1^1 -choice (or Σ_1^1 -induction).

Cantor space

For simplicity, work in Cantor space. Cousin's lemma for Baire class 2 functions implies:

▶ If $f: 2^{\omega} \to \mathbb{N}$ is Baire class 2, then there is a finite set $P \subset 2^{\omega}$ such that

$$2^{\omega} = \bigcup_{x \in P} [x \upharpoonright f(x)].$$

(Call this an *f-fine cover*.)

Note that a Baire class 2 function $f: 2^{\omega} \to \mathbb{N}$ is one for which f(x) is uniformly computable from x''.

Baire class 2 functions and iterated jumps

▶ Suppose that *M* is a standard model of ACA₀ in which Cousin's lemma for Baire class 2 functions holds. Then for all computable α , $\emptyset^{(\alpha)} \in M$.

Proof for $\alpha = \omega$:

Suppose that $\emptyset^{(\omega)} \notin M$. Recall that $\emptyset^{(\omega)} = \bigoplus_n \emptyset^{(n)}$.

- ▶ For each $x \neq \emptyset^{(\omega)}$, there is some least $n = n_x$ such that $x^{[n]} \neq \emptyset^{(n)}$.
- For such *x*, there is some least $k = k_x$ such that $x^{[n]}(k) \neq \emptyset^{(n)}(k)$.
- The relation $y = \emptyset^{(n)}$ is Π_2^0 . Hence x'' can compute n_x and k_x .
- ▶ So x'' computes some m sufficiently large so that $x(m) \neq \emptyset^{(\omega)}(m)$. Let f(x) = m + 1; so $\emptyset^{(\omega)} \notin [x \upharpoonright f(x)]$.
- There is no *f*-fine cover, since $\emptyset^{(\omega)}$ really exists.
- ▶ As usual, this is absolute for *M*.

Baire class 2 functions: the reversal

Let *M* be a model of ACA₀ in which ATR₀ fails. Then there is some *M*-ordinal δ^* such that in *M*, there is no jump hierarchy along δ^* .

Note that for all $\beta < \delta^*$, by ACA₀, there is at most one jump hierarcy along β in *M*. Denote it by $\emptyset^{(\beta)}$.

Let

$$\mathscr{I} = \left\{ \beta < \delta^* : \ \varnothing^{(\beta)} \text{ exists in } M \right\}.$$

This is an initial segment of δ^* (of course, not in *M*). ACA₀ implies that \mathscr{I} does not have a greatest element.

Baire class 2 functions: the reversal

Let $x \in M$.

- There is a least $\beta = \beta_x \in \mathscr{I}$ such that $x^{[\beta]} \neq \emptyset^{(\beta)}$.
- There is a least $k = k_x$ such that $x^{[\beta]}(k) \neq \emptyset^{(\beta)}(k)$.
- *x*["] can find these.
- ▶ So x'' computes some m = f(x) such that $[x \upharpoonright m]$ does not contain $\emptyset^{(\gamma)}$ for any $\gamma > \beta$ in \mathscr{I} .
- ▶ If *P* is an *f*-fine cover, let $\beta^* = \max \{\beta_x : x \in P\} + 1$.
- Then $\beta^* \in \mathscr{I}$ but *P* does not cover $\emptyset^{(\beta^*)}$.

Thank you