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Borel reducibility and computable reducibility

Fundamental Definition
A reduction of an equivalence relation E on a set S to another
equivalence relation F on a set T is a function f : S → T such that

(∀(a,b) ∈ S × S) [ a E b ⇐⇒ f (a) F f (b) ].

First example: E on 2ω is Borel reducible to F on 2ω (or other Polish
spaces) if there exists a Borel reduction f : 2ω → 2ω of E to F .

Second example: E on ω is computably reducible to F on ω (or other
subsets of ω) if there is a computable reduction f : ω → ω of E to F .
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Notation

We usually assume that one can determine from the equivalence
relations E and F whether these are relations on ω or on 2ω (or other
spaces). Our notation allows for various generalizations.

Notation
For relations on ω, E ≤d F means that E is d-computably reducible to
F . Thus E ≤0 F denotes that a computable reduction of E to F exists.

For relations on 2ω, E ≤B F means that E is Borel-reducible to F , i.e.,
that a Borel reduction of E to F exists. More specific versions, such as
E ≤0 F or E ≤α F will correspond to specific Borel functions, with the
ordinal α denoting the number of jumps required to compute the
reduction.

Superscripts (e.g., ≤n
0) will be added shortly for bounded reductions.
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Same-minimum & same-maximum relations
Same minimum:

i Ece
min j ⇐⇒ min(Wi) = min(Wj) (or Wi = Wj = ∅).

Same maximum:

i Ece
max j ⇐⇒ max(Wi) = max(Wj) ∈ ω ∪ {±∞}.

Coskey, Hamkins, and RGM showed that neither of these computably
reduces to the other. For Ece

max 6≤0 Ece
min, complexity suffices.

Direct proof that Ece
max 6≤0 Ece

min via f : Enumerate two sets Wi and Wj .
Wait until f (i) ↓ and f (j) ↓, then make max(Wi,s) = max(Wj,s) iff
min(Wf (i),s) 6= min(Wf (j),s).

Us (Ece
max ) Them (Ece

min)

Wi :

Wj :

Wf (i):

Wf (j):

0

n0

n, 1 n − 1,

, 1 n − 1,

, 2

, . . . ,n

, . . . ,n

0, . . .,

0, . . .,, n + 1
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Ece
min 6≤0 Ece

max is harder!
Ece

min 6≤0 Ece
max (by CHM 2012), but we cannot prove this the same way.

Indeed, there exist computable total g,h such that

∀i , j
[
min(Wi) = min(Wj) ⇐⇒ max(Wg(i,j)) = max(Wh(i,j))

]
.

One can do the same for three arbitrary indices i , j , k , or for however
many one likes. Thus Ece

min is finitarily reducible to Ece
max .

Definition
An n-ary computable reduction of E to F (making E ≤n

0 F ) consists of
n computable functions g1, . . . ,gn such that for every (x1, . . . , xn),

(∀j < k ≤ n) [xj E xk ⇐⇒ gj(~x) F gk (~x)].

E is finitarily reducible to F if this can be done uniformly for all n ∈ ω.

2-ary reducibility ≤2
0 is just the familiar many-one reducibility E ≤m F .
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Within n-ary reducibility...

A strange fact about Ece
max .

Theorem (RGM-Ng)

Ece
max is complete among all Π0

2 equivalence relations under 3-ary
reducibility ≤3

0, but not under 4-ary reducibility ≤4
0.

The proof uses the =ce relation on ω: i =ce j ⇐⇒ Wi = Wj .

Since =ce is Π0
2-complete under finitary reducibility ≤<ω0 (to be seen

below), we show that =ce ≤3
0 Ece

max , but that =ce 6≤4
0 Ece

max .
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3-ary reduction: =ce ≤3
0 Ece

max

Define g(i , j , k) = (̂i , ĵ , k̂): find the least difference between Wi and Wj ,
between Wi and Wk , and between Wj and Wk at each stage. Each
time one of these differences changes from the previous stage, add
more elements to W î , W ĵ , and W k̂ to reflect the new situation.

If Wi = Wj = Wk , then all three sets we build wind up with max
+∞.
If Wi = Wj 6= Wk , then the least difference between Wi and Wj
keeps changing, so W î and W ĵ both have max +∞. But
eventually the least difference between Wk and each of them
stabilized, so W k̂ has finite maximum.
If the three sets are all distinct, then by some stage their (pairwise)
least differences had all appeared, and from that stage on, the
maxima of W î , W ĵ , and W k̂ will be the same three distinct (finite)
values.
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No 4-ary reduction: =ce 6≤4
0 Ece

max

Given a potential 4-ary reduction g, we build four c.e. sets. Wi and Wj
use only odd numbers, while Wm and Wn use only even numbers. By
making Wi and Wj equal whenever their images have distinct maxima
at some stage, and unequal whenever their images have the same
maxima, we drive those maxima to +∞, leaving Wi = Wj . With Wm
and Wn, we do exactly the same. So all four images have maximum
+∞, yet Wi 6= Wm.

This reflects the fact that in Ece
max , there is exactly one equivalence

class (namely Inf) which is Π0
2-complete as a set, whereas relations

such as =ce have infinitely many Π0
2-complete classes. The putative

4-ary reduction had to use that single class Inf to compare Wi with Wj ,
and also to compare Wm with Wn.
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Π0
n-Completeness

Ianovski, RGM, Ng, and Nies have shown that for n ≥ 2, no Π0
n

equivalence relation on ω can be complete among Π0
n-ER’s under

computable reducibility. However....

Theorem (RGM-Ng)

For every oracle set X ⊆ ω, the equivalence relation EX
= given by

i EX
= j ⇐⇒ W X

i = W X
j

is complete among all ΠX
2 equivalence relations under finitary

(computable) reducibility ≤<ω0 .

Corollary

For every n ≥ 0, the Π0
n+2 equivalence relation E∅

(n)

= (i.e. equality on
Σn+1 sets) is complete among Π0

n+2 ER’s under finitary reducibility.
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Finitary and d-computable reducibility

Same theorem, repeated (RGM-Ng)

For every oracle set X ⊆ ω, the equivalence relation EX
= given by

i EX
= j ⇐⇒ W X

i = W X
j

is complete among all ΠX
2 equivalence relations under finitary

(computable) reducibility ≤<ω0 .

Corollary
For every Turing degree d , there exist equivalence relations E and F
such that E ≤<ω0 F , but E 6≤d F . (That is, there is no d-computable
reduction from E to F , but there is a computable finitary reduction.)

Proof: Let F be Ed
=, which is Πd

2 -complete under finitary reducibility, but
Πd

2 -incomplete under d-computable reducibility, by a relativization of
our previous result.
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Countable computable reducibility

One could also ask for a computable function f that, for every
countable list x0, x1, x2, . . . of elements of ω, lists out y0, y1, y2, . . . such
that xi E xj iff yi F yj . (This f would really be a Turing functional Φ,
which is given the function i 7→ xi as an oracle and computes the
function i 7→ yi .) In this case we might write E ≤ω0 F .

But if this exists, then by giving Φ the computable oracle i 7→ i ,
we would get a full computable reduction. Thus E ≤ω0 F iff E ≤0 F .

But maybe if we go back to ER’s on 2ω . . . . . .
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But maybe if we go back to ER’s on 2ω . . . . . .
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Extending the paradigm to 2ω

Now let E , F be ER’s on 2ω. What happens in Borel reducibility?

Definition
E is ω-reducible to F (written E ≤ω0 F ) if there exists a Turing functional
Φ such that whenever A0,A1,A2, . . . ∈ 2ω and A = ⊕iAi ,

(∀j , k ∈ ω)

[
Aj E Ak ⇐⇒

(
ΦA
)(j)

F
(

ΦA
)(k)]

.

We also have weaker versions, analogous to the earlier ones:
E is n-arily reducible to F (written E ≤n

0 F ) if there exists a Turing
functional Φ such that whenever A1, . . . ,An ∈ 2ω

(∀j < k ≤ n)

[
Aj E Ak ⇐⇒

(
ΦA1⊕···⊕An

)(j)
F
(

ΦA1⊕···⊕An
)(k)]

.

E is finitarily reducible to F , E ≤<ω0 F , if this can be done uniformly ∀n.
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Standard Borel equivalence relations, under ≤B

A E0 B ⇐⇒ |A4B| <∞ (finite-difference relation, a.k.a. =∗)

A E1 B ⇐⇒ |{n : (A)n 6= (B)n}| <∞ (differ on <∞ columns)

A E2 B ⇐⇒
∑

n∈A4B

1
n + 1

<∞.

A E3 B ⇐⇒ (∀n) |(A)n4(B)n| <∞.
A Eset B ⇐⇒ {(A)n : n ∈ ω} = {(B)n : n ∈ ω} (same columns).

A Z0 B ⇐⇒ (A4B) has asymptotic density 0.

≤B:

u
u
=

E0

u u uE1 E2 E3

uu
Eset Z0

aa
aa

aa

!!
!!

!!
A
A
A

�
�
�
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Comparing ≤B, ≤ω0 , and ≤<ω0
≤B

u
u
=

E0

u u uE1 E2 E3

uu
Eset Z0

aa
aa

aa

!!
!!

!!
A
A
A

�
�
�

≤ω0

u
u
=

E0, E1, E2

uE3, Z0

uEset

≤<ω0

u
u
=

E0, E1, E2

uE3, Z0, Eset

Complexity: = is Π0
1;

E0, E1, and E2 are all Σ0
2;

E3, Z0, and Eset are all Π0
3.

Details: R. Miller, Computable reducibility for Cantor space, chapter in Structure and
Randomness in Computability and Set Theory, eds. D. Cenzer, C. Porter, & J. Zapletal (World
Scientific, 2020), 155–196.
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Computable structure theory (joint with Ho-Knight)
All structures here will have domain ω. Using a fixed Gödel coding, we
identify such a structure A with its atomic diagram D(A), viewed as an
element of 2ω.

Important classes of structures:

TFabr = {D(A) : A is a torsion-free Abelian group of rank r}

TDr = {D(F ) : F is a field of tr. degree r over Q}.

Equivalently, A is a full-rank additive subgroup of (Qr ,+, ~0), and F is a
full-degree subfield of the algebraic closure Q(t1, . . . , tr ). However,
each A and F is presented as a structure. Divisibility of elements of A
is Σ

D(A)
1 , and existence of roots of polynomials in F is Σ

D(F )
1 .

We view TFabr and TDr as topological subspaces of 2ω, equating A
with D(A), and place the ER of isomorphism on each subspace.
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Theorem of Hjorth & Thomas

Theorem (Hjorth & Thomas)
For every r > 0, isomorphism on TFabr lies strictly below isomorphism
on TFabr+1 under Borel (!) reducibility.

In the language of Knight et al, this implies that there is no
Turing-computable embedding of TFabr+1 into TFabr . In contrast, the
reverse embedding is easily built:

(∀G,H ∈ TFabr ) [G ∼= H ⇐⇒ (G ⊕ Z) ∼= (H ⊕ Z)].

Computing a presentation of (G ⊕ Z) uniformly from each G ∈ TFabr
is easy, and the equivalence exactly satisfies the definition of a
TC-embedding Φ of a class K into another K′:

(∀A,B ∈ K)
[
ΦA,ΦB ∈ K′, with A ∼= B ⇐⇒ ΦA ∼= ΦB

]
.
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Comparing ≤B and ≤ω0 on TFab

≤B

u
u

TFab0

TFab1

uTFab2

uTFab3

...

<B

<B

<B

≤ω0

TFab0 u
uall other TFab’s

<ω0

Fact: Every TFabr with r > 0 has a countable computable reduction to
TFab1.

This is surprising. Isomorphism on TFab1 seems simpler than the
others! (Cf. Baer, Kurosh, Mal’cev, finally Hjorth-Thomas.)

Russell Miller Countable Reductions Luminy 2022 18 / 29



Comparing ≤B and ≤ω0 on TFab

≤B

u
u

TFab0

TFab1

uTFab2

uTFab3

...

<B

<B

<B

≤ω0

TFab0 u
uall other TFab’s

<ω0

Fact: Every TFabr with r > 0 has a countable computable reduction to
TFab1.

This is surprising. Isomorphism on TFab1 seems simpler than the
others! (Cf. Baer, Kurosh, Mal’cev, finally Hjorth-Thomas.)

Russell Miller Countable Reductions Luminy 2022 18 / 29



The isomorphism relation on TFabr

For G ∈ TFab1, fix any nonzero x ∈ G and define

IG = {(p,n) ∈ P× N : (∃y ∈ G) pny = x}.

Now G ∼= H iff IG E0 IH . Here isomorphism is Σ0
3 (and Σ0

3-complete).

For r > 1 and G,H ∈ TFabr , G ∼= H iff

(∃ bases ~b ∈ Gr , ~c ∈ H r )(∀~q ∈ Qr )
[∑

qibi ∈ G ⇐⇒
∑

qici ∈ H
]
.

This seems more complicated, but it is again Σ3. Indeed, the
isomorphism problem on computable TFabr groups is Σ3-complete.

So it is plausible that the countable computable reduction works.
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Fields of finite transcendence degree

TDr is very similar, except for r = 0. Isomorphism is again Σ0
3; for a

fixed transcendence basis {x1, . . . , xr} of F , the isomorphism type is
determined by {f ∈ Z[X1, . . . ,Xr ,Y ] : f (~x ,Y ) has a root in F}. Two
fields are isomorphic iff they have bases over which these index sets
are equal.

When r = 0: TD0 is nontrivial (as opposed to TFab0), but now
isomorphism is Π0

2, as the only possible basis is ∅.
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Going upwards in fields

Conjecture (HKM)
TDr ≤0 TDr+1.

For r = 0, this is immediate. If E ,F ∈ TD0, then all their elements are
algebraic over Q, and no other elements of the purely transcendental
extension E(t) are algebraic over Q. Thus E ∼= F ⇐⇒ E(t) ∼= F (t).

For r > 0, we conjecture that the same procedure succeeds.

A separate attempt would build E(t) from E and then adjoin the entire
algebraic closure of Q(t). This succeeds in the situation
E ∩Q = F ∩Q. However, if E and F have nonisomorphic algebraic
parts, this attempt obliterates that distinction. One can salvage the fact
that TD1 ≤0 TD2 × TD0.
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Going rightwards

Current picture for full computable reducibility ≤0:

u
u

TFab0

TFab1

uTFab2

uTFab3

...

6

6

6

<0

<0

<0

u
u
TD0

TD1

uTD2

uTD3

...

6<0

-

-

-

-

≤0

≤0

≤0

≤0

Theorem (HKM)
For every r , there is a full computable reduction TFabr ≤0 TDr .
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TFabr ≤0 TDr

The idea of this reduction is simple: given G ∈ TFabr , we write each
v ∈ G as (a1, . . . ,ar ), with respect to the first basis we find for G. We
then build a field F = ΦG ∈ TDr with basis {X1, . . . ,Xr}, and include
an element X a1

1 · · ·X
ar
r to represent v . Details:

If we guess wrong about a basis ~u for G – maybe it turns out that

u3 = 2
5u1 − 7

3u2 – then the old X3 becomes X
2
5

1 X
− 7

3
2 and we add a

new X3 to F to represent the next element that appears
independent over {u1,u2}.
All powers of each Xi are positive in a fixed real closed field.
To build F , close under the field operations.
If we had used a different basis ~w of G, there would be an
A ∈ GLr (Q) expressing ~u w.r.t. ~w . Applying A to the exponents of
the monomials gives a field isomorphism between the outputs.

The hard part is to show that ΦG ∼= ΦH =⇒ G ∼= H.
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Anything more?

u
u

TFab0

TFab1

uTFab2

uTFab3

...

6

6

6

<B

<B

<B

u
u
TD0

TD1

uTD2

uTD3

...

6<0
-

-

-

-

≤0

≤0

≤0

≤0

Hjorth and Thomas showed that there is no Borel reduction downward
in the left column. Consequently, for every r > 0, either TDr+1 6≤B TDr
or TDr 6≤B TFabr : there is cannot be a downward reduction in the right
column and also a leftward reduction. We conjecture that both fail.

But

Theorem (HKM)
For every r , there is a countable computable reduction TDr ≤ω0 TFab1.
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TDr ≤ω0 TFab1

Given fields F0,F1, . . . from TDr , we guess at the first basis ~xi in each
Fi , “resetting” the construction of the corresponding Gi ⊆ Q whenever
we reset the guess at a basis of Fi .
To each i < j , we assign primes pijk for all k , and use chips to
approximate whether any of the first k tuples in Fj can be the image of
~xi under an isomorphism Fi → Fj .

If k gets infinitely many chips, then 1 is infinitely divisible by pijk in
every group Gm.
Otherwise, 1 is divisible in Gi by one more power of pijk than in Gj .
We also consider each of the fields Fm with m < i + j + k :
guessing at the isomorphism relations among all these fields
(including Gi and Gj ), and giving the 1 in Gm the appropriate
amount of divisibility by pijk .
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This works!

If Fi
∼= Fj , then there are only finitely many k where divisibility by pijk

comes out different, and there are only finitely many (i ′, j ′, k ′) where it
is left out of the guessing entirely. On each of these the divisibility of 1
differs only by finitely many powers of pijk , and for all other prime
powers pn, 1

pn lies in Gi iff it lies in Gj . Hence Gi
∼= Gj .

If Fi 6∼= Fj , then ∀k the 1 in Gi is divisible by one less power of pijk than
the 1 in Gj , leaving Gi 6∼= Gj .
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A further point

The reduction TFabr ≤0 TDr , mapping ~a ∈ G to X a1
1 · · ·X

ar
r ∈ F , is not

just a computable reduction. Indeed, it extends to a computable
functor, where the categories in question are TFabr under
isomorphisms and TDr under isomorphisms. There is a Turing
functional Ψ that, given any isomorphism g : G0 → G1 in TFabr ,
outputs an isomorphism f : F0 → F1 for the corresponding fields, in a
functorial way (respecting composition and the identity isomorphism).

For other Borel reductions on isomorphism relations in computable
structure theory, one can investigate the same questions. Does the
reduction extend to a functor? And if so, how many jumps (of the
atomic diagrams of the structures) are needed in order to compute the
entire functor?
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Does this generalize?

Thinking of the notion of computable functor, we ask whether anything
similar applies to the known ER’s (or others) in the Borel theory. These
ER’s do not ask Σ1

1-hard questions, but isomorphism in TFab and TD
is not Σ1

1-hard either. For example, for the relation A Z0 B defined by
(A4B) has asymptotic density 0, one could say that a function
f : ω → ω witnesses that A Z0 B if f bounds the convergence to 0:

(∀d)(∀n > f (d))
|(A4B) ∩ {0, . . . ,n − 1}|

n
≤ 1

d
.

Can one give a computable reduction Φ of E3 to Z0 for which, given
any A E3 B and the function f (n) = max((A)n4(B)n), some uniform
procedure computes a witness to ΦA Z0 ΦB?
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Conclusions and questions
The proof that TDr ≤ω0 TFab1 is totally in line with traditional
computable structure theory. We believe that when ≤0 and ≤ω0 differ,
methods beyond those traditional approaches will be required, as in
the Hjorth-Thomas theorem. Somehow here the uncountability of the
space becomes crucial.

What happens if, instead of considering only computable reductions,
we allow reductions that use (D(A))′ to compute the output for A? Or
(D(A))(α)?

For isomorphism or other Σ1
1 relations, what sort of functoriality is

possible, and how effective can it be?

How do bounded reducibilities such as ≤ω0 play into all of this?
Computable reductions are continuous. Is there any topological notion
analogous to countable computable reducibility?
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