
Minimal Pairs in the Generic Degrees

Denis R. Hirschfeldt

“What one knows, the other does not.”

— Jean Froissart



A set S has density 1 if limn
|S∩[0,n)|

n = 1.

A generic description of a set A is a partial function f s.t. dom(f ) has
density 1 and f (n) = A(n) whenever f (n)↓.
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A set A is generically computable if it has a partial computable
generic description.

This notion was introduced by Kapovich, Myasnikov, Schupp, and
Shpilrain. It was later studied by Jockusch and Schupp.
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A coarse description of a set A is a set D s.t. {n : D(n) = A(n)} has
density 1.
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A dense description of a set A is a partial function f s.t.
{n : f (n)↓ = A(n)} has density 1.
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An effective dense description of a set A is a total f : ω → {0,1,�}
s.t. f−1({0,1}) has density 1 and f (n) = A(n) when f (n) ∈ {0,1}.
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A is coarsely reducible to B if every coarse description of B computes
a coarse description of A.

A is generically reducible to B if for every generic description f of B,
there is a generic description of A that is enumeration reducible to f .

There are nonuniform and uniform versions, but most facts here apply
to both cases, so we drop the distinction until the end of this talk.

Note that saying that A is generically reducible to B is stronger than
saying that A is generically computable relative to B.



A is coarsely reducible to B if every coarse description of B computes
a coarse description of A.

A is generically reducible to B if for every generic description f of B,
there is a generic description of A that is enumeration reducible to f .

There are nonuniform and uniform versions, but most facts here apply
to both cases, so we drop the distinction until the end of this talk.

Note that saying that A is generically reducible to B is stronger than
saying that A is generically computable relative to B.



A is coarsely reducible to B if every coarse description of B computes
a coarse description of A.

A is generically reducible to B if for every generic description f of B,
there is a generic description of A that is enumeration reducible to f .

There are nonuniform and uniform versions, but most facts here apply
to both cases, so we drop the distinction until the end of this talk.

Note that saying that A is generically reducible to B is stronger than
saying that A is generically computable relative to B.



A is coarsely reducible to B if every coarse description of B computes
a coarse description of A.

A is generically reducible to B if for every generic description f of B,
there is a generic description of A that is enumeration reducible to f .

There are nonuniform and uniform versions, but most facts here apply
to both cases, so we drop the distinction until the end of this talk.

Note that saying that A is generically reducible to B is stronger than
saying that A is generically computable relative to B.



A is coarsely reducible to B if every coarse description of B computes
a coarse description of A.

A is generically reducible to B if for every generic description f of B,
there is a generic description of A that is enumeration reducible to f .

There are nonuniform and uniform versions, but most facts here apply
to both cases, so we drop the distinction until the end of this talk.

Note that saying that A is generically reducible to B is stronger than
saying that A is generically computable relative to B.

�������������������������������

⇓
�������������������������������



A is coarsely reducible to B if every coarse description of B computes
a coarse description of A.

A is generically reducible to B if for every generic description f of B,
there is a generic description of A that is enumeration reducible to f .

There are nonuniform and uniform versions, but most facts here apply
to both cases, so we drop the distinction until the end of this talk.

Note that saying that A is generically reducible to B is stronger than
saying that A is generically computable relative to B.

�������������������������������

⇓
�������������������������������



computable
↓

effectively densely
computable

↙ ↘
generically coarsely
computable computable

↘ ↙
densely

computable

None of these arrows reverse.

Open Question. Do these implications also hold for the corresponding
reducibilities?

Open Question. For each of these reducibilities, is every function
equivalent to a set?
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Question (Jockusch and Schupp; Downey, Jockusch, and
Schupp; Igusa). Are there minimal pairs in the generic degrees?

Thm (Hirschfeldt, Jockusch, Kuyper, and Schupp). There are
minimal pairs in the coarse degrees.

Indeed, there are minimal pairs for relative coarse computability, i.e.,
there are X and Y that are not coarsely computable s.t. if a set is
coarsely computable relative both to X and to Y , then it is coarsely
computable.

Thm (Astor, Hirschfeldt, and Jockusch). The same holds of the
dense degrees.

Thm (Igusa). There is no minimal pair for relative generic
computability, i.e., if X and Y are not computable, then there is a set
that is not generically computable, but is generically computable
relative both to X and to Y .



Question (Jockusch and Schupp; Downey, Jockusch, and
Schupp; Igusa). Are there minimal pairs in the generic degrees?

Thm (Hirschfeldt, Jockusch, Kuyper, and Schupp). There are
minimal pairs in the coarse degrees.

Indeed, there are minimal pairs for relative coarse computability, i.e.,
there are X and Y that are not coarsely computable s.t. if a set is
coarsely computable relative both to X and to Y , then it is coarsely
computable.

Thm (Astor, Hirschfeldt, and Jockusch). The same holds of the
dense degrees.

Thm (Igusa). There is no minimal pair for relative generic
computability, i.e., if X and Y are not computable, then there is a set
that is not generically computable, but is generically computable
relative both to X and to Y .



Question (Jockusch and Schupp; Downey, Jockusch, and
Schupp; Igusa). Are there minimal pairs in the generic degrees?

Thm (Hirschfeldt, Jockusch, Kuyper, and Schupp). There are
minimal pairs in the coarse degrees.

Indeed, there are minimal pairs for relative coarse computability

, i.e.,
there are X and Y that are not coarsely computable s.t. if a set is
coarsely computable relative both to X and to Y , then it is coarsely
computable.

Thm (Astor, Hirschfeldt, and Jockusch). The same holds of the
dense degrees.

Thm (Igusa). There is no minimal pair for relative generic
computability, i.e., if X and Y are not computable, then there is a set
that is not generically computable, but is generically computable
relative both to X and to Y .



Question (Jockusch and Schupp; Downey, Jockusch, and
Schupp; Igusa). Are there minimal pairs in the generic degrees?

Thm (Hirschfeldt, Jockusch, Kuyper, and Schupp). There are
minimal pairs in the coarse degrees.

Indeed, there are minimal pairs for relative coarse computability, i.e.,
there are X and Y that are not coarsely computable s.t. if a set is
coarsely computable relative both to X and to Y , then it is coarsely
computable.

Thm (Astor, Hirschfeldt, and Jockusch). The same holds of the
dense degrees.

Thm (Igusa). There is no minimal pair for relative generic
computability, i.e., if X and Y are not computable, then there is a set
that is not generically computable, but is generically computable
relative both to X and to Y .



Question (Jockusch and Schupp; Downey, Jockusch, and
Schupp; Igusa). Are there minimal pairs in the generic degrees?

Thm (Hirschfeldt, Jockusch, Kuyper, and Schupp). There are
minimal pairs in the coarse degrees.

Indeed, there are minimal pairs for relative coarse computability, i.e.,
there are X and Y that are not coarsely computable s.t. if a set is
coarsely computable relative both to X and to Y , then it is coarsely
computable.

Thm (Astor, Hirschfeldt, and Jockusch). The same holds of the
dense degrees.

Thm (Igusa). There is no minimal pair for relative generic
computability, i.e., if X and Y are not computable, then there is a set
that is not generically computable, but is generically computable
relative both to X and to Y .



Question (Jockusch and Schupp; Downey, Jockusch, and
Schupp; Igusa). Are there minimal pairs in the generic degrees?

Thm (Hirschfeldt, Jockusch, Kuyper, and Schupp). There are
minimal pairs in the coarse degrees.

Indeed, there are minimal pairs for relative coarse computability, i.e.,
there are X and Y that are not coarsely computable s.t. if a set is
coarsely computable relative both to X and to Y , then it is coarsely
computable.

Thm (Astor, Hirschfeldt, and Jockusch). The same holds of the
dense degrees.

Thm (Igusa). There is no minimal pair for relative generic
computability

, i.e., if X and Y are not computable, then there is a set
that is not generically computable, but is generically computable
relative both to X and to Y .



Question (Jockusch and Schupp; Downey, Jockusch, and
Schupp; Igusa). Are there minimal pairs in the generic degrees?

Thm (Hirschfeldt, Jockusch, Kuyper, and Schupp). There are
minimal pairs in the coarse degrees.

Indeed, there are minimal pairs for relative coarse computability, i.e.,
there are X and Y that are not coarsely computable s.t. if a set is
coarsely computable relative both to X and to Y , then it is coarsely
computable.

Thm (Astor, Hirschfeldt, and Jockusch). The same holds of the
dense degrees.

Thm (Igusa). There is no minimal pair for relative generic
computability, i.e., if X and Y are not computable, then there is a set
that is not generically computable, but is generically computable
relative both to X and to Y .



Thm. There is a minimal pair in the generic degrees.

The construction builds ∆0
2 sets X and Y , both of density 1, and

respective generic descriptions f and g.

Both f and g have value 1 where defined.

X \ dom f and Y \ dom g are used to diagonalize against computable
generic descriptions.

For enumeration operators Φ and Ψ, if Φf and Ψg have domains of
density 1 and agree where both are defined, then we build a partial
computable h s.t. dom h has density 1, and h agrees with at least one
of Φf and Ψg where h is defined.
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We approximate f and g to be generic descriptions of X and Y ,
respectively, and ensure that X and Y are not generically computable.

We monitor Φf and Ψg and build h computably.
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Φf enumerates 〈n,0〉 (use in red).
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Φf enumerates 〈n,0〉 (use in red).

Ψg also enumerates 〈n,0〉 (use in red).

We define h(n) = 0.
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To help make X not generically computable, a requirement violates the
use on the f side.
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If a stronger requirement violates the use on the g side, we would like
to restore the f side.
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We might not be able to restore it to its exact previous state, because
of other enumerations we are trying to preserve.
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If a stronger requirement violates the use on the g side, we would like
to restore the f side.

We might not be able to restore it to its exact previous state, because
of other enumerations we are trying to preserve,
but we can restore it to an extension of that state.



The sets X and Y built above are ∆0
2. They also have density 1, and

so are coarsely computable.

Thm (Hirschfeldt, Jockusch, Kuyper, and Schupp). There are
measure-1 many minimal pairs in the coarse degrees.

Indeed, every nonzero coarse degree forms minimal pairs with
measure-1 many coarse degrees.

More precisely, if X is not coarsely computable and Y is weakly
3-random relative to X , then X and Y form a minimal pair for relative
coarse computability.

Thm (Astor, Hirschfeldt, and Jockusch). The same holds for dense
computability, but for weak 4-randomness.
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Are there non-∆0
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Are there measure-1 many minimal pairs in the generic degrees?

Is every nonzero generic degree half of a minimal pair?

More generally, what can be said about the distribution of minimal
pairs in the generic degrees?

Are there ∆0
2 sets whose coarse or dense degrees form a minimal
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There are natural embeddings of the Turing degrees into each of our
degree structures. (Jockusch and Schupp; Dzhafarov and Igusa;
Hirschfeldt, Jockusch, Kuyper, and Schupp; Astor, Hirschfeldt,
and Jockusch):

Let R(A) = {2nk : n ∈ A ∧ k odd}.

Let Jn = [2n,2n+1) and E(A) =
⋃

m∈R(A) Jm.

E induces such embeddings.

For any of our degree structures, a nonzero degree is quasiminimal if
it is not above any nonzero degree in the image of this embedding.

We would expect “typical” sets to have quasiminimal degrees.
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