
Coding in the automorphism group of a structure

Daniel Turetsky
Victoria University of Wellington

Partly joint with Johanna Franklin

May 2020

Problems

Problem Instance Solution

Limit Approximation X ∈ 2ω f ∈ 2ω s.t. lims f (·, s) = X

Domination f ∈ ωω g ∈ ωω s.t. ∀n g(n) > f (n)

Escaping f ∈ ωω g ∈ ωω s.t. ∃∞n g(n) > f (n)

Derandomization X ∈ 2ω A 3 X a null Π0
2-class

Isomorphism A,B structures f : A ∼= B

Paths T a tree X ∈ [T]

Problems

Problems can get you:

Classes of degrees (highness and lowness notions)

Weihrauch reducibility

Dual problems

Cichońs diagram

Reverse math

Most fall into one of two sorts:
First sort – Any countable set of instances share a common
solution; any instance computes a solution to itself.
Second sort – Any real X computes an instance (with solutions)
such that all solutions compute X .

Problems

Problem Instance Solution

Limit Approximation X ∈ 2ω f ∈ 2ω s.t. lims f (·, s) = X

Domination f ∈ ωω g ∈ ωω s.t. ∀n g(n) > f (n)

Escaping f ∈ ωω g ∈ ωω s.t. ∃∞n g(n) > f (n)

Derandomization X ∈ 2ω A 3 X a null Π0
2-class

Isomorphism A,B structures f : A ∼= B

Paths T a tree X ∈ [T]

Lowness and highness

Two highness notions:

I compute a simultaneous solution to every computable
instance.

For every computable instance, I compute a solution.

And three lowness notions:

Every instance I compute has a computable solution.

Every instance that I compute a solution for has a computable
solution.

Every computable instance that I compute a solution for has a
computable solution.

Lowness

Problem Instance Solution Lowness

Limit Approx. X ∈ 2ω lims f (·, s) = X Low (i.e. A′ ≡T ∅′)

Dom. f ∈ ωω ∀n g(n) > f (n) Hyperimmune free

Escaping f ∈ ωω ∃∞n g(n) > f (n) Hyperimmune free

Derandom. X ∈ 2ω null Π0
2 A 3 X K -trivial

Iso. A,B f : A ∼= B Low for Isomorphism

Paths T X ∈ [T] Low for Paths

Those last two rows

Definition

An oracle Y is low for isomorphism if any two computable
structures with a Y -computable isomorphism have a computable
isomorphism.

Definition

An oracle Y is low for paths for Baire space (for Cantor space) if
any Π0

1-class in Baire space (in Cantor space) with a
Y -computable element has a computable element.

Comparing these problems

The set of isomorphisms between two computable structures can
be expressed as a Π0

1-class:

Iso(A,B) = {(f , f −1) : A ∼=f B}

So every computable Isomorphism-instance gives a computable
Baire-Paths-instance, and solutions to one give solutions to the
other.

Proposition

Low for Paths for Baire space ⊆ Low for Isomorphism.

Comparing these problems

A Π0
1-class on Cantor space is a Π0

1-class on Baire space.

Proposition

Low for Paths for Baire space ⊆ Low for Paths for Cantor space.

Low for Paths for ωω

Low for Paths for 2ω Low for Isomorphism

⊆ ⊆

Can we collapse this picture?

Comparing these problems

A Π0
1-class on Cantor space is a Π0

1-class on Baire space.

Proposition

Low for Paths for Baire space ⊆ Low for Paths for Cantor space.

Low for Paths for ωω

Low for Paths for 2ω Low for Isomorphism

⊆ ⊆

Can we collapse this picture?

Muchnik reducibility

For U,V ⊆ ωω, we say that U is Muchnik-below V , written
U ≤w V , if every element of V computes an element of U.

We get a degree notion: U ≡w V if U ≤w V and V ≤w U.

Top element: ∅.

Bottom degree: 0, consisting of all sets containing computable
elements.

Restating the question

For every Π0
1-class Q (from Baire or Cantor space) with 0 <w Q,

are there computable structures A,B with 0 <w Iso(A,B) ≤w Q?

Q

0

<w ⇒

Q

Iso(A,B)

0

≤w

<w

Reducing to Cantor space

Theorem (Simpson)

For every Π0
1-class P ⊆ ωω with 0 <w P, there is a Π0

1-class
Q ⊆ 2ω with 0 <w Q ≤w P.

P ⊆ ωω

0

<w ⇒

P ⊆ ωω

Q ⊆ 2ω

0

≤w

<w

Answering the question

Theorem (Franklin & T.)

For every Π0
1-class Q ⊆ 2ω, there is a computable structure A and

elements a, b ∈ A such that:

Q ≡w Aut(A) \ {id} ≡w {f ∈ Aut(A) : f (a) = b}

So Q ≡w Iso((A, a), (A, b)).

Corollary

Low for paths for Baire space = Low for paths for Cantor space =
Low for Isomorphism.

Proving the theorem

Fix a computable tree T with [T] = Q.

Domain of A is 2<ω × {0, 1}.
Unary relations {Rσ : σ ∈ 2<ω} with A |= Rσ((τ, i)) iff σ = τ .

Unary relation L with A |= L((σ, i)) iff i = 0 and σ 6∈ T .

· ·

· · · ·

· · · · · · · ·

Proving the theorem

One more ingredient:

A ternary relation S with A |= S((σ0, i0), (σ1, i1), (σ2, i2)) iff:

σ1 = σ0̂0;
σ2 = σ0̂1; and
i0 + i1 + i2 is even.

Proving the theorem

One more ingredient:

A ternary relation S with A |= S((σ0, i0), (σ1, i1), (σ2, i2)) iff:

σ1 = σ0̂0;
σ2 = σ0̂1; and
i0 + i1 + i2 is even.

Proving the theorem

One more ingredient:

A ternary relation S with A |= S((σ0, i0), (σ1, i1), (σ2, i2)) iff:

σ1 = σ0̂0;
σ2 = σ0̂1; and
i0 + i1 + i2 is even.

Proving the theorem

One more ingredient:

A ternary relation S with A |= S((σ0, i0), (σ1, i1), (σ2, i2)) iff:

σ1 = σ0̂0;
σ2 = σ0̂1; and
i0 + i1 + i2 is even.

Proving the theorem

One more ingredient:

A ternary relation S with A |= S((σ0, i0), (σ1, i1), (σ2, i2)) iff:

σ1 = σ0̂0;
σ2 = σ0̂1; and
i0 + i1 + i2 is even.

Proving the theorem

Any automorphism f of A must respect the Rσ, so
{f ((σ, 0)), f (σ, 1)} = {(σ, 0), (σ, 1)}.
Say f swaps at σ if f ((σ, 0)) = (σ, 1).

To respect L, f must not swap at any σ 6∈ T .

To respect S , if f must swap at 0 or 2 of σ,σ̂0, σ̂1.

So if f swaps at σ, it must swap at exactly one of σ̂0, σ̂1.

Any nontrivial automorphism gives a path via “follow the swaps”.

Proving the theorem

a = (〈〉, 0), b = (〈〉, 1).

Any X ∈ Q gives an automorphism: swap precisely at the σ ⊂ X .

Since 〈〉 ⊂ X , this sends a to b.

Limitations of the result

This is enough for the theorem, but I’d like to do better:

1 Can we handle Π0
1-classes in Baire space directly, instead of

using Simpson’s result?

2 Can we code the Π0
1-class into the isomorphisms between any

two computable copies of the structure? Not hard to make a
computable C ∼= (A, a) such that every isomorphism between
them computes ∅′.

Yes and yes.

A new widget

Let B = ([ω]<ω, (Ei)i∈ω), where

B |= Ei (F ,G) � F4G = {i}.

∅ {0}

{1} {0, 1}

{2} {0, 2}

{1, 2} {0, 1, 2}

E0

E0

E0

E0

E1 E1E1 E1

E2 E2

E2
E2

B is the infinite dimensional hypercube with edges colored by
direction. Alternatively, it’s the affine space

⊕
i<ω Z/2.

A new widget

Let B = ([ω]<ω, (Ei)i∈ω), where

B |= Ei (F ,G) � F4G = {i}.

The automorphisms of B are precisely the maps F 7→ F4H for a
fixed H.

So:

The automorphism group of B acts transitively (all elements
in the same orbit).

The automorphism group of B acts freely (B becomes rigid
with the addition of a constant).

Improving to Baire space

Theorem (T)

For every Π0
1-class Q ⊆ ωω, there is a computable structure A and

element a ∈ A such that:

Q ≡w Aut(A) \ {id} ≡w {f ∈ Aut(A) : f (a) 6= a}

Proving the theorem

Fix a computable tree T with [T] = Q.

Domain of A is ω<ω × B.

Unary relations {Rσ : σ ∈ ω<ω} as before.

Unary relation L with A |= L((σ,F)) iff F = ∅ and σ 6∈ T .

B

B B B . . .

B B . . . B B . . . B B . . .

Proving the theorem

One more ingredient:

A binary relation S with A |= S((σ,F), (τ,G)) iff:

τ = σ̂i for some i ; and
i ∈ F iff |G | is odd.

Say that f moves at σ if f ((σ, ∅)) 6= (σ, ∅).

If f is an automorphism with f ((σ, ∅)) = (σ,F) and i ∈ F , then f
moves at σ̂i .
So nontrivial automorphisms give paths via “follow the movement”.

a = (〈〉, ∅). Paths give automorphisms moving a via “move along
the path”.

What about other copies?

The easy way to control the other computable copies of A is to
arrange that there aren’t any.

Definition

A computable structure A is computably categorical if every
computable B with B ∼= A is computably isomorphic.

So there is only one computable copy, modulo computable
isomorphism.

Adding computable categoricity

Theorem (T)

For every Π0
1-class Q ⊆ ωω, there is a closed set R ⊆ ωω, a

computable structure A and an element a ∈ A such that:

R is ∆0
3-homeomorphic to Q;

A is computably categorical; and

R ≡w Aut(A) \ {id} ≡w {f ∈ Aut(A) : f (a) 6= a}.

As previous theorem, adding a ∆0
3-priority construction for

computable categoricity.

What can we get from this?

Corollary

There is a computably categorical structure of Scott rank ωck
1 + 1.

Proof.

Use Q the Π0
1-class of descending sequences through the Harrison

order.

Effective dimension

For a computable structure A, the effective dimension is the
number of computable copies of A, modulo computable
isomorphism.

Any natural structure has effective dimension 1 or ℵ0.

Another corollary

Corollary

There is a structure of computable dimension 2 such that the two
copies have no ∆1

1 isomorphism between them.

Previous best known was no ∆0
2 isomorphism between them.

Proof.

Use Q = {0̂X : X is a desc. seq. through the Harrison order}.

The two copies are (A, (〈〉, ∅)) and (A, (〈〉, {0})).

Degree spectra

The isomorphism spectrum for a pair of structures is the set of
oracles computing an isomorphism:

IsoSpec(A,B) = {Y : ∃f ≤T Y : A ∼=f B}

The categoricity spectrum for a computable structure is the set of
oracles computing an isomorphism between any two computable
copies:

CatSpec(A) =
⋂

B,C∈∆0
1

B,C∼=A

IsoSpec(B, C)

Degree spectra

The isomorphism spectrum for a pair of structures is the set of
oracles computing an isomorphism:

IsoSpec(A,B) = {Y : ∃f ≤T Y : A ∼=f B}

The categoricity spectrum for a computable structure is the set of
oracles computing an isomorphism between any two computable
copies:

CatSpec(A) =
⋂

B,C∈∆0
1

B,C∼=A

IsoSpec(B, C)

Spectral Dimension

CatSpec(A) =
⋂

B,C∈∆0
1

B,C∼=A

IsoSpec(B, C)

The spectral dimension of a computable structure is the minimum
size of the above intersection:

SpecDim(A) = min{|F | : F ⊆ ∆0
1,CatSpec(A) =

⋂
B,C∈F
B,C∼=A

IsoSpec(B, C)}

Any natural structure has spectral dimension 2.

Question (Kalimullin et al.)

Is there a computable structure A such that CatSpec(A) has a
least element, and SpecDim(A) = ℵ0?

Spectral Dimension

CatSpec(A) =
⋂

B,C∈∆0
1

B,C∼=A

IsoSpec(B, C)

The spectral dimension of a computable structure is the minimum
size of the above intersection:

SpecDim(A) = min{|F | : F ⊆ ∆0
1,CatSpec(A) =

⋂
B,C∈F
B,C∼=A

IsoSpec(B, C)}

Any natural structure has spectral dimension 2.

Question (Kalimullin et al.)

Is there a computable structure A such that CatSpec(A) has a
least element, and SpecDim(A) = ℵ0?

Another way to look at this

Suppose CatSpec(A) has a least element X . Let A0,A1,A2, . . .
be the computable copies of A.

Build a tree of finite sequences of functions, 〈f0, . . . , fk−1〉 ∈ (ωω)∗

such that:

If 〈f0, . . . , fk−1〉 is on the tree, and f0 ⊕ · · · ⊕ fk−1 ≥T X , then
it is a leaf.

Otherwise, the children of 〈f0, . . . , fk−1〉 are the g : Ak
∼= A.

f0 f̂0
ˆ̂f0
. . .

f1 f̂1
ˆ̂f1
. . .

Another way to look at this

f0 f̂0
ˆ̂f0
. . .

f1 f̂1
ˆ̂f1
. . .

This tree is well-founded (exact pair construction).

Can it have infinite tree-rank?

Answering the previous question

Theorem (T)

There is a computable structure A such that
CatSpec(A) = {Y : Y ≥T ∅′′} and SpecDim(A) = ℵ0.

Lemma

There are f0, f1, . . . , g0, g1, · · · ∈ ωω s.t.

Each {fi} and {gj} is a Π0
1-class, uniformly;

For any i < j , fi + gj ≥T ∅′′; and

For any i , g0 ⊕ g1 ⊕ · · · ⊕ gi−1 ⊕ fi 6≥T ∅′.

Answering the previous question

Theorem (T)

There is a computable structure A such that
CatSpec(A) = {Y : Y ≥T ∅′′} and SpecDim(A) = ℵ0.

Lemma

There are f0, f1, . . . , g0, g1, · · · ∈ ωω s.t.

Each {fi} and {gj} is a Π0
1-class, uniformly;

For any i < j , fi + gj ≥T ∅′′; and

For any i , g0 ⊕ g1 ⊕ · · · ⊕ gi−1 ⊕ fi 6≥T ∅′.

Proving the theorem

Use Q = {(j + 1)̂gj , 0îfi : i , j ∈ ω}.

f0 f1

. . .

g0 g1

. . .0

0 1

1 2

Structure is (A, (〈〉, ∅)).

