Coding in the automorphism group of a structure

Daniel Turetsky Victoria University of Wellington

Partly joint with Johanna Franklin

May 2020

Problem	Instance	Solution	
Limit Approximation	$X\in 2^\omega$	$f \in 2^{\omega}$ s.t. $\lim_{s} f(\cdot, s) = X$	
Domination	$f\in\omega^\omega$	$m{g} \in \omega^{\omega}$ s.t. $orall m{n} m{g}(m{n}) > f(m{n})$	
Escaping	$f\in\omega^\omega$	$g \in \omega^{\omega}$ s.t. $\exists^{\infty} n g(n) > f(n)$	
Derandomization	$X\in 2^\omega$	$A i X$ a null $\mathbf{\Pi}_2^0$ -class	
Isomorphism	\mathcal{A}, \mathcal{B} structures	$f:\mathcal{A}\cong\mathcal{B}$	
Paths	T a tree	$X \in [T]$	

Problems can get you:

- Classes of degrees (highness and lowness notions)
- Weihrauch reducibility
- Dual problems
- Cichońs diagram
- Reverse math

Most fall into one of two sorts:

First sort – Any countable set of instances share a common solution; any instance computes a solution to itself. Second sort – Any real X computes an instance (with solutions) such that all solutions compute X.

Problem	Instance	Solution	
Limit Approximation	$X\in 2^\omega$	$f\in 2^\omega$ s.t. $\lim_s f(\cdot,s)=X$	
Domination	$f\in\omega^\omega$	$g \in \omega^{\omega}$ s.t. $orall n g(n) > f(n)$	
Escaping	$f\in\omega^\omega$	$g \in \omega^{\omega}$ s.t. $\exists^{\infty} n g(n) > f(n)$	
Derandomization	$X\in 2^\omega$	$A i X$ a null $\mathbf{\Pi}_2^0$ -class	
Isomorphism	\mathcal{A}, \mathcal{B} structures	$f:\mathcal{A}\cong\mathcal{B}$	
Paths	T a tree	$X \in [T]$	

Lowness and highness

Two highness notions:

- I compute a simultaneous solution to every computable instance.
- For every computable instance, I compute a solution.

And three lowness notions:

- Every instance I compute has a computable solution.
- Every instance that I compute a solution for has a computable solution.
- Every *computable* instance that I compute a solution for has a computable solution.

Problem	Instance	Solution	Lowness
Limit Approx.	$X\in 2^\omega$	$\lim_{s} f(\cdot, s) = X$	Low (i.e. $A' \equiv_T \emptyset'$)
Dom.	$f\in\omega^\omega$	$\forall n g(n) > f(n)$	Hyperimmune free
Escaping	$f\in\omega^\omega$	$\exists^{\infty} n g(n) > f(n)$	Hyperimmune free
Derandom.	$X\in 2^\omega$	null $\mathbf{\Pi}_2^0 A \ni X$	<i>K</i> -trivial
lso.	\mathcal{A},\mathcal{B}	$f:\mathcal{A}\cong\mathcal{B}$	Low for Isomorphism
Paths	Т	$X \in [T]$	Low for Paths

Definition

An oracle Y is *low for isomorphism* if any two computable structures with a Y-computable isomorphism have a computable isomorphism.

Definition

An oracle Y is *low for paths for Baire space (for Cantor space)* if any Π_1^0 -class in Baire space (in Cantor space) with a Y-computable element has a computable element. The set of isomorphisms between two computable structures can be expressed as a Π_1^0 -class:

$$\mathsf{lso}(\mathcal{A},\mathcal{B}) = \{(f,f^{-1}): \mathcal{A} \cong_f \mathcal{B}\}$$

So every computable *Isomorphism*-instance gives a computable *Baire-Paths*-instance, and solutions to one give solutions to the other.

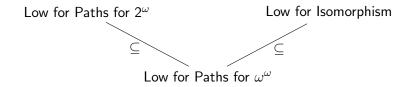
Proposition

Low for Paths for Baire space \subseteq Low for Isomorphism.

A $\Pi^0_1\text{-class}$ on Cantor space is a $\Pi^0_1\text{-class}$ on Baire space.

Proposition

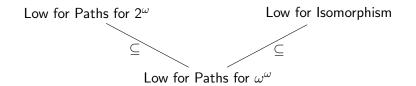
Low for Paths for Baire space \subseteq Low for Paths for Cantor space.



A $\Pi^0_1\text{-class}$ on Cantor space is a $\Pi^0_1\text{-class}$ on Baire space.

Proposition

Low for Paths for Baire space \subseteq Low for Paths for Cantor space.



Can we collapse this picture?

For $U, V \subseteq \omega^{\omega}$, we say that U is *Muchnik-below* V, written $U \leq_w V$, if every element of V computes an element of U.

We get a degree notion: $U \equiv_w V$ if $U \leq_w V$ and $V \leq_w U$.

Top element: \emptyset .

Bottom degree: $\mathbf{0}$, consisting of all sets containing computable elements.

For every Π_1^0 -class \mathcal{Q} (from Baire or Cantor space) with $\mathbf{0} <_w \mathcal{Q}$, are there computable structures \mathcal{A}, \mathcal{B} with $\mathbf{0} <_w \operatorname{lso}(\mathcal{A}, \mathcal{B}) \leq_w \mathcal{Q}$?

Theorem (Simpson)

For every Π_1^0 -class $\mathcal{P} \subseteq \omega^{\omega}$ with $0 <_w \mathcal{P}$, there is a Π_1^0 -class $\mathcal{Q} \subseteq 2^{\omega}$ with $0 <_w \mathcal{Q} \leq_w \mathcal{P}$.

Theorem (Franklin & T.)

For every Π_1^0 -class $Q \subseteq 2^{\omega}$, there is a computable structure A and elements a, $b \in A$ such that:

$$\mathcal{Q} \equiv_w \mathsf{Aut}(\mathcal{A}) \setminus \{\mathsf{id}\} \equiv_w \{f \in \mathsf{Aut}(\mathcal{A}) : f(\mathsf{a}) = b\}$$

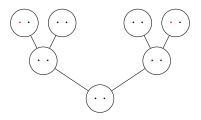
So $\mathcal{Q} \equiv_w \mathsf{lso}((\mathcal{A}, a), (\mathcal{A}, b)).$

Corollary

Low for paths for Baire space = Low for paths for Cantor space = Low for Isomorphism.

Fix a computable tree T with [T] = Q.

- Domain of \mathcal{A} is $2^{<\omega} \times \{0,1\}.$
- Unary relations $\{R_{\sigma} : \sigma \in 2^{<\omega}\}$ with $\mathcal{A} \models R_{\sigma}((\tau, i))$ iff $\sigma = \tau$.
- Unary relation L with $\mathcal{A} \models L((\sigma, i))$ iff i = 0 and $\sigma \notin T$.

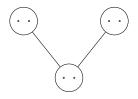


• A ternary relation S with $\mathcal{A} \models S((\sigma_0, i_0), (\sigma_1, i_1), (\sigma_2, i_2))$ iff:

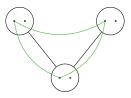
•
$$\sigma_1 = \sigma_0 \hat{} 0;$$

•
$$\sigma_2 = \sigma_0^1$$
; and

•
$$i_0 + i_1 + i_2$$
 is even.



- A ternary relation S with $\mathcal{A} \models S((\sigma_0, i_0), (\sigma_1, i_1), (\sigma_2, i_2))$ iff:
 - $\sigma_1 = \sigma_0 \hat{\ } 0;$
 - $\sigma_2 = \sigma_0$ 1; and
 - $i_0 + i_1 + i_2$ is even.

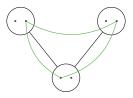


• A ternary relation S with $\mathcal{A} \models S((\sigma_0, i_0), (\sigma_1, i_1), (\sigma_2, i_2))$ iff:

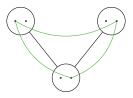
•
$$\sigma_1 = \sigma_0 \hat{} 0;$$

•
$$\sigma_2 = \sigma_0 \hat{1}$$
; and

•
$$i_0 + i_1 + i_2$$
 is even.



- A ternary relation S with $\mathcal{A} \models S((\sigma_0, i_0), (\sigma_1, i_1), (\sigma_2, i_2))$ iff:
 - $\sigma_1 = \sigma_0 \hat{\ } 0;$
 - $\sigma_2 = \sigma_0$ 1; and
 - $i_0 + i_1 + i_2$ is even.

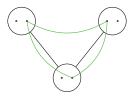


• A ternary relation S with $\mathcal{A} \models S((\sigma_0, i_0), (\sigma_1, i_1), (\sigma_2, i_2))$ iff:

•
$$\sigma_1 = \sigma_0 \hat{} 0;$$

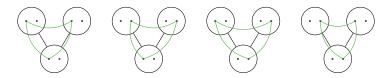
•
$$\sigma_2 = \sigma_0^1$$
; and

•
$$i_0 + i_1 + i_2$$
 is even.



Proving the theorem

- Any automorphism f of \mathcal{A} must respect the R_{σ} , so $\{f((\sigma, 0)), f(\sigma, 1)\} = \{(\sigma, 0), (\sigma, 1)\}.$
- Say f swaps at σ if $f((\sigma, 0)) = (\sigma, 1)$.
- To respect L, f must not swap at any $\sigma \notin T$.
- To respect S, if f must swap at 0 or 2 of σ , σ^{0} , σ^{1} .
- So if f swaps at σ , it must swap at exactly one of σ ^0, σ ^1.



Any nontrivial automorphism gives a path via "follow the swaps".

$$a = (\langle \rangle, 0), \ b = (\langle \rangle, 1).$$

Any $X \in \mathcal{Q}$ gives an automorphism: swap precisely at the $\sigma \subset X$.

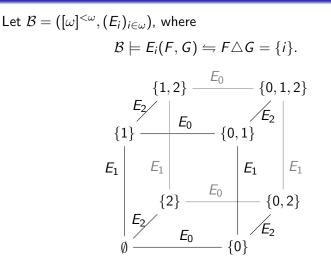
Since $\langle \rangle \subset X$, this sends *a* to *b*.

This is enough for the theorem, but I'd like to do better:

- Can we handle Π⁰₁-classes in Baire space directly, instead of using Simpson's result?
- ② Can we code the Π⁰₁-class into the isomorphisms between any two computable copies of the structure? Not hard to make a computable C ≅ (A, a) such that every isomorphism between them computes Ø'.

Yes and yes.

A new widget



 \mathcal{B} is the infinite dimensional hypercube with edges colored by direction. Alternatively, it's the affine space $\bigoplus_{i < \omega} \mathbb{Z}/2$.

Let $\mathcal{B} = ([\omega]^{<\omega}, (E_i)_{i\in\omega})$, where

$$\mathcal{B} \models E_i(F,G) \leftrightarrows F \triangle G = \{i\}.$$

The automorphisms of \mathcal{B} are precisely the maps $F \mapsto F \triangle H$ for a fixed H.

So:

- The automorphism group of $\mathcal B$ acts transitively (all elements in the same orbit).
- The automorphism group of \mathcal{B} acts freely (\mathcal{B} becomes rigid with the addition of a constant).

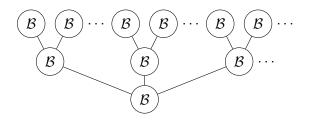
Theorem (T)

For every Π_1^0 -class $\mathcal{Q} \subseteq \omega^{\omega}$, there is a computable structure \mathcal{A} and element $a \in \mathcal{A}$ such that:

$$\mathcal{Q} \equiv_w \mathsf{Aut}(\mathcal{A}) \setminus \{\mathsf{id}\} \equiv_w \{f \in \mathsf{Aut}(\mathcal{A}) : f(\mathsf{a}) \neq \mathsf{a}\}$$

Fix a computable tree T with [T] = Q.

- Domain of \mathcal{A} is $\omega^{<\omega} \times \mathcal{B}$.
- Unary relations $\{R_{\sigma}: \sigma \in \omega^{<\omega}\}$ as before.
- Unary relation L with $\mathcal{A} \models L((\sigma, F))$ iff $F = \emptyset$ and $\sigma \notin T$.



- A binary relation S with $\mathcal{A} \models S((\sigma, F), (\tau, G))$ iff:
 - $\tau = \sigma \hat{i}$ for some *i*; and
 - $i \in F$ iff |G| is odd.

Say that f moves at σ if $f((\sigma, \emptyset)) \neq (\sigma, \emptyset)$.

If f is an automorphism with $f((\sigma, \emptyset)) = (\sigma, F)$ and $i \in F$, then f moves at $\sigma \hat{i}$.

So nontrivial automorphisms give paths via "follow the movement".

 $a = (\langle \rangle, \emptyset)$. Paths give automorphisms moving a via "move along the path".

The easy way to control the other computable copies of ${\cal A}$ is to arrange that there aren't any.

Definition

A computable structure \mathcal{A} is *computably categorical* if every computable \mathcal{B} with $\mathcal{B} \cong \mathcal{A}$ is computably isomorphic.

So there is only one computable copy, modulo computable isomorphism.

Theorem (T)

For every Π_1^0 -class $\mathcal{Q} \subseteq \omega^{\omega}$, there is a closed set $\mathcal{R} \subseteq \omega^{\omega}$, a computable structure \mathcal{A} and an element $a \in \mathcal{A}$ such that:

- \mathcal{R} is Δ_3^0 -homeomorphic to \mathcal{Q} ;
- A is computably categorical; and

•
$$\mathcal{R} \equiv_w Aut(\mathcal{A}) \setminus \{id\} \equiv_w \{f \in Aut(\mathcal{A}) : f(a) \neq a\}.$$

As previous theorem, adding a $\Delta_3^0\mbox{-}priority$ construction for computable categoricity.

Corollary

There is a computably categorical structure of Scott rank $\omega_1^{ck} + 1$.

Proof.

Use ${\cal Q}$ the $\Pi^0_1\text{-}class$ of descending sequences through the Harrison order. $\hfill \Box$

For a computable structure A, the *effective dimension* is the number of computable copies of A, modulo computable isomorphism.

Any natural structure has effective dimension 1 or \aleph_0 .

Corollary

There is a structure of computable dimension 2 such that the two copies have no Δ_1^1 isomorphism between them.

Previous best known was no Δ_2^0 isomorphism between them.

Proof.

Use $Q = \{0^X : X \text{ is a desc. seq. through the Harrison order}\}$.

The two copies are $(\mathcal{A}, (\langle \rangle, \emptyset))$ and $(\mathcal{A}, (\langle \rangle, \{0\}))$.

The isomorphism spectrum for a pair of structures is the set of oracles computing an isomorphism:

$$\mathsf{IsoSpec}(\mathcal{A},\mathcal{B}) = \{Y : \exists f \leq_{\mathcal{T}} Y : \mathcal{A} \cong_{f} \mathcal{B}\}$$

The isomorphism spectrum for a pair of structures is the set of oracles computing an isomorphism:

$$\mathsf{IsoSpec}(\mathcal{A},\mathcal{B}) = \{Y : \exists f \leq_T Y : \mathcal{A} \cong_f \mathcal{B}\}$$

The categoricity spectrum for a computable structure is the set of oracles computing an isomorphism between any two computable copies:

$$\mathsf{CatSpec}(\mathcal{A}) = \bigcap_{\substack{\mathcal{B}, \mathcal{C} \in \Delta_1^0 \\ \mathcal{B}, \mathcal{C} \cong \mathcal{A}}} \mathsf{IsoSpec}(\mathcal{B}, \mathcal{C})$$

$$\mathsf{CatSpec}(\mathcal{A}) = \bigcap_{\substack{\mathcal{B}, \mathcal{C} \in \Delta_1^0\\ \mathcal{B}, \mathcal{C} \cong \mathcal{A}}} \mathsf{IsoSpec}(\mathcal{B}, \mathcal{C})$$

The spectral dimension of a computable structure is the minimum size of the above intersection:

$$\mathsf{SpecDim}(\mathcal{A}) = \min\{|F| : F \subseteq \Delta_1^0, \mathsf{CatSpec}(\mathcal{A}) = \bigcap_{\substack{\mathcal{B}, \mathcal{C} \in F \\ \mathcal{B}, \mathcal{C} \cong \mathcal{A}}} \mathsf{IsoSpec}(\mathcal{B}, \mathcal{C})\}$$

$$\mathsf{CatSpec}(\mathcal{A}) = \bigcap_{\substack{\mathcal{B}, \mathcal{C} \in \Delta_1^0 \\ \mathcal{B}, \mathcal{C} \cong \mathcal{A}}} \mathsf{IsoSpec}(\mathcal{B}, \mathcal{C})$$

The spectral dimension of a computable structure is the minimum size of the above intersection:

$$\mathsf{SpecDim}(\mathcal{A}) = \min\{|F| : F \subseteq \Delta_1^0, \mathsf{CatSpec}(\mathcal{A}) = \bigcap_{\substack{\mathcal{B}, \mathcal{C} \in F \\ \mathcal{B}, \mathcal{C} \cong \mathcal{A}}} \mathsf{IsoSpec}(\mathcal{B}, \mathcal{C})\}$$

Any natural structure has spectral dimension 2.

Question (Kalimullin et al.)

Is there a computable structure \mathcal{A} such that CatSpec(\mathcal{A}) has a least element, and SpecDim(\mathcal{A}) = \aleph_0 ?

Another way to look at this

Suppose CatSpec(A) has a least element X. Let $A_0, A_1, A_2, ...$ be the computable copies of A.

Build a tree of finite sequences of functions, $\langle f_0, \ldots, f_{k-1} \rangle \in (\omega^{\omega})^*$ such that:

- If $\langle f_0, \ldots, f_{k-1} \rangle$ is on the tree, and $f_0 \oplus \cdots \oplus f_{k-1} \ge_T X$, then it is a leaf.
- Otherwise, the children of $\langle f_0, \ldots, f_{k-1} \rangle$ are the $g : \mathcal{A}_k \cong \mathcal{A}$.

Another way to look at this

$$\begin{array}{c|c} f_1 & \hat{f}_1 & \hat{f}_1 \\ & & & \\ f_0 & \hat{f}_0 & \hat{f}_0 \\ & & & \\ & & \\ & & \\ \end{array}$$

This tree is well-founded (exact pair construction).

Can it have infinite tree-rank?

Theorem (T)

There is a computable structure \mathcal{A} such that $CatSpec(\mathcal{A}) = \{Y : Y \ge_T \emptyset''\}$ and $SpecDim(\mathcal{A}) = \aleph_0$.

Theorem (T)

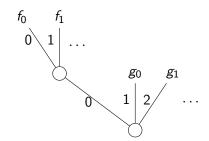
There is a computable structure \mathcal{A} such that $CatSpec(\mathcal{A}) = \{Y : Y \ge_T \emptyset''\}$ and $SpecDim(\mathcal{A}) = \aleph_0$.

Lemma

There are $f_0, f_1, \ldots, g_0, g_1, \cdots \in \omega^{\omega}$ s.t.

- Each $\{f_i\}$ and $\{g_j\}$ is a Π_1^0 -class, uniformly;
- For any i < j, $f_i + g_j \ge_T \emptyset''$; and
- For any $i, g_0 \oplus g_1 \oplus \cdots \oplus g_{i-1} \oplus f_i \not\geq_T \emptyset'$.

Use $\mathcal{Q} = \{(j+1)^{\widehat{g}_j}, 0i^{\widehat{f}_i} : i, j \in \omega\}.$



Structure is $(\mathcal{A}, (\langle \rangle, \emptyset))$.