Coding in the automorphism group of a structure

Daniel Turetsky
Victoria University of Wellington

Partly joint with Johanna Franklin

May 2020



Problem Instance Solution
Limit Approximation X e2v fe2vst limgf(,s)=X
Domination few’ g € w¥ s.t. Vng(n) > f(n)
Escaping few g € w¥ s.t. 3%ng(n) > f(n)
Derandomization X e2v A3 X a null MY-class
Isomorphism A, B structures f-A=B
Paths T a tree X e[T]



Problems

Problems can get you:
o Classes of degrees (highness and lowness notions)
@ Weihrauch reducibility
@ Dual problems
@ Cichonis diagram

@ Reverse math

Most fall into one of two sorts:

First sort — Any countable set of instances share a common
solution; any instance computes a solution to itself.

Second sort — Any real X computes an instance (with solutions)
such that all solutions compute X.
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Lowness and highness

Two highness notions:

@ | compute a simultaneous solution to every computable
instance.

@ For every computable instance, | compute a solution.

And three lowness notions:

@ Every instance | compute has a computable solution.
@ Every instance that | compute a solution for has a computable
solution.

@ Every computable instance that | compute a solution for has a
computable solution.



Lowness

Problem Instance Solution Lowness

Limit Approx. | X € 2¥ | limgf(,s) =X Low (i.e. A =7 (')

Vng(n) > f(n) Hyperimmune free
Escaping few’ | 3%ng(n) > f(n)

Dom. few”

Hyperimmune free

Derandom. X e null MIA S X K-trivial
Iso. A, B f.A=B Low for Isomorphism
Paths T X e [T] Low for Paths




Those last two rows

Definition

An oracle Y is low for isomorphism if any two computable
structures with a Y-computable isomorphism have a computable
isomorphism.

Definition

An oracle Y is low for paths for Baire space (for Cantor space) if
any M9-class in Baire space (in Cantor space) with a
Y-computable element has a computable element.




Comparing these problems

The set of isomorphisms between two computable structures can
be expressed as a MY-class:

Iso(A, B) = {(f,f 1) : A= B}

So every computable /somorphism-instance gives a computable
Baire-Paths-instance, and solutions to one give solutions to the
other.

Proposition

Low for Paths for Baire space C Low for Isomorphism.




Comparing these problems

0. n Cantor space is a I'Icl’—class on Baire space.

Proposition
Low for Paths for Baire space C Low for Paths for Cantor space.

Low for Paths for 2¢ Low for Isomorphism

S <

Low for Paths for w®




Comparing these problems

0. n Cantor space is a I'Icl’—class on Baire space.

Proposition
Low for Paths for Baire space C Low for Paths for Cantor space.

Low for Paths for 2¢ Low for Isomorphism

S <

Low for Paths for w®

Can we collapse this picture?



Muchnik reducibility

For U,V C w¥, we say that U is Muchnik-below V/, written
U <, V, if every element of V computes an element of U.

We get a degree notion: U=, VifU<, Vand V <, U.
Top element: ().

Bottom degree: 0, consisting of all sets containing computable
elements.



Restating the question

For every M9-class Q (from Baire or Cantor space) with 0 <,, Q,
are there computable structures A, B with 0 <,, Iso(A4, B) <,, Q7

Q Q
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<w = Iso(A, B)
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Reducing to Cantor space

Theorem (Simpson)

For every M9-class P C w* with 0 <,, P, there is a N9-class
QC2¥%with0 <, Q <, P.
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Answering the question

Theorem (Franklin & T.)

For every I_I(l)—c/ass Q C 2%, there is a computable structure A and
elements a, b € A such that:

Q =, Aut(A)\ {id} =, {f € Aut(A) : f(a) = b}

So Q =, Iso((A, a), (A, b)).

Low for paths for Baire space = Low for paths for Cantor space =
Low for Isomorphism.




Proving the theorem

Fix a computable tree T with [T] = Q.
e Domain of A is 2<¢“ x {0,1}.
e Unary relations {R, : 0 € 2<“} with A |= R,((7,1)) iff o = 7.
@ Unary relation L with A = L((o,i)) iffi=0and o & T.



Proving the theorem

One more ingredient:
o A ternary relation S with A = S((00, io), (01, i1), (02, i2)) iff:
@ 01 = UOAO;
@ O = UoAl; and
e ig+ i + ib is even.



Proving the theorem

One more ingredient:
o A ternary relation S with A = S((00, io), (01, i1), (02, i2)) iff:
@ 01 = UOAO;
@ O = UoAl; and
e ig+ i + ib is even.




Proving the theorem

One more ingredient:
o A ternary relation S with A = S((00, io), (01, i1), (02, i2)) iff:
@ 01 = UOAO;
@ O = UoAl; and
e ig+ i + ib is even.




Proving the theorem

One more ingredient:
o A ternary relation S with A = S((00, io), (01, i1), (02, i2)) iff:
@ 01 = UOAO;
@ O = UoAl; and
e ig+ i + ib is even.



Proving the theorem

One more ingredient:
o A ternary relation S with A = S((00, io), (01, i1), (02, i2)) iff:
@ 01 = UOAO;
@ O = UoAl; and
e ig+ i + ib is even.




Proving the theorem

@ Any automorphism f of A must respect the R,, so
{f((0,0)), (o, 1)} = {(0,0), (0, 1)}

e Say f swaps at o if f((0,0)) = (0,1).

@ To respect L, f must not swap atany o &€ T.

@ To respect S, if f must swap at 0 or 2 of 5,070, ¢ 1.

@ So if f swaps at o, it must swap at exactly one of 670, ¢ 1.

Any nontrivial automorphism gives a path via “follow the swaps”.



Proving the theorem

Any X € Q gives an automorphism: swap precisely at the ¢ C X.

Since () C X, this sends a to b. O



Limitations of the result

This is enough for the theorem, but I'd like to do better:

© Can we handle MY-classes in Baire space directly, instead of
using Simpson's result?

@ Can we code the MY-class into the isomorphisms between any
two computable copies of the structure? Not hard to make a
computable C 2 (A, a) such that every isomorphism between
them computes ()'.

Yes and yes.



Let B = ([w]<¥, (Ei)icw), where
B E(F,G) = FAG = {i}.
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B is the infinite dimensional hypercube with edges colored by

direction. Alternatively, it's the affine space @,_ Z/2.



Let B = ([w]<¥, (E})icw), where

B E(F,G) = FAG = {i}.

The automorphisms of B are precisely the maps F — FAH for a
fixed H.

So:
@ The automorphism group of B acts transitively (all elements
in the same orbit).
@ The automorphism group of B acts freely (5 becomes rigid
with the addition of a constant).



Improving to Baire space

For every M9-class Q C w*, there is a computable structure A and
element a € A such that:

Q =, Aut(A)\ {id} =, {f € Aut(A) : f(a) # a}




Proving the theorem

Fix a computable tree T with [T] = Q.

e Domain of A is w<¥ x B.
@ Unary relations {R, : 0 € w<“} as before.
@ Unary relation L with A |= L((0,F))iff F=0ando ¢ T.




Proving the theorem

One more ingredient:
@ A binary relation S with A |= S((o, F), (7, G)) iff:

e 7 =0 | for some i; and
e i€ Fiff |Gl is odd.

Say that f moves at o if f((0,0)) # (o, 0).

If £ is an automorphism with f((c0,0)) = (0, F) and i € F, then f
moves at o i.

So nontrivial automorphisms give paths via “follow the movement”.

a=((),0). Paths give automorphisms moving a via “move along
the path”. ]



What about other copies?

The easy way to control the other computable copies of A is to
arrange that there aren't any.

Definition

A computable structure A is computably categorical if every
computable B with B = A is computably isomorphic.

So there is only one computable copy, modulo computable
isomorphism.



Adding computable categoricity

Theorem (T)

For every M9-class Q C w*, there is a closed set R C w*, a
computable structure A and an element a € A such that:

e Ris Ag-homeomorphic to Q;

e A is computably categorical; and

o R =, Aut(A)\ {id} =, {f € Aut(A) : f(a) # a}.

As previous theorem, adding a Ag—priority construction for
computable categoricity.



What can we get from this?

Corollary

There is a computably categorical structure of Scott rank w§k + 1.

Use Q the M9-class of descending sequences through the Harrison

order. O]




Effective dimension

For a computable structure A, the effective dimension is the
number of computable copies of A, modulo computable
isomorphism.

Any natural structure has effective dimension 1 or Ng.



Another corollary

There is a structure of computable dimension 2 such that the two
copies have no Al isomorphism between them.

Previous best known was no AJ isomorphism between them.

Use @ = {07 X : X is a desc. seq. through the Harrison order}.

The two copies are (A, ((),0)) and (A, ((),{0})). O




Degree spectra

The isomorphism spectrum for a pair of structures is the set of
oracles computing an isomorphism:

IsoSpec(A,B) ={Y :3If <7 Y : A= B}



Degree spectra

The isomorphism spectrum for a pair of structures is the set of
oracles computing an isomorphism:

IsoSpec(A,B) ={Y :3If <7 Y : A= B}

The categoricity spectrum for a computable structure is the set of
oracles computing an isomorphism between any two computable
copies:

CatSpec(A) = m IsoSpec(B, C)

B,cen
B,C=A



Spectral Dimension

CatSpec(A) = ﬂ IsoSpec(B, C)
B.ceny
B,C=A

The spectral dimension of a computable structure is the minimum
size of the above intersection:

SpecDim(A) = min{|F|: F € A, CatSpec(A) = ﬂ IsoSpec(B,C)}

B.CEF
B.C=A



Spectral Dimension

CatSpec(A) = ﬂ IsoSpec(B, C)

B,cen?
B,C=A

The spectral dimension of a computable structure is the minimum
size of the above intersection:

SpecDim(A) = min{|F|: F € A, CatSpec(A) = ﬂ IsoSpec(B,C)}

B.CEF
B.C=A

Any natural structure has spectral dimension 2.

Question (Kalimullin et al.)

Is there a computable structure A such that CatSpec(.A) has a
least element, and SpecDim(.A) = Ro?




Another way to look at this

Suppose CatSpec(.A) has a least element X. Let A, A1, Az, ...
be the computable copies of A.

Build a tree of finite sequences of functions, (fy, ..., fx_1) € (w*)*
such that:

o If (fy,...,fx_1) is on the tree, and fo @ -+ ® fr_1 >7 X, then
it is a leaf.

@ Otherwise, the children of (fy, ..., fx_1) are the g : Ay = A.

flflfl
NI/
fo fy £



Another way to look at this

hhf
NI/
fo o o

This tree is well-founded (exact pair construction).

Can it have infinite tree-rank?



Answering the previous question

There is a computable structure A such that
CatSpec(A) ={Y : Y >7 ("} and SpecDim(A) = X,.




Answering the previous question

There is a computable structure A such that
CatSpec(A) ={Y : Y >7 ("} and SpecDim(A) = X,.

There are fy, f1,...,80,81, - € w* s.t.
o Each {f;} and {g;} is a N9-class, uniformly;
e Foranyi<j, fi+gi>71 0" and

@ Forany i, go®g1® - g 1Dfi 27 0.




Proving the theorem

Use Q={(j+1) g0 f:ijecw}

Structure is (A, (), 0)).



