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I Given two problems P0,P1, can P1 encode P0?

I By P1 encode P0 we mean for every instance I0 of P0, there is an
instance I1 of P1 such that every solution of I1 computes a solution of
I0 (also known as P0 soc-reducible to P1, denoted P0≤socP1).

I If a P1 instance I1 encode a P0 instance I0 (meaning every solution of
I1 computes a solution of I0), what can we say about I0, I1?
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A few examples

I Instance of RTn
k : k-coloring of n-tuples of integers C : [ω]n → k ;

I Solution of RTn
k : an infinite set G ⊆ ω monochromatic for C (i.e.,

|C ([G ]n)| = 1).

Classical Ramsey’s theorem: Every RTn
k instance admit a solution.

I RT1
k instance is simply a k-partition of ω.

I Obviously, RTn
k+1 encode RTn

k since an RTn
k instance can also be

seen as an RTn
k+1 instance;

I RT1
k+1 �soc RT1

k (Patey [7]);

I When n > 1, does RTn
k+1 ≤soc RTn

k (Patey and Monin)?
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A few examples

I Fast-growing-function admit strong cone avoidance for non
hyperarithmetic degree (well known);

I DNR2 ≤soc DNRk but not uniformly (Downey, Greenberg, Jockusch,
and Milans [2]).

I DNRk �soc DNRh where h is a non decreasing unbounded
computable function (by Bushy tree method).

I DNR2 �soc RT1
k ( Dzhafarov and Jockusch [4]).

I RT1
k+1 is not soc-reducible to RT1

k × fast-growing-function
(Dzhafarov, Patey, Solomon and Westrick [3])

General picture: if there is no obvious way that P1 encode P0, then it
can’t.
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Connection to RM and CCR

I (RM): P1 implies P0 (over RCA) ———— P0 can be solved by
invoking P1;

I RTn
2 ↔ RTn

k———— invoking RTn
2 k times solves RTn

k .

I (CCR): coding randomness in P.

I Every RT1
k instance admit a solution that doe not compute any

1-random real (Kjos-Hanssen [5]).
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Product of colorings

I (RT1
2)r -Instance: (C0, · · · ,Cr−1) where Cs ∈ 2ω;

I (RT1
2)r -solution: (G0, · · · ,Gr−1) where Gs ⊆ ω ∧ |Gs | =∞ is

monochromatic for Cs for all s < r .

Question 1

Does RT1
3 ≤soc (RT1

2)r?

Theorem 2 (L. [6])

I RT1
3 �soc (RT1

2)<ω; i.e.,

I There is a 3-coloring C : ω → 3 such that for every r ∈ ω, every
finitely many 2-colorings C0, · · · ,Cr−1, there is a solution to
(C0, · · · ,Cr−1) that does not compute any solution to C .

I Moreover, C can be ∅(ω)-computable.

Ludovic Patey independently obtained an answer of Question 1.
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In [1], Cholak, Dzhafarov, Hirschfeldt and Patey asked:

Question 3

I Is it true that D2
3 ≤c D2

2 × D2
2 ?

Or equivalently:

I Is there a ∆0
2 3-coloring C such that for every two ∆0

2 2-colorings
C0,C1, there exists a solution of (C0,C1) that does not compute any
solution of C ?

i.e., it requires the 3-coloring and the 2-colorings in Theorem 2 to be ∆0
2.

Actually, we have

Theorem 4 (L.[6])

There exists a ∆0
2 3-coloring C such that for every finitely many

2-colorings C0, · · · ,Cr−1, there exists a solution of (C0, · · · ,Cr−1) that
does not compute any solution of C .
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Table of content

I Reduce Theorem 2 to a lemma which asserts that certain Π0
1 class Q

of colorings admit two members violating a certain combinatorial
constraint.

I A similar lemma shows that if a 2-coloring Ĉ uniformly encode a
2-coloring C̃ , then it must be the case that Ĉ comptably “copies” C̃ .

I How complex does the class Q has to be so as to satisfy the cross
constraint.

I How weak can the witness be when the Π0
1 class doesn’t satisfy the

cross constraint. Weakening the witness in certain ways will address
Theorem 4. Such strengthening of the lemma is a type of basis
theorem for Π0

1 class with certain combinatorial constraint. We
introduce several variants of this type of basis theorem among them
many are open.
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Outline of Theorem 2

The frame work

Let C : ω → 3 be hyperimune relative to every arithmetic degree (simply
think of C as very complex that no arithmetic degree can approximate it);
fix r many 2-colorings C0, · · · ,Cr−1 : ω → 2.

The general approach for such encoding question is to construct a
sequence of conditions p0, p1, · · · :
I where each condition is essentially a closed set of candidates of the

weak solution we construct,

I each requirement is forced by some condition (meaning every member
of the condition satisfy the requirement).

In the end, take the common element of p0, p1, · · · (which exists by
compactness), so it satisfies all requirements.
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Outline of Theorem 2

The uniform encoding question

I Key point: how to extend a condition to force a given requirement?

I Usually, this approach transform the encoding question to a uniform
encoding question;

I In this particular theorem, it suffices to prove:

Lemma 5

For every tuple of Turing functionals {Ψk}k∈2r , every tuple of colors
{jk}k∈2r , there is a k∗ ∈ 2r , a solution (G0, · · · ,Gr−1) in color k∗ of

(C0, · · · ,Cr−1) such that Ψ
(G0,··· ,Gr−1)
k∗ is not a solution of C in color jk∗ .
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Outline of Theorem 2

Proof of Lemma 5

I Observe the behavior of {Ψk}k∈2r by wondering which C̃ ∈ 3ω is
encoded via {Ψk}k∈2r by some (Ĉ0, · · · , Ĉr−1) ∈ (2ω)r (as in Lemma
5). i.e.,

I Consider the set Q of such (C̃ , Ĉ ) that C̃ ∈ 3ω is encoded by
Ĉ = (Ĉ0, · · · , Ĉr−1) ∈ (2ω)r via {Ψk}k∈2r (as in Lemma 5).

I Note that Q is a Π0
1 class.
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Outline of Theorem 2

Proof of Lemma 5

I Since C is encoded by (C0, · · · ,Cr−1) as in Lemma 5, we have
C ∈ proj3ω(Q).

I Since C is complex, we have proj3ω(Q) contains a clopen set.

I (Key): we will show that there are (C̃ 0, Ĉ 0), (C̃ 1, Ĉ 1) ∈ Q such that

I C̃ 0, C̃ 1 are almost disjoint while Ĉ 0
s , Ĉ

1
s are not for all s < r .

I Pick up a vector of infinite sets (G0, · · · ,Gr−1) so that it is in color
k∗ of Ĉ 0, Ĉ 1, (C0, · · · ,Cr−1) for some k∗.

I Because Ψ
(G0,··· ,Gr−1)
k∗ is a solution in color jk∗ of both C̃ 0, C̃ 1. Thus it

must be finite since C̃ 0, C̃ 1 are almost disjoint.
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s , Ĉ
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k∗ of Ĉ 0, Ĉ 1, (C0, · · · ,Cr−1) for some k∗.

I Because Ψ
(G0,··· ,Gr−1)
k∗ is a solution in color jk∗ of both C̃ 0, C̃ 1. Thus it

must be finite since C̃ 0, C̃ 1 are almost disjoint.

Liu Lu ( Email: g.jiayi.liu@gmail.com Central South University School of Mathematics and Statistics 2020 Computability Theory and Applications )The coding power of product of partitions June 16, 2020 13 / 35

g.jiayi.liu@gmail.com


Outline of Theorem 2

Proof of Lemma 5

I Since C is encoded by (C0, · · · ,Cr−1) as in Lemma 5, we have
C ∈ proj3ω(Q).

I Since C is complex, we have proj3ω(Q) contains a clopen set.

I (Key): we will show that there are (C̃ 0, Ĉ 0), (C̃ 1, Ĉ 1) ∈ Q such that
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Outline of Theorem 2

What we need in Lemma 5

For two k-colorings C0,C1, we say C0,C1 are almost disjoint if for every
j < k , C−1

0 (j) ∩ C−1
1 (j) is finite.

Let Q ⊆ 3ω × (2ω)r be a Π0
1 class that has full projection on 3ω.

Lemma 6 (L.[6])

There exists (X 0,Y 0), (X 1,Y 1) ∈ Q such that: X 0,X 1 are almost disjoint
and Y 0

s ,Y
1
s are not almost disjoint for all s < r . Moreover,

(X 0,Y 0)⊕ (X 1,Y 1) is ∅′-computable.

Proof.

Combinatorial forcing and paring argument.
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Regularity of uniformly RT1
2 encoding

Question 7

Given a 2-coloring C̃ . Suppose for some 2-coloring Ĉ , some Turing
functionals {Ψs}s<r , every solution G of Ĉ computes a solution of C̃ via
some Ψs , what can we say about C̃ and Ĉ .

I The only known way for C̃ to be uniformly encoded, is by copying C̃
on an infinite domain.

I We say Ĉ computably copies C̃ if There are computable functions
f : ω → ω and g : ω → 2 with f −1(n̂) being finite for all n̂ such that
(∀n)Ĉ (n) = g(n) + C̃ (f (n))mod(2).

I We say Ĉ computably homogeneously copies C̃ if in addition, g is
constant.

I We verify the intuition for most of C̃ . Let C̃ be hyperimmune and
admits no ∆0

2 solution.
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Regularity of uniformly RT1
2 encoding

Theorem 8 (L.)

The following are equivalent:

I There is a Turing functional Ψ such that every solution of Ĉ
computes via Ψ a solution of C̃ ;

I Then we have Ĉ computably homogeneously copies C̃ .

Theorem 9

The following are equivalent:

I There are finitely many Turing functionals {Ψs}s<r , such that for
every solution G of Ĉ , ΨG

s is a solution of C̃ for some s < r .

I The 2-coloring Ĉ computably copies C̃ .
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Regularity of uniformly RT1
2 encoding

Let C̃ be hyperimmune relative to Om for all m.

Theorem 10

Suppose every solution of Ĉ computes a solution of C̃ , then for some m,
some Om-computable infinite set Z , Ĉ � Z Om-computably copies C̃ .
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Regularity of uniformly RT1
2 encoding

Regularity of almost-disjoint preserving collection

I Just like Lemma 5 boils down to prove the cross constraint can not
be satisfied by certain closed set Q ⊆ 3ω × (2ω)r ,

I The above theorems boils down to the following lemma, saying that if
certain close set Q ⊆ 2ω × 2ω satisfies a stronger version of the cross
constraint, then it is satisfied in a regular way.

I For a collection P ⊆ 2ω, we say P is almost disjoint if
⋂

X∈P X−1(i)
is finite for all i ∈ 2.
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Regularity of uniformly RT1
2 encoding

Regularity of almost-disjoint preserving collection

I Suppose Q ⊆ 2ω × 2ω is a closed set having full projection on the first
component.

I Suppose for every P ⊆ Q, proj0(P) is almost disjoint implies
proj1(P) is almost disjoint.

Lemma 11

Then we have: on some clopen set O, for most members (X ,Y ) ∈ Q ∩O,
Y copies X on an infinite domain.
i.e., there is a Q̂ with Q̂ ∩ O ⊆ Q ∩ O and with proj0((Q ∩ O) \ Q̂) being
meger such that Q̂ is defined as following. For some functions
f : ω∗ → ω, g : dom(f )→ 2 with f −1(n̂) being finite for all n̂, we have:
for every (X ,Y ) ∈ O, (X ,Y ) ∈ Q̂ if and only if Y (n) = g(n) + X (f (n))
for all n ∈ dom(f ).
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Regularity of uniformly RT1
2 encoding

Regularity of almost-disjoint preserving function

Let Γ : 2ω → 2ω be continuous such that for every P ⊆ 2ω, Γ(P) is almost
disjoint whenever P is.

Corollary 12

There exists an clopen set O such that for some functions f : ω∗ → ω,
g : dom(f )→ 2, we have Γ(X )(n) = g(n) + X (f (n)) mod(2) for all
n ∈ dom(f ) and all X ∈ O.

I Clearly corollary 12 is the infinite version of the following observation:
if Γ : 2n → 2 preserves disjoint (meaning Γ(V ) = {0, 1} whenever V
is disjoint), then there is an m < n, an i ∈ 2 such that
Γ(σ) = σ(m) + i mod(2) for all σ ∈ 2n.

I For more results in this spirit, see e.g. regularity theorems on
automorphism of the boolean algebra P(ω)/fin (Velikovic[9],Shelah[8]
Chapter IV).
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Regularity of uniformly RT1
2 encoding

Suppose a 2-coloring C̃ does not admit computable solution and let Ĉ be
a 2-coloring.

Question 13

I If Ĉ uniformly encode C̃ (meaning for some tuple of Turing
functionals {Ψs}s<r , for every solution G of Ĉ , ΨG

s is a solution of C̃
for some s < r). What can we say about C̃ , Ĉ .

I If Ĉ encode C̃ (meaning solution G of Ĉ computes a solution of C̃ ).
What can we say about C̃ , Ĉ .
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The complexity of the cross constraint

Above Π0
1 class.

We wonder how complex does Q has to be to satisfy the cross constraint,

i.e., a set Q ⊆ 3ω × (2ω)r having full projection on 3ω such that

(†)for every (X 0,Y 0), (X 1,Y 1) ∈ Q, if X 0,X 1 are almost disjoint,

then Y 0
s ,Y

1
s are almost disjoint for some s < r .
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The complexity of the cross constraint

Above Π0
1 class—— a game theoretic view.

I When r = 1, Q does not exist and the reason is “finite”:

there are three mutually disjoint 3-coloring,

while for every three 2-colorings, two of them are not almost disjoint.

I Alice Bob Alice Bob · · ·
C̃0 ∈ 3ω Ĉ0 ∈ (2ω)r C̃1 ∈ 3ω Ĉ1 ∈ (2ω)r · · ·

I Bob wins if for every m 6= m′, C̃m, C̃m′ being almost disjoint implies
Ĉm, Ĉm′ being almost disjoint.

I Bob has a winning strategy.

I Does Bob has a winning strategy without looking at the game history?
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The complexity of the cross constraint

Proposition 14

If Q is Σ1
1, then Q does not satisfy (†).

Proof.

Combine Cohen forcing and the proof of Lemma 6
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The complexity of the cross constraint

An ultrafilter construction of Q.

On the other hand, Johannes Schürz point out that a non principal
ultrafilter on ω give rise to such a set Q.

Proposition 15 (Johannes Schürz)

If there exists a non principal ultrafilter on ω, then there exists a function
Γ : 3ω → (2ω)2 such that for every two almost disjoint X 0,X 1 ∈ 3ω,
Γ(X 0)s , Γ(X 1)s are almost disjoint for some s < 2.

Proof.

Let Γ(X ) = (∅, ∅), (∅, ω), (ω, ∅) respectively depending on for which j ∈ 3,
X−1(j) ∈ U .
Where ∅ represents the 2-coloring Z such that Z−1(1) = ∅ and similarly
for ω.

Liu Lu ( Email: g.jiayi.liu@gmail.com Central South University School of Mathematics and Statistics 2020 Computability Theory and Applications )The coding power of product of partitions June 16, 2020 25 / 35

g.jiayi.liu@gmail.com


The complexity of the cross constraint

An ultrafilter construction of Q.

On the other hand, Johannes Schürz point out that a non principal
ultrafilter on ω give rise to such a set Q.

Proposition 15 (Johannes Schürz)

If there exists a non principal ultrafilter on ω, then there exists a function
Γ : 3ω → (2ω)2 such that for every two almost disjoint X 0,X 1 ∈ 3ω,
Γ(X 0)s , Γ(X 1)s are almost disjoint for some s < 2.

Proof.

Let Γ(X ) = (∅, ∅), (∅, ω), (ω, ∅) respectively depending on for which j ∈ 3,
X−1(j) ∈ U .
Where ∅ represents the 2-coloring Z such that Z−1(1) = ∅ and similarly
for ω.

Liu Lu ( Email: g.jiayi.liu@gmail.com Central South University School of Mathematics and Statistics 2020 Computability Theory and Applications )The coding power of product of partitions June 16, 2020 25 / 35

g.jiayi.liu@gmail.com


The complexity of the cross constraint

An ultrafilter construction of Q.

On the other hand, Johannes Schürz point out that a non principal
ultrafilter on ω give rise to such a set Q.

Proposition 15 (Johannes Schürz)

If there exists a non principal ultrafilter on ω, then there exists a function
Γ : 3ω → (2ω)2 such that for every two almost disjoint X 0,X 1 ∈ 3ω,
Γ(X 0)s , Γ(X 1)s are almost disjoint for some s < 2.

Proof.

Let Γ(X ) = (∅, ∅), (∅, ω), (ω, ∅) respectively depending on for which j ∈ 3,
X−1(j) ∈ U .

Where ∅ represents the 2-coloring Z such that Z−1(1) = ∅ and similarly
for ω.

Liu Lu ( Email: g.jiayi.liu@gmail.com Central South University School of Mathematics and Statistics 2020 Computability Theory and Applications )The coding power of product of partitions June 16, 2020 25 / 35

g.jiayi.liu@gmail.com


The complexity of the cross constraint

An ultrafilter construction of Q.

On the other hand, Johannes Schürz point out that a non principal
ultrafilter on ω give rise to such a set Q.

Proposition 15 (Johannes Schürz)

If there exists a non principal ultrafilter on ω, then there exists a function
Γ : 3ω → (2ω)2 such that for every two almost disjoint X 0,X 1 ∈ 3ω,
Γ(X 0)s , Γ(X 1)s are almost disjoint for some s < 2.

Proof.

Let Γ(X ) = (∅, ∅), (∅, ω), (ω, ∅) respectively depending on for which j ∈ 3,
X−1(j) ∈ U .
Where ∅ represents the 2-coloring Z such that Z−1(1) = ∅ and similarly
for ω.

Liu Lu ( Email: g.jiayi.liu@gmail.com Central South University School of Mathematics and Statistics 2020 Computability Theory and Applications )The coding power of product of partitions June 16, 2020 25 / 35

g.jiayi.liu@gmail.com


The complexity of the cross constraint

A Π1
1 definition.

Moreover, Jonathan showed that the assertion “there exists a Π1
1 set

Q ⊆ 3ω × (2ω)3 with full projection on 3ω satisfying (†)” is consistent with
ZFC.

Proposition 16 (Jonathan)

If V = L, then there exists a Π1
1 set Q ⊆ 3ω × (2ω)3 with full projection on

3ω satisfying (†).

Proof.

In L, we can construct a Σ1
2 non principal ultrafilter U on ω. Suppose U is

defined by ∃Z0∀Z1ϕ(Z0,Z1,Z ). Combine with the construction of
Proposition 15 and leave one component of (2ω)3 for Z0 in the definition
of U .
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The complexity of the cross constraint

The set theoretic proof strength

I Let ECC(r) denote the assertion “ there is a set Q ⊆ 3ω × (2ω)r

satisfying the constraint (†)”;

I let EU(ω) denote the assertion “there exists an ultrafilter on ω”.

I By Proposition 15, over ZF, EU(ω)→ ECC(r)→ ECC(r + 1) for all
r > 3.

Question 17

Are implications (set theoretic) in EU(ω)→ ECC(r)→ ECC(r + 1) strict?
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The weakness of the witness

Reducing Theorem 4 to an improvement of Lemma 6

As Theorem 2 is reduced to Lemma 6, Theorem 4 boils down to the
following improvement of Lemma 6:

Let Q ⊆ 3ω × (2ω)r be a Π0
1 class that has full projection on 3ω; let C be

a 3-coloring that is some sort of hyperimmune.

Lemma 18 (L.[6])

There exist (X 0,Y 0), (X 1,Y 1) ∈ Q such that:

I X 0,X 1 are almost disjoint and Y 0
s ,Y

1
s are not almost disjoint for all

s < r ;

I moreover, C is still hyperimmune relative to (X 0,Y 0)⊕ (X 1,Y 1).
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The weakness of the witness

Basis theorem for Π0
1 class with constraint (†)

Clearly Lemma 18 is a type of basis theorem with the additional constraint.
Since the corresponding hyperimmune basis theorem for Π0

1 class says:

Proposition 19

For every non empty Π0
1 class Q ⊆ 2ω, every hyperimmune function

f : ω → ω, there is a X ∈ Q such that f is hyperimmune relative to X .
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The weakness of the witness

Basis theorem for Π0
1 class with constraint (†)

In general,

Question 20

Suppose W is a collection of which the basis theorem for Π0
1 class holds,

does the (†)-constraint version basis theorem holds?

We have the (†)-constraint version of Cone avoidance and low basis
theorem.

Lemma 21

There exist (X 0,Y 0), (X 1,Y 1) ∈ Q such that:

I X 0,X 1 are almost disjoint and Y 0
s ,Y

1
s are not almost disjoint for all

s < r ;

I (X 0,Y 0)⊕ (X 1,Y 1) is low and does not compute a given Turing
degree.
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The weakness of the witness

Basis theorem for Π0
1 class with general constraint

Note that if we look at general constraint, then it is possible that the
constraint version of some basis theorem is no longer true.

Taking cone avoidance as an example:

Proposition 22

There exists a non empty Π0
1 class Q ⊆ 2ω such that for every

X 0,X 1 ∈ Q, if X 0 6=∗ X 1, then X 0 ⊕ X 1 ≥T ∅′.

Proof.

Note that there is a non empty Π0
1 class Q ⊆ 2ω such that for every

X ∈ Q, if X , as a set, is infinite, then X ≥T ∅′.

Liu Lu ( Email: g.jiayi.liu@gmail.com Central South University School of Mathematics and Statistics 2020 Computability Theory and Applications )The coding power of product of partitions June 16, 2020 31 / 35

g.jiayi.liu@gmail.com


The weakness of the witness

Basis theorem for Π0
1 class with general constraint

Note that if we look at general constraint, then it is possible that the
constraint version of some basis theorem is no longer true.

Taking cone avoidance as an example:

Proposition 22

There exists a non empty Π0
1 class Q ⊆ 2ω such that for every

X 0,X 1 ∈ Q, if X 0 6=∗ X 1, then X 0 ⊕ X 1 ≥T ∅′.

Proof.

Note that there is a non empty Π0
1 class Q ⊆ 2ω such that for every

X ∈ Q, if X , as a set, is infinite, then X ≥T ∅′.

Liu Lu ( Email: g.jiayi.liu@gmail.com Central South University School of Mathematics and Statistics 2020 Computability Theory and Applications )The coding power of product of partitions June 16, 2020 31 / 35

g.jiayi.liu@gmail.com


The weakness of the witness

Yet another basis theorem

Question 23

Given two incomputable Turing degree D0 �T D1, a non empty Π0
1 class

Q ⊆ 2ω, does there exist a X ∈ Q such that X �T D0 and
D0 ⊕ X �T D1?
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Some questions on product of infinitely many colorings

Strong cone avoidance of non hyperarithmetic degree

I (RT1
2)ω encode fast-growing-function. Therefore, it encode any

hyperarithmetic Turing degree. On the other hand,

I (Solovay): There is an infinite set X so that every subset of X does
not compute a given hyperarithmetic degree. Therefore,

Proposition 24

The problem (RT1
2)ω admit strong cone avoidance for non hyperarithmetic

Turing degree.
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Some questions on product of infinitely many colorings

Encoding RT1
3

Question 25

Is there a 3-coloring C not encoded by any product of infinitely many
2-colorings?
That is: is there a 3-coloring C such that for any sequence of 2-colorings
C0,C1, · · · , there exists a solution (G0,G1, · · · ) to (C0,C1, · · · ) such that
(G0,G1, · · · ) does not compute any solution to C .
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Some questions on product of infinitely many colorings

Thank you for attending. Is there any question(s)?
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Some questions on product of infinitely many colorings
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