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Background on M}-problems

In reverse mathematics, we often look at M3-problems.
Definition
A M}-problem is a sentence
VX[O(X) — IYV(X, Y)]
of second-order arithmetic such that © and V¥ are arithmetic.

Definition
We say that an X C w such that ©(X) holds is an instance of
this problem, and a solutionis a Y C w such that ¥(X, Y holds.

We denote such problems by P and Q.
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Second-order arithmetic is a two-sorted first-order language.

The usual base theory RCA, corresponds roughly to
computable mathematics.

ACA, corresponds to the Turing jump existence problem

vX3YLY = X.

Theorem (Folklore/Wang)
If
ACAo FVX[O(X) — FYA(X,Y)]

where © and A are arithmetic, then there is an n € w such that

ACAq - VYX[B(X) = 3Y € Z9%A(X, Y)].
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Models of second-order arithmetic

A model M of second-order arithmetic consists of a first-order
part \ and a second-order part S C 21

If N is standard, we say that M is an w-model and identify it
with S.

An w-model satisfies RCA iff it is a Turing ideal, that is, iff it is
closed under Turing reducibility and finite joins.

An w-model satisfies ACAy iff it is a jump ideal, that is, iff it is
closed under the Turing jump.
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Reducibilities

Definition
We say that P is w-reducible to Q and write P <, Q if every
w-model of RCAy+Q is a model of P.

If RCAp+ QF P, then P <, Q, but not necessarily vice versa.

Definition

We say that P is computably reducible to Q and write P <. Q if
for every P-instance X, there is an X -computable instance X of
Q such that, whenever Y is a solution to X, X has an

X & Y-computable solution.

Definition

We say that P is Weihrauch reducible to Q, P <y Q, if there are
Turing functionals ® and ¥ such that, for every instance X of P,
the set ®X is an instance of Q, and for every solution Yto

X = oX, the set Y = wX®Y is a solution to X.
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Examples of M3-problems

We write [X]" for the collection of n-element subsets of X. A
k-coloring of [X]" is a map ¢ : [X]" — k. A coloring of [X]? is
stable if lim, ¢ x ¢(x, y) exists for all x € X. H C X'is
homogeneous for c if there exists an i such that ¢(s) = i for all
s € [H]". L C Xis limit-homogeneous for ¢ : [X]? — k if there
exists an / such that limy, ¢, ¢(x, y) = iforall x € L.

» RT}: every k-coloring of [N]” has an infinite homogenoeus
set.

> RT. . : VKRTY.
> SRT%: every stable k-coloring of [N]2 has an infinite
homogeneous set.

» DZ2: every stable k-coloring of [N]2 has an infinite
limit-homogeneous set.
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Reductions between example problems

Theorem (Jockusch)

Letn> 2. Then

Every computable instance of RT”. _ has a NY solution.

There is a computable instance of RT3 with no 3 solution.
There is a computable instance of RT; such that every solution
computes (§("—2),

Corollary (Simpson)
RT} and RTZ , are equivalent to ACA, for n > 3.

Theorem (Seetapun)

ACA, £, RTZ .

RT2_, <. RT3. However,

Theorem (Cholak, Jockusch, and Slaman)
RCA, + RT3 I RT2 .
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We also have that RCA, - RT}, for each k. Therefore RT. _ is
true in every w-model of RCA,. However,

Theorem (Hirst)
RCA, 7 RT. .
Recall that if
ACAy - VX[B(X) = IYA(X, Y)]
where © and A are arithmetic, then there is an n € w such that
ACAq - VX[O(X) — 3Y € Z2¥A(X, V).

Therefore:

Corollary

RT <., ACAq but ACA, I/ RT.

Equivalently, RT <., RT3 but RCA, + RTS I/ RT.
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Theorem (Jockusch)

Letn> 2. Then

Every computable instance of RT . has a NY solution.

There is a computable instance of RT3 with no £3 solution.
There is a computable instance of RT} such that every solution
computes H("—2).

Corollary
RT{ <c RT{™" and RT <w RT{ foralln > 1.

Theorem (Hirschfeldt and Jockusch / Brattka and
Rakotoniaina / Patey)

RTR <w RTg, foralln>1andk > 2.

Theorem (Patey)
RTR <c RTk,4 foralln k > 2.
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Using multiple instances

These three reducibilities allow us to use one instance of Q to
solve an instance of P. What if we would like to use multiple
Q-instances?

Hirschfeldt and Jockusch introduced the idea of a reduction
game to allow for this possibility. We consider two-player
reduction games for principles P and Q. The general structure
of the games is as follows:

>
>

>

Player 1 plays a P-instance Xp.

Player 2 tries to obtain a solution to Xj by asking Player 1
to solve various Q-instances.

If Player 2 ever plays a solution to Xp, they win and the
game ends.

If the game never ends, then Player 1 wins.
If a player is unable to make a move, their opponent wins.
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The game G(Q — P)

The reduction game G(Q — P) is defined as follows:

| 2
>

>

On the first move, Player 1 plays an instance X; of P
Player 2 then either plays an Xp-computable solution to Xy
and wins, or plays an Xp-computable instance Y; of Q

For n > 1, on the n' move, Player 1 plays a solution X,,_1
to the instance Y,,_4 of Q

Player 2 then either plays an (Xo @ ... ® X,_1)-computable
solution to Xy and wins, or plays an

(Xo @ ... @ X,—1)-computable instance Y, of Q
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Winning G(Q — P)

Theorem (Hirschfeldt and Jockusch)

If P <, Q then Player 2 has a winning strategy for G(Q — P).
Otherwise, Player 1 has a winning strategy for G(Q — P).

Definition

We say that P is generalized Weihrauch reducible to Q and
write P <gw Q, if Player 2 has a computable winning strategy
for G(Q — P).

We have that RT? , <qw RT% and RT <qw RT3.

If Player 2 has a winning strategy for G(Q — P) in at most n+ 1
many moves, then we write P <” Q, and likewise for gW.
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Generalized Weihrauch reductions between example
problems

Theorem (Hirschfeldt and Jockusch)
Letn>3,j > 1, and m be such that ,
n+(—1)(n-2)<m<n+j(n-2). ThenRT} Sng\?\} RTy, but

RT7 «l, RT}. Therefore RT &, RT3 for all j, although
RT <, RTS.

Theorem (Hirschfeldt and Jockusch)

Letj>2andj™ < k <™. Then RT} <[\" RT], but
RTk Ziw RT]. Thus RTL £, RT] for all m, although
RT.., <gw RT}.

Patey showed that for n > 3, the RT; <2 RT for j < k, but

RTk £), RTJ. For n =2, the least m such that RTg <[ RT/
approaches oo as k increases.
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Extending M3-problems

In our definition of M}-problems, we required that instances and
solutions be subsets of w. We can extend this notion more
generally as follows: Let M be an £4-structure with domain
[M|. For S C |M|, we write (M, S) for the L»-structure with
first-order part M and second-order part S. For an L4-structure
M, an M-instance of P is an X C |M| such that

(M, {X}) E ©(X), and a solution to X is a Y C |M| such that
(M AX, YY) E V(X Y).

Let A be a Lq-structure. For Xy, ..., X, € |N|, let
N[Xo, ..., Xa] = (N, S), where S consists of all subsets of |N|
that are A9-definable from parameters in |[N| U {Xq, ..., Xn}.
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The game Gr(Q — P)

Let I be a set of Lo-formulas and P and Q be M}-problems. The
modified I-reduction game Gr(Q — P) is defined as follows:

>

>

On the first move, Player 1 plays a model (M, S) =T with
M countable, and an M-instance Xy of P in S.

Player 2 then either plays a solution to Xy in M[Xp] and
wins, or plays an M-instance Y7 of Q in M[Xp]

For n > 1, on the n" move, Player 1 plays a solution X),_1
to the instance Y,_4 of Qin S.

Player 2 then either plays a solution to Xj in

M([Xo, ..., Xn—1] and wins, or plays an M-instance Y, of Q
in M[XQ, . ,Xn_1].
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Results from modified games

Proposition
LetT be a consistent extension of A? -comprehension by
N}-formulas. Let P and Q be N}- problems. If T + Q — R then

Player 2 has a winning strategy for G' (Q — P). Otherwise,
Player 1 has a winning strategy forG' *°(Q s P).

For our main result, we need the mild extra assumption that I
proves the existence of a universal %-formula.
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The main result

Theorem
Let T satisfy the conditions. Let P and Q be N}-problems. If T +
Q — P then there is an n such that Player 2 has a winning

strategy for Gr(Q — P) that ensures victory in at most n many
moves. Otherwise, Player 1 has a winning strategy for Gr+0 Q
— P).

Corollary

LetT = RCAo+ all N}-formulas true overw. If P £1" Q for all n,
thenT # Q— P,

Example

LetQ = RT3 and P = RT2 . Patey showed that RT2 £ RT2
for all n, k. Therefore T I/ RT3 — RT2 .



Essential lemma
Forne w,let©px(ey,...,en Xo,...,Xn, Yo,..., Yn) be a formula
asserting that

if Xo is a P-instance then (Y, = d>§g/\(either Yo is a solution to Xy

or (Y is a Q-instance and if Xj is a solution to Yy then (Y; = d>f§1°@x‘
A (either Y; is a solution to Xp or

(Yq is a Q-instance and if X is a solution to Y; then (Y, = ¢§3@X‘ ©Xe

A (either Y5 is a solution to Xp or ...

o (Yn = 0R% %X Ay is a solution to Xp)) - - -).

If '+ Q — P, then there exists an n ¢ w such that

I+ VXO dey, Yo VX1 deq, Y1 -V Xp dep, Yn
@n(eo,...7en,xo,...,Xn7 YO,...,Yn).
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Extending generalized Weihrauch reducibility

Definition
We say that P is generalized Weihrauch reducible to Q over I
and write P ggw Q, if Player 2 has a computable (i.e., A9),

winning strategy for G' (Q — P).

We define computable reducibility over I and Weihrauch
reducibility over I in a similar way.

Theorem
IfP ggw Q, then there is an n € w such that Player 2 has a

winning strategy for G' (Q — P) that ensures victory in at most
n many moves.
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An example: limit-homogeneous sets

Recall that a coloring of [X]2 is stable if limy ¢ x ¢(x, y) exists for
all x € X. L C X is limit-homogeneous for ¢ : [X]?> — k if there
exists an i such that lim, ¢, ¢(x,y) = i forall x € L.

We have the principles:

SRTZ: every stable k-coloring of [N]2 has an infinite
homogeneous set.

D2: every stable k-coloring of [N]? has an infinite
limit-homogeneous set.

Theorem (Cholak, Jockusch, and Slaman)
SRT3 =, D3.

Theorem (Chong, Lempp, and Yang)
SRT3 and D3 are equivalent over RCA.
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An example: limit-homogeneous sets cont.

Theorem (Dzhafarov)
SRT3 #Zw D3.

Theorem (Hirschfeldt and Jockusch)
SRT3 <, D.
We now introduce the principle

LH: For every 2-coloring of [N]2, every infinite
limit-homogeneous set has an infinite homogeneous subset.

Note that an instance of LH includes the color i to which the set
is limit-homogeneous.
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In reverse math, we often consider the Zg-bounding principle
BXY.

Over RCA,, Bzg is equivalent to the principle Bound™ defined
as follows.

Definition

Bound™ is the principle that for a simultaneous enumeration of
bounded sets Fy, ..., Fp, there exists a common bound for the
sets F;.

Proposition
RCA( + LH = Bound*.
LH is trivial with respect to Weihrauch reducibility, meaning that

LH Weihrauch-reduces to the identity problem. This remains
the case over RCAq + BX3. However, we have

Theorem
LH ziy* Bound".
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An example: limit-homogeneous sets cont.

Recall that SRT5 <qw D3.

The following questions remain open:
ls SRTS <{i/° D52 Is LH <[ D37



