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Background on Π1
2-problems

In reverse mathematics, we often look at Π1
2-problems.

Definition
A Π1

2-problem is a sentence

∀X [Θ(X )→ ∃Y Ψ(X ,Y )]

of second-order arithmetic such that Θ and Ψ are arithmetic.

Definition
We say that an X ⊆ ω such that Θ(X ) holds is an instance of
this problem, and a solution is a Y ⊆ ω such that Ψ(X ,Y ) holds.

We denote such problems by P and Q.
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Background on reverse math
Second-order arithmetic is a two-sorted first-order language.

The usual base theory RCA0 corresponds roughly to
computable mathematics.

ACA0 corresponds to the Turing jump existence problem

∀X∃Y [Y = X ′].

Theorem (Folklore/Wang)
If

ACA0 ` ∀X [Θ(X )→ ∃Y ∆(X ,Y )]

where Θ and ∆ are arithmetic, then there is an n ∈ ω such that

ACA0 ` ∀X [Θ(X )→ ∃Y ∈ Σ0,X
n ∆(X ,Y )].
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Models of second-order arithmetic

A modelM of second-order arithmetic consists of a first-order
part N and a second-order part S ⊆ 2|N |.

If N is standard, we say thatM is an ω-model and identify it
with S.

An ω-model satisfies RCA0 iff it is a Turing ideal, that is, iff it is
closed under Turing reducibility and finite joins.

An ω-model satisfies ACA0 iff it is a jump ideal, that is, iff it is
closed under the Turing jump.
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Reducibilities
Definition
We say that P is ω-reducible to Q and write P ≤ω Q if every
ω-model of RCA0+Q is a model of P.

If RCA0+ Q ` P, then P ≤ω, Q, but not necessarily vice versa.

Definition
We say that P is computably reducible to Q and write P ≤c Q if
for every P-instance X , there is an X -computable instance X̂ of
Q such that, whenever Ŷ is a solution to X̂ , X has an
X ⊕ Ŷ -computable solution.

Definition
We say that P is Weihrauch reducible to Q, P ≤W Q, if there are
Turing functionals Φ and Ψ such that, for every instance X of P,
the set ΦX is an instance of Q, and for every solution Ŷ to
X̂ = ΦX , the set Y = ΨX⊕Ŷ is a solution to X .
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Examples of Π1
2-problems

We write [X ]n for the collection of n-element subsets of X . A
k-coloring of [X ]n is a map c : [X ]n → k . A coloring of [X ]2 is
stable if limy ∈ X c(x , y) exists for all x ∈ X . H ⊆ X is
homogeneous for c if there exists an i such that c(s) = i for all
s ∈ [H]n. L ⊆ X is limit-homogeneous for c : [X ]2 → k if there
exists an i such that limy ∈ L c(x , y) = i for all x ∈ L.

I RTn
k : every k -coloring of [N]n has an infinite homogenoeus

set.
I RTn

<∞ : ∀kRTn
k .

I SRT2
k : every stable k -coloring of [N]2 has an infinite

homogeneous set.
I D2

k : every stable k -coloring of [N]2 has an infinite
limit-homogeneous set.
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Reductions between example problems

Theorem (Jockusch)
Let n ≥ 2. Then
Every computable instance of RTn

<∞ has a Π0
n solution.

There is a computable instance of RTn
2 with no Σ0

2 solution.
There is a computable instance of RTn

2 such that every solution
computes ∅(n−2).

Corollary (Simpson)
RTn

k and RTn
<∞ are equivalent to ACA0 for n ≥ 3.

Theorem (Seetapun)
ACA0 6≤ω RT2

<∞.
RT2

<∞ ≤ω RT2
2. However,

Theorem (Cholak, Jockusch, and Slaman)
RCA0 + RT2

2 6` RT2
<∞.
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Reductions between example problems cont.
We also have that RCA0 ` RT1

k for each k . Therefore RT1
<∞ is

true in every ω-model of RCA0. However,

Theorem (Hirst)
RCA0 6` RT1

<∞.

Recall that if

ACA0 ` ∀X [Θ(X )→ ∃Y ∆(X ,Y )]

where Θ and ∆ are arithmetic, then there is an n ∈ ω such that

ACA0 ` ∀X [Θ(X )→ ∃Y ∈ Σ0,X
n ∆(X ,Y )].

Therefore:

Corollary
RT ≤ω ACA0 but ACA0 6` RT.

Equivalently, RT ≤ω RT3
2 but RCA0 + RT3

2 6` RT.
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Rakotoniaina / Patey)
RTn

k <W RTn
k+1 for all n ≥ 1 and k ≥ 2.

Theorem (Patey)
RTn

k <c RTn
k+1 for all n, k ≥ 2.



Using multiple instances

These three reducibilities allow us to use one instance of Q to
solve an instance of P. What if we would like to use multiple
Q-instances?

Hirschfeldt and Jockusch introduced the idea of a reduction
game to allow for this possibility. We consider two-player
reduction games for principles P and Q. The general structure
of the games is as follows:

I Player 1 plays a P-instance X0.
I Player 2 tries to obtain a solution to X0 by asking Player 1

to solve various Q-instances.
I If Player 2 ever plays a solution to X0, they win and the

game ends.
I If the game never ends, then Player 1 wins.
I If a player is unable to make a move, their opponent wins.



Using multiple instances

These three reducibilities allow us to use one instance of Q to
solve an instance of P. What if we would like to use multiple
Q-instances?

Hirschfeldt and Jockusch introduced the idea of a reduction
game to allow for this possibility. We consider two-player
reduction games for principles P and Q. The general structure
of the games is as follows:

I Player 1 plays a P-instance X0.
I Player 2 tries to obtain a solution to X0 by asking Player 1

to solve various Q-instances.
I If Player 2 ever plays a solution to X0, they win and the

game ends.
I If the game never ends, then Player 1 wins.
I If a player is unable to make a move, their opponent wins.



Using multiple instances

These three reducibilities allow us to use one instance of Q to
solve an instance of P. What if we would like to use multiple
Q-instances?

Hirschfeldt and Jockusch introduced the idea of a reduction
game to allow for this possibility. We consider two-player
reduction games for principles P and Q. The general structure
of the games is as follows:
I Player 1 plays a P-instance X0.

I Player 2 tries to obtain a solution to X0 by asking Player 1
to solve various Q-instances.

I If Player 2 ever plays a solution to X0, they win and the
game ends.

I If the game never ends, then Player 1 wins.
I If a player is unable to make a move, their opponent wins.



Using multiple instances

These three reducibilities allow us to use one instance of Q to
solve an instance of P. What if we would like to use multiple
Q-instances?

Hirschfeldt and Jockusch introduced the idea of a reduction
game to allow for this possibility. We consider two-player
reduction games for principles P and Q. The general structure
of the games is as follows:
I Player 1 plays a P-instance X0.
I Player 2 tries to obtain a solution to X0 by asking Player 1

to solve various Q-instances.

I If Player 2 ever plays a solution to X0, they win and the
game ends.

I If the game never ends, then Player 1 wins.
I If a player is unable to make a move, their opponent wins.



Using multiple instances

These three reducibilities allow us to use one instance of Q to
solve an instance of P. What if we would like to use multiple
Q-instances?

Hirschfeldt and Jockusch introduced the idea of a reduction
game to allow for this possibility. We consider two-player
reduction games for principles P and Q. The general structure
of the games is as follows:
I Player 1 plays a P-instance X0.
I Player 2 tries to obtain a solution to X0 by asking Player 1

to solve various Q-instances.
I If Player 2 ever plays a solution to X0, they win and the

game ends.

I If the game never ends, then Player 1 wins.
I If a player is unable to make a move, their opponent wins.



Using multiple instances

These three reducibilities allow us to use one instance of Q to
solve an instance of P. What if we would like to use multiple
Q-instances?

Hirschfeldt and Jockusch introduced the idea of a reduction
game to allow for this possibility. We consider two-player
reduction games for principles P and Q. The general structure
of the games is as follows:
I Player 1 plays a P-instance X0.
I Player 2 tries to obtain a solution to X0 by asking Player 1

to solve various Q-instances.
I If Player 2 ever plays a solution to X0, they win and the

game ends.
I If the game never ends, then Player 1 wins.

I If a player is unable to make a move, their opponent wins.



Using multiple instances

These three reducibilities allow us to use one instance of Q to
solve an instance of P. What if we would like to use multiple
Q-instances?

Hirschfeldt and Jockusch introduced the idea of a reduction
game to allow for this possibility. We consider two-player
reduction games for principles P and Q. The general structure
of the games is as follows:
I Player 1 plays a P-instance X0.
I Player 2 tries to obtain a solution to X0 by asking Player 1

to solve various Q-instances.
I If Player 2 ever plays a solution to X0, they win and the

game ends.
I If the game never ends, then Player 1 wins.
I If a player is unable to make a move, their opponent wins.



The game G(Q→ P)

The reduction game G(Q→ P) is defined as follows:

I On the first move, Player 1 plays an instance X0 of P
I Player 2 then either plays an X0-computable solution to X0

and wins, or plays an X0-computable instance Y1 of Q
I For n > 1, on the nth move, Player 1 plays a solution Xn−1

to the instance Yn−1 of Q
I Player 2 then either plays an (X0 ⊕ . . .⊕ Xn−1)-computable

solution to X0 and wins, or plays an
(X0 ⊕ . . .⊕ Xn−1)-computable instance Yn of Q
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Winning G(Q→ P)

Theorem (Hirschfeldt and Jockusch)
If P ≤ω Q then Player 2 has a winning strategy for G(Q→ P).
Otherwise, Player 1 has a winning strategy for G(Q→ P).

Definition
We say that P is generalized Weihrauch reducible to Q and
write P ≤gW Q, if Player 2 has a computable winning strategy
for G(Q→ P).
We have that RTn

<∞ ≤gW RTn
2 and RT ≤gW RT3

2.

If Player 2 has a winning strategy for G(Q→ P) in at most n + 1
many moves, then we write P ≤n

ω Q, and likewise for gW.
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Generalized Weihrauch reductions between example
problems

Theorem (Hirschfeldt and Jockusch)
Let n ≥ 3, j ≥ 1, and m be such that
n + (j − 1)(n − 2) < m ≤ n + j(n − 2). Then RTm

k ≤
j+1
gW RTn

k , but

RTm
k 6≤

j
ω RTn

k . Therefore RT 6≤j
ω RT3

2 for all j , although
RT ≤ω RT3

2.

Theorem (Hirschfeldt and Jockusch)
Let j ≥ 2 and jm < k ≤ jm+1. Then RT1

k ≤m+1
gW RT1

j , but
RT1

k 6≤m
gW RT1

j . Thus RT1
<∞ 6≤m

gW RT1
j for all m, although

RT1
<∞ ≤gW RT1

j .

Patey showed that for n ≥ 3, the RTn
k ≤2

ω RTn
j for j < k , but

RTn
k 6≤1

ω RTn
j . For n = 2, the least m such that RTn

k ≤m
ω RTn

j
approaches∞ as k increases.
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Extending Π1
2-problems

In our definition of Π1
2-problems, we required that instances and

solutions be subsets of ω. We can extend this notion more
generally as follows: LetM be an L1-structure with domain
|M|. For S ⊆ |M|, we write (M,S) for the L2-structure with
first-order partM and second-order part S. For an L1-structure
M, anM-instance of P is an X ⊆ |M| such that
(M, {X}) |= Θ(X ), and a solution to X is a Y ⊆ |M| such that
(M, {X ,Y}) |= Ψ(X ,Y ).

Let N be a L1-structure. For X0, . . . ,Xn ∈ |N|, let
N [X0, . . . ,Xn] = (N ,S), where S consists of all subsets of |N|
that are ∆0

1-definable from parameters in |N| ∪ {X0, . . . ,Xn}.
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The game GΓ(Q→ P)

Let Γ be a set of L2-formulas and P and Q be Π1
2-problems.

The Γ-reduction game GΓ(Q→ P) is defined as follows:

I On the first move, Player 1 plays a countable L1-structure
M and, and anM-instance X0 of P such thatM[X0] is
consistent with Γ.

I Player 2 then either plays a solution to X0 inM[X0] and
wins, or plays anM-instance Y1 of Q inM[X0]

I For n > 1, on the nth move, Player 1 plays a solution Xn−1
to the instance Yn−1 of Q such thatM[X0, . . . ,Xn−1] is
consistent with Γ.

I Player 2 then either plays a solution to X0 in
M[X0, . . . ,Xn−1] and wins, or plays anM-instance Yn of Q
inM[X0, . . . ,Xn−1].
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The game Ĝ
Γ
(Q→ P)

Let Γ be a set of L2-formulas and P and Q be Π1
2-problems. The

modified Γ-reduction game Ĝ
Γ
(Q→ P) is defined as follows:

I On the first move, Player 1 plays a model (M,S) |= Γ with
M countable, and anM-instance X0 of P in S.

I Player 2 then either plays a solution to X0 inM[X0] and
wins, or plays anM-instance Y1 of Q inM[X0]
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Results from modified games

Proposition
Let Γ be a consistent extension of ∆0

1-comprehension by
Π1

1-formulas. Let P and Q be Π1
2- problems. If Γ ` Q→ P, then

Player 2 has a winning strategy for GΓ(Q→ P). Otherwise,

Player 1 has a winning strategy for Ĝ
Γ+Q

(Q→ P).

For our main result, we need the mild extra assumption that Γ
proves the existence of a universal Σ0

1-formula.
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Γ+Q

(Q→ P).

For our main result, we need the mild extra assumption that Γ
proves the existence of a universal Σ0

1-formula.



Results from modified games

Proposition
Let Γ be a consistent extension of ∆0

1-comprehension by
Π1

1-formulas. Let P and Q be Π1
2- problems. If Γ ` Q→ P, then

Player 2 has a winning strategy for GΓ(Q→ P). Otherwise,

Player 1 has a winning strategy for Ĝ
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The main result

Theorem
Let Γ satisfy the conditions. Let P and Q be Π1

2-problems. If Γ `
Q→ P, then there is an n such that Player 2 has a winning
strategy for Ĝ

Γ
(Q→ P) that ensures victory in at most n many

moves. Otherwise, Player 1 has a winning strategy for Ĝ
Γ+Q

(Q
→ P).

Corollary
Let Γ = RCA0+ all Π1

1-formulas true over ω. If P 6≤n
ω Q for all n,

then Γ 6` Q→ P.

Example
Let Q = RT2

2 and P = RT2
<∞. Patey showed that RT2

<∞ 6≤n
ω RT2

k
for all n, k. Therefore Γ 6` RT2

2 → RT2
<∞.
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Γ
(Q→ P) that ensures victory in at most n many

moves. Otherwise, Player 1 has a winning strategy for Ĝ
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Essential lemma
For n ∈ ω, let Θn(e0, . . . ,en,X0, . . . ,Xn,Y0, . . . ,Yn) be a formula
asserting that

if X0 is a P-instance then (Y0 = ΦX0
e0
∧(either Y0 is a solution to X0

or (Y0 is a Q-instance and if X1 is a solution to Y0 then (Y1 = ΦX0⊕X1
e1

∧ (either Y1 is a solution to X0 or

(Y1 is a Q-instance and if X2 is a solution to Y1 then (Y2 = ΦX0⊕X1⊕X2
e2

∧ (either Y2 is a solution to X0 or . . .

...

. . . (Yn = ΦX0⊕···⊕Xn
en ∧ Yn is a solution to X0)) · · · ).

If Γ ` Q→ P, then there exists an n ∈ ω such that

Γ ` ∀X0 ∃e0,Y0 ∀X1 ∃e1,Y1 · · · ∀Xn ∃en,Yn

Θn(e0, . . . ,en,X0, . . . ,Xn,Y0, . . . ,Yn).



Extending generalized Weihrauch reducibility

Definition
We say that P is generalized Weihrauch reducible to Q over Γ
and write P ≤Γ

gW Q, if Player 2 has a computable (i.e., ∆0
1),

winning strategy for GΓ(Q→ P).

We define computable reducibility over Γ and Weihrauch
reducibility over Γ in a similar way.

Theorem
If P ≤Γ

gW Q, then there is an n ∈ ω such that Player 2 has a
winning strategy for GΓ(Q→ P) that ensures victory in at most
n many moves.
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An example: limit-homogeneous sets

Recall that a coloring of [X ]2 is stable if limy ∈ X c(x , y) exists for
all x ∈ X . L ⊆ X is limit-homogeneous for c : [X ]2 → k if there
exists an i such that limy ∈ L c(x , y) = i for all x ∈ L.

We have the principles:
SRT2

k : every stable k -coloring of [N]2 has an infinite
homogeneous set.
D2

k : every stable k -coloring of [N]2 has an infinite
limit-homogeneous set.

Theorem (Cholak, Jockusch, and Slaman)
SRT2

2 ≡c D2
2.

Theorem (Chong, Lempp, and Yang)
SRT2

2 and D2
2 are equivalent over RCA0.
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An example: limit-homogeneous sets cont.

Theorem (Dzhafarov)
SRT2

2 6≤W D2
2.

Theorem (Hirschfeldt and Jockusch)
SRT2

2 ≤2
gW D2

2.
We now introduce the principle

LH: For every 2-coloring of [N]2, every infinite
limit-homogeneous set has an infinite homogeneous subset.

Note that an instance of LH includes the color i to which the set
is limit-homogeneous.
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An example: limit-homogeneous sets cont.
In reverse math, we often consider the Σ0

2-bounding principle
BΣ0

2.

Over RCA0, BΣ0
2 is equivalent to the principle Bound∗ defined

as follows.

Definition
Bound∗ is the principle that for a simultaneous enumeration of
bounded sets F0, . . . ,Fn, there exists a common bound for the
sets Fi .

Proposition
RCA0 + LH ≡ Bound∗.

LH is trivial with respect to Weihrauch reducibility, meaning that
LH Weihrauch-reduces to the identity problem. This remains
the case over RCA0 + BΣ0

2. However, we have

Theorem
LH 6≤RCA0

gW Bound∗.
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The following questions remain open:
Is SRT2
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