Reduction games, provability, and compactness Sarah Reitzes

Joint work with Damir D. Dzhafarov and Denis R. Hirschfeldt

CTA Seminar, June 23, 2020

In reverse mathematics, we often look at Π_2^1 -problems.

In reverse mathematics, we often look at Π_2^1 -problems.

Definition

A Π_2^1 -problem is a sentence

$$\forall X[\Theta(X) \rightarrow \exists Y \Psi(X, Y)]$$

of second-order arithmetic such that Θ and Ψ are arithmetic.

In reverse mathematics, we often look at Π_2^1 -problems.

Definition

A Π_2^1 -problem is a sentence

$$\forall X[\Theta(X) \rightarrow \exists Y \Psi(X, Y)]$$

of second-order arithmetic such that Θ and Ψ are arithmetic.

In reverse mathematics, we often look at Π_2^1 -problems.

Definition

A Π_2^1 -problem is a sentence

$$\forall X[\Theta(X) \rightarrow \exists Y \Psi(X, Y)]$$

of second-order arithmetic such that Θ and Ψ are arithmetic.

Definition

We say that an $X \subseteq \omega$ such that $\Theta(X)$ holds is an instance of this problem, and a solution is a $Y \subseteq \omega$ such that $\Psi(X, Y)$ holds.

In reverse mathematics, we often look at Π_2^1 -problems.

Definition

A Π_2^1 -problem is a sentence

$$\forall X[\Theta(X) \rightarrow \exists Y \Psi(X, Y)]$$

of second-order arithmetic such that Θ and Ψ are arithmetic.

Definition

We say that an $X \subseteq \omega$ such that $\Theta(X)$ holds is an instance of this problem, and a solution is a $Y \subseteq \omega$ such that $\Psi(X, Y)$ holds.

In reverse mathematics, we often look at Π_2^1 -problems.

Definition

A Π_2^1 -problem is a sentence

$$\forall X[\Theta(X) \rightarrow \exists Y \Psi(X, Y)]$$

of second-order arithmetic such that Θ and Ψ are arithmetic.

Definition

We say that an $X \subseteq \omega$ such that $\Theta(X)$ holds is an instance of this problem, and a solution is a $Y \subseteq \omega$ such that $\Psi(X, Y)$ holds. We denote such problems by P and Q.

Second-order arithmetic is a two-sorted first-order language.

Second-order arithmetic is a two-sorted first-order language.

The usual base theory RCA₀ corresponds roughly to computable mathematics.

Second-order arithmetic is a two-sorted first-order language.

The usual base theory RCA₀ corresponds roughly to computable mathematics.

ACA₀ corresponds to the Turing jump existence problem

$$\forall X\exists Y[Y=X'].$$

Second-order arithmetic is a two-sorted first-order language.

The usual base theory RCA₀ corresponds roughly to computable mathematics.

ACA₀ corresponds to the Turing jump existence problem

$$\forall X\exists Y[Y=X'].$$

Theorem (Folklore/Wang)

lf

$$\mathsf{ACA}_0 \vdash \forall X[\Theta(X) \to \exists Y \Delta(X, Y)]$$

where Θ and Δ are arithmetic, then there is an $n \in \omega$ such that

$$\mathsf{ACA}_0 \vdash \forall X[\Theta(X) \to \exists Y \in \Sigma_n^{0,X} \Delta(X,Y)].$$

A model $\mathcal M$ of second-order arithmetic consists of a first-order part $\mathcal N$ and a second-order part $\mathcal S\subseteq 2^{|\mathcal N|}$.

A model $\mathcal M$ of second-order arithmetic consists of a first-order part $\mathcal N$ and a second-order part $\mathcal S\subseteq 2^{|\mathcal N|}$.

If $\mathcal N$ is standard, we say that $\mathcal M$ is an $\omega\text{-model}$ and identify it with $\mathcal S$.

A model $\mathcal M$ of second-order arithmetic consists of a first-order part $\mathcal N$ and a second-order part $\mathcal S\subseteq 2^{|\mathcal N|}$.

If $\mathcal N$ is standard, we say that $\mathcal M$ is an ω -model and identify it with $\mathcal S$.

An ω -model satisfies RCA₀ iff it is a Turing ideal, that is, iff it is closed under Turing reducibility and finite joins.

A model $\mathcal M$ of second-order arithmetic consists of a first-order part $\mathcal N$ and a second-order part $\mathcal S\subseteq 2^{|\mathcal N|}$.

If $\mathcal N$ is standard, we say that $\mathcal M$ is an $\omega\text{-model}$ and identify it with $\mathcal S$.

An ω -model satisfies RCA₀ iff it is a Turing ideal, that is, iff it is closed under Turing reducibility and finite joins.

An ω -model satisfies ACA $_0$ iff it is a jump ideal, that is, iff it is closed under the Turing jump.

Definition

We say that P is ω -reducible to Q and write P \leq_{ω} Q if every ω -model of RCA₀+Q is a model of P.

Definition

We say that P is ω -reducible to Q and write P \leq_{ω} Q if every ω -model of RCA₀+Q is a model of P.

Definition

We say that P is ω -reducible to Q and write P \leq_{ω} Q if every ω -model of RCA₀+Q is a model of P.

If RCA₀+ Q \vdash P, then P \leq_{ω} , Q, but not necessarily vice versa.

Definition

We say that P is ω -reducible to Q and write P \leq_{ω} Q if every ω -model of RCA₀+Q is a model of P.

If $RCA_0 + Q \vdash P$, then $P \leq_{\omega}$, Q, but not necessarily vice versa.

Definition

We say that P is computably reducible to Q and write $P \leq_c Q$ if for every P-instance X, there is an X -computable instance \hat{X} of Q such that, whenever \hat{Y} is a solution to \hat{X} , X has an $X \oplus \hat{Y}$ -computable solution.

Definition

We say that P is ω -reducible to Q and write P \leq_{ω} Q if every ω -model of RCA₀+Q is a model of P.

If $RCA_0 + Q \vdash P$, then $P \leq_{\omega}$, Q, but not necessarily vice versa.

Definition

We say that P is computably reducible to Q and write $P \leq_c Q$ if for every P-instance X, there is an X -computable instance \hat{X} of Q such that, whenever \hat{Y} is a solution to \hat{X} , X has an $X \oplus \hat{Y}$ -computable solution.

Definition

We say that P is Weihrauch reducible to Q, $P \le_W Q$, if there are Turing functionals Φ and Ψ such that, for every instance X of P, the set Φ^X is an instance of Q, and for every solution \hat{Y} to $\hat{X} = \Phi^X$, the set $Y = \Psi^{X \oplus \hat{Y}}$ is a solution to X.

We write $[X]^n$ for the collection of n-element subsets of X. A k-coloring of $[X]^n$ is a map $c:[X]^n \to k$. A coloring of $[X]^2$ is stable if $\lim_{y \in X} c(x,y)$ exists for all $x \in X$. $H \subseteq X$ is homogeneous for c if there exists an i such that c(s) = i for all $s \in [H]^n$. $L \subseteq X$ is limit-homogeneous for $c:[X]^2 \to k$ if there exists an i such that $\lim_{x \in L} c(x,y) = i$ for all $x \in L$.

We write $[X]^n$ for the collection of n-element subsets of X. A k-coloring of $[X]^n$ is a map $c:[X]^n \to k$. A coloring of $[X]^2$ is stable if $\lim_{y \in X} c(x,y)$ exists for all $x \in X$. $H \subseteq X$ is homogeneous for c if there exists an i such that c(s) = i for all $s \in [H]^n$. $L \subseteq X$ is limit-homogeneous for $c:[X]^2 \to k$ if there exists an i such that $\lim_{y \in L} c(x,y) = i$ for all $x \in L$.

▶ RT_k^n : every k-coloring of $[\mathbb{N}]^n$ has an infinite homogenoeus set.

We write $[X]^n$ for the collection of n-element subsets of X. A k-coloring of $[X]^n$ is a map $c:[X]^n \to k$. A coloring of $[X]^2$ is stable if $\lim_{y \in X} c(x,y)$ exists for all $x \in X$. $H \subseteq X$ is homogeneous for c if there exists an i such that c(s) = i for all $s \in [H]^n$. $L \subseteq X$ is limit-homogeneous for $c:[X]^2 \to k$ if there exists an i such that $\lim_{y \in L} c(x,y) = i$ for all $x \in L$.

- ▶ RT_k^n : every k-coloring of $[\mathbb{N}]^n$ has an infinite homogenoeus set.
- ▶ $RT_{<\infty}^n$: $\forall kRT_k^n$.

We write $[X]^n$ for the collection of n-element subsets of X. A k-coloring of $[X]^n$ is a map $c:[X]^n \to k$. A coloring of $[X]^2$ is stable if $\lim_{y \in X} c(x,y)$ exists for all $x \in X$. $H \subseteq X$ is homogeneous for c if there exists an i such that c(s) = i for all $s \in [H]^n$. $L \subseteq X$ is limit-homogeneous for $c:[X]^2 \to k$ if there exists an i such that $\lim_{y \in L} c(x,y) = i$ for all $x \in L$.

- ▶ RT_k^n : every k-coloring of $[\mathbb{N}]^n$ has an infinite homogenoeus set.
- $ightharpoonup \mathsf{RT}^n_{<\infty}: \forall k\mathsf{RT}^n_k.$
- SRT_k²: every stable k-coloring of $[\mathbb{N}]^2$ has an infinite homogeneous set.

We write $[X]^n$ for the collection of n-element subsets of X. A k-coloring of $[X]^n$ is a map $c:[X]^n \to k$. A coloring of $[X]^2$ is stable if $\lim_{y \in X} c(x,y)$ exists for all $x \in X$. $H \subseteq X$ is homogeneous for c if there exists an i such that c(s) = i for all $s \in [H]^n$. $L \subseteq X$ is limit-homogeneous for $c:[X]^2 \to k$ if there exists an i such that $\lim_{y \in L} c(x,y) = i$ for all $x \in L$.

- ▶ RT_k^n : every k-coloring of $[\mathbb{N}]^n$ has an infinite homogenoeus set.
- $ightharpoonup \mathsf{RT}^n_{<\infty} : \forall k \mathsf{RT}^n_k.$
- ▶ SRT_k^2 : every stable k-coloring of $[\mathbb{N}]^2$ has an infinite homogeneous set.
- ▶ D_k^2 : every stable k-coloring of $[\mathbb{N}]^2$ has an infinite limit-homogeneous set.

Theorem (Jockusch)

Let $n \geq 2$. Then Every computable instance of $\operatorname{RT}^n_{<\infty}$ has a Π^0_n solution. There is a computable instance of RT^n_2 with no Σ^0_2 solution. There is a computable instance of RT^n_2 such that every solution computes $\emptyset^{(n-2)}$.

Theorem (Jockusch)

Let $n \geq 2$. Then

Every computable instance of $\operatorname{RT}^n_{<\infty}$ has a Π^0_n solution. There is a computable instance of RT^n_2 with no Σ^0_2 solution. There is a computable instance of RT^n_2 such that every solution computes $\emptyset^{(n-2)}$.

Corollary (Simpson)

 RT^n_k and $\mathsf{RT}^n_{<\infty}$ are equivalent to ACA_0 for $n \geq 3$.

Theorem (Jockusch)

Let $n \geq 2$. Then

Every computable instance of $\operatorname{RT}^n_{<\infty}$ has a Π^0_n solution. There is a computable instance of RT^n_2 with no Σ^0_2 solution. There is a computable instance of RT^n_2 such that every solution computes $\emptyset^{(n-2)}$.

Corollary (Simpson)

 RT^n_k and $\mathsf{RT}^n_{<\infty}$ are equivalent to ACA_0 for $n\geq 3$.

Theorem (Seetapun)

 $ACA_0 \not\leq_{\omega} RT^2_{<\infty}$.

Theorem (Jockusch)

Let $n \geq 2$. Then

Every computable instance of $\operatorname{RT}^n_{<\infty}$ has a Π^0_n solution. There is a computable instance of RT^n_2 with no Σ^0_2 solution. There is a computable instance of RT^n_2 such that every solution computes $\emptyset^{(n-2)}$.

Corollary (Simpson)

 RT^n_k and $\mathsf{RT}^n_{<\infty}$ are equivalent to ACA_0 for $n\geq 3$.

Theorem (Seetapun)

 $ACA_0 \not\leq_{\omega} RT^2_{<\infty}$.

Theorem (Jockusch)

Let $n \ge 2$. Then

Every computable instance of $\operatorname{RT}^n_{<\infty}$ has a Π^0_n solution. There is a computable instance of RT^n_2 with no Σ^0_2 solution. There is a computable instance of RT^n_2 such that every solution computes $\emptyset^{(n-2)}$.

Corollary (Simpson)

 RT^n_k and $\mathsf{RT}^n_{<\infty}$ are equivalent to ACA_0 for $n \geq 3$.

Theorem (Seetapun)

 $ACA_0 \not\leq_{\omega} RT^2_{<\infty}$.

 $RT_{<\infty}^2 \leq_{\omega} RT_2^2$. However,

Theorem (Jockusch)

Let n > 2. Then

Every computable instance of $RT_{<\infty}^n$ has a Π_n^0 solution.

There is a computable instance of RT_2^n with no Σ_2^0 solution.

There is a computable instance of RT_2^n such that every solution computes $\emptyset^{(n-2)}$.

Corollary (Simpson)

 RT^n_k and $\mathsf{RT}^n_{<\infty}$ are equivalent to ACA_0 for $n \geq 3$.

Theorem (Seetapun)

 $ACA_0 \not\leq_{\omega} RT^2_{<\infty}$.

 $\mathsf{RT}^2_{<\infty} \leq_{\omega} \mathsf{RT}^2_2$. However,

Theorem (Cholak, Jockusch, and Slaman)

 $\mathsf{RCA}_0 + \mathsf{RT}_2^2 \not\vdash \mathsf{RT}_{<\infty}^2$.

We also have that $RCA_0 \vdash RT_k^1$ for each k. Therefore $RT_{<\infty}^1$ is true in every ω -model of RCA_0 . However,

We also have that $RCA_0 \vdash RT_k^1$ for each k. Therefore $RT_{<\infty}^1$ is true in every ω -model of RCA_0 . However,

Theorem (Hirst) $RCA_0 \not\vdash RT^1_{<\infty}$.

We also have that $RCA_0 \vdash RT_k^1$ for each k. Therefore $RT_{<\infty}^1$ is true in every ω -model of RCA_0 . However,

Theorem (Hirst) $RCA_0 \not\vdash RT^1_{<\infty}$.

We also have that $RCA_0 \vdash RT_k^1$ for each k. Therefore $RT_{<\infty}^1$ is true in every ω -model of RCA_0 . However,

Theorem (Hirst)

 $RCA_0 \not\vdash RT^1_{<\infty}$.

Recall that if

$$\mathsf{ACA}_0 \vdash \forall X[\Theta(X) \to \exists Y \Delta(X,Y)]$$

where Θ and Δ are arithmetic, then there is an $n \in \omega$ such that

$$\mathsf{ACA}_0 \vdash \forall X[\Theta(X) \to \exists Y \in \Sigma^{0,X}_n \Delta(X,Y)].$$

Therefore:

We also have that $RCA_0 \vdash RT_k^1$ for each k. Therefore $RT_{<\infty}^1$ is true in every ω -model of RCA_0 . However,

Theorem (Hirst)

 $RCA_0 \not\vdash RT^1_{<\infty}$.

Recall that if

$$\mathsf{ACA}_0 \vdash \forall X[\Theta(X) \to \exists Y \Delta(X, Y)]$$

where Θ and Δ are arithmetic, then there is an $n \in \omega$ such that

$$\mathsf{ACA}_0 \vdash \forall X[\Theta(X) \to \exists Y \in \Sigma^{0,X}_n \Delta(X,Y)].$$

Therefore:

Corollary

 $\mathsf{RT} \leq_{\omega} \mathsf{ACA}_0$ but $\mathsf{ACA}_0 \not\vdash \mathsf{RT}$.

We also have that $RCA_0 \vdash RT_k^1$ for each k. Therefore $RT_{<\infty}^1$ is true in every ω -model of RCA_0 . However,

Theorem (Hirst)

 $RCA_0 \not\vdash RT^1_{<\infty}$.

Recall that if

$$\mathsf{ACA}_0 \vdash \forall X[\Theta(X) \to \exists Y \Delta(X,Y)]$$

where Θ and Δ are arithmetic, then there is an $n \in \omega$ such that

$$\mathsf{ACA}_0 \vdash \forall X[\Theta(X) \to \exists Y \in \Sigma_n^{0,X} \Delta(X,Y)].$$

Therefore:

Corollary

 $\mathsf{RT} \leq_{\omega} \mathsf{ACA}_0$ but $\mathsf{ACA}_0 \not\vdash \mathsf{RT}$.

We also have that $RCA_0 \vdash RT_k^1$ for each k. Therefore $RT_{<\infty}^1$ is true in every ω -model of RCA_0 . However,

Theorem (Hirst)

 $RCA_0 \not\vdash RT^1_{<\infty}$.

Recall that if

$$\mathsf{ACA}_0 \vdash \forall X[\Theta(X) \to \exists Y \Delta(X,Y)]$$

where Θ and Δ are arithmetic, then there is an $n \in \omega$ such that

$$\mathsf{ACA}_0 \vdash \forall X[\Theta(X) \to \exists Y \in \Sigma_n^{0,X} \Delta(X,Y)].$$

Therefore:

Corollary

 $\mathsf{RT} \leq_{\omega} \mathsf{ACA}_0$ but $\mathsf{ACA}_0 \not\vdash \mathsf{RT}$.

Equivalently, RT \leq_{ω} RT₂ but RCA₀ + RT₂ \neq RT.

Theorem (Jockusch)

Let $n \geq 2$. Then Every computable instance of $\mathsf{RT}^n_{<\infty}$ has a Π^0_n solution. There is a computable instance of RT^n_2 with no Σ^0_2 solution. There is a computable instance of RT^n_2 such that every solution computes $\emptyset^{(n-2)}$.

Theorem (Jockusch)

Let $n \geq 2$. Then Every computable instance of $\operatorname{RT}^n_{<\infty}$ has a Π^0_n solution. There is a computable instance of RT^n_2 with no Σ^0_2 solution. There is a computable instance of RT^n_2 such that every solution computes $\emptyset^{(n-2)}$.

Corollary

 $\mathsf{RT}^n_k <_c \mathsf{RT}^{n+1}_k$ and $\mathsf{RT}^n_k <_W \mathsf{RT}^{n+1}_k$ for all $n \ge 1$.

Theorem (Jockusch)

Let n > 2. Then

Every computable instance of $\operatorname{RT}^n_{<\infty}$ has a Π^0_n solution. There is a computable instance of RT^n_2 with no Σ^0_2 solution. There is a computable instance of RT^n_2 such that every solution computes $\emptyset^{(n-2)}$.

Corollary

 $\mathsf{RT}^n_k <_{\mathsf{C}} \mathsf{RT}^{n+1}_k$ and $\mathsf{RT}^n_k <_{W} \mathsf{RT}^{n+1}_k$ for all $n \geq 1$.

Theorem (Hirschfeldt and Jockusch / Brattka and Rakotoniaina / Patey)

 $\mathsf{RT}^n_k <_W \mathsf{RT}^n_{k+1}$ for all $n \ge 1$ and $k \ge 2$.

Theorem (Jockusch)

Let n > 2. Then

Every computable instance of $\operatorname{RT}^n_{<\infty}$ has a Π^0_n solution. There is a computable instance of RT^n_2 with no Σ^0_2 solution. There is a computable instance of RT^n_2 such that every solution computes $\emptyset^{(n-2)}$.

Corollary

 $\mathsf{RT}^n_k <_{\mathsf{c}} \mathsf{RT}^{n+1}_k$ and $\mathsf{RT}^n_k <_{\mathsf{W}} \mathsf{RT}^{n+1}_k$ for all $n \geq 1$.

Theorem (Hirschfeldt and Jockusch / Brattka and Rakotoniaina / Patey)

 $\mathsf{RT}^n_k <_W \mathsf{RT}^n_{k+1}$ for all $n \geq 1$ and $k \geq 2$.

Theorem (Patey)

 $RT_k^n <_c RT_{k+1}^n$ for all $n, k \ge 2$.

These three reducibilities allow us to use one instance of Q to solve an instance of P. What if we would like to use multiple Q-instances?

These three reducibilities allow us to use one instance of Q to solve an instance of P. What if we would like to use multiple Q-instances?

These three reducibilities allow us to use one instance of Q to solve an instance of P. What if we would like to use multiple Q-instances?

Hirschfeldt and Jockusch introduced the idea of a reduction game to allow for this possibility. We consider two-player reduction games for principles P and Q. The general structure of the games is as follows:

▶ Player 1 plays a P-instance X_0 .

These three reducibilities allow us to use one instance of Q to solve an instance of P. What if we would like to use multiple Q-instances?

- ▶ Player 1 plays a P-instance X_0 .
- Player 2 tries to obtain a solution to X₀ by asking Player 1 to solve various Q-instances.

These three reducibilities allow us to use one instance of Q to solve an instance of P. What if we would like to use multiple Q-instances?

- ▶ Player 1 plays a P-instance X_0 .
- Player 2 tries to obtain a solution to X₀ by asking Player 1 to solve various Q-instances.
- ▶ If Player 2 ever plays a solution to X_0 , they win and the game ends.

These three reducibilities allow us to use one instance of Q to solve an instance of P. What if we would like to use multiple Q-instances?

- ▶ Player 1 plays a P-instance X_0 .
- Player 2 tries to obtain a solution to X₀ by asking Player 1 to solve various Q-instances.
- If Player 2 ever plays a solution to X_0 , they win and the game ends.
- ▶ If the game never ends, then Player 1 wins.

These three reducibilities allow us to use one instance of Q to solve an instance of P. What if we would like to use multiple Q-instances?

- ▶ Player 1 plays a P-instance X_0 .
- Player 2 tries to obtain a solution to X₀ by asking Player 1 to solve various Q-instances.
- If Player 2 ever plays a solution to X_0 , they win and the game ends.
- ▶ If the game never ends, then Player 1 wins.
- If a player is unable to make a move, their opponent wins.

The reduction game $G(Q \rightarrow P)$ is defined as follows:

 \triangleright On the first move, Player 1 plays an instance X_0 of P

- ightharpoonup On the first move, Player 1 plays an instance X_0 of P
- Player 2 then either plays an X_0 -computable solution to X_0 and wins, or plays an X_0 -computable instance Y_1 of Q

- ightharpoonup On the first move, Player 1 plays an instance X_0 of P
- ▶ Player 2 then either plays an X_0 -computable solution to X_0 and wins, or plays an X_0 -computable instance Y_1 of Q
- For n > 1, on the n^{th} move, Player 1 plays a solution X_{n-1} to the instance Y_{n-1} of Q

- On the first move, Player 1 plays an instance X₀ of P
- ▶ Player 2 then either plays an X_0 -computable solution to X_0 and wins, or plays an X_0 -computable instance Y_1 of Q
- For n > 1, on the n^{th} move, Player 1 plays a solution X_{n-1} to the instance Y_{n-1} of Q
- ▶ Player 2 then either plays an $(X_0 \oplus ... \oplus X_{n-1})$ -computable solution to X_0 and wins, or plays an $(X_0 \oplus ... \oplus X_{n-1})$ -computable instance Y_n of Q

Theorem (Hirschfeldt and Jockusch)

If $P \leq_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \to P)$. Otherwise, Player 1 has a winning strategy for $G(Q \to P)$.

Theorem (Hirschfeldt and Jockusch)

If $P \leq_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \to P)$. Otherwise, Player 1 has a winning strategy for $G(Q \to P)$.

Definition

We say that P is generalized Weihrauch reducible to Q and write $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \to P)$.

Theorem (Hirschfeldt and Jockusch)

If $P \leq_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \to P)$. Otherwise, Player 1 has a winning strategy for $G(Q \to P)$.

Definition

We say that P is generalized Weihrauch reducible to Q and write $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \to P)$.

Theorem (Hirschfeldt and Jockusch)

If $P \leq_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \to P)$. Otherwise, Player 1 has a winning strategy for $G(Q \to P)$.

Definition

We say that P is generalized Weihrauch reducible to Q and write $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \to P)$.

We have that $RT_{<\infty}^n \leq_{gW} RT_2^n$ and $RT \leq_{gW} RT_2^3$.

Theorem (Hirschfeldt and Jockusch)

If $P \leq_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \to P)$. Otherwise, Player 1 has a winning strategy for $G(Q \to P)$.

Definition

We say that P is generalized Weihrauch reducible to Q and write $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \to P)$.

We have that $RT_{<\infty}^n \leq_{gW} RT_2^n$ and $RT \leq_{gW} RT_2^3$.

If Player 2 has a winning strategy for $G(Q \to P)$ in at most n+1 many moves, then we write $P \leq_{\omega}^{n} Q$, and likewise for gW.

Theorem (Hirschfeldt and Jockusch)

Let $n \geq 3$, $j \geq 1$, and m be such that $n+(j-1)(n-2) < m \leq n+j(n-2)$. Then $\mathsf{RT}_k^m \leq_{\mathsf{gW}}^{j+1} \mathsf{RT}_k^n$, but $\mathsf{RT}_k^m \not\leq_{\omega}^{j} \mathsf{RT}_k^n$. Therefore $\mathsf{RT} \not\leq_{\omega}^{j} \mathsf{RT}_2^3$ for all j, although $\mathsf{RT} \leq_{\omega} \mathsf{RT}_2^3$.

Theorem (Hirschfeldt and Jockusch)

Let $n \geq 3$, $j \geq 1$, and m be such that $n+(j-1)(n-2) < m \leq n+j(n-2)$. Then $\mathsf{RT}_k^m \leq_{\mathsf{gW}}^{j+1} \mathsf{RT}_k^n$, but $\mathsf{RT}_k^m \not\leq_{\omega}^{j} \mathsf{RT}_k^n$. Therefore $\mathsf{RT} \not\leq_{\omega}^{j} \mathsf{RT}_2^3$ for all j, although $\mathsf{RT} \leq_{\omega} \mathsf{RT}_2^3$.

Theorem (Hirschfeldt and Jockusch)

Let $j \geq 2$ and $j^m < k \leq j^{m+1}$. Then $\mathsf{RT}^1_k \leq_{\mathsf{gW}}^{m+1} \mathsf{RT}^1_j$, but $\mathsf{RT}^1_k \not\leq_{\mathsf{gW}}^m \mathsf{RT}^1_j$. Thus $\mathsf{RT}^1_{<\infty} \not\leq_{\mathsf{gW}}^m \mathsf{RT}^1_j$ for all m, although $\mathsf{RT}^1_{<\infty} \leq_{\mathsf{gW}} \mathsf{RT}^1_j$.

Theorem (Hirschfeldt and Jockusch)

Let $n \geq 3$, $j \geq 1$, and m be such that $n+(j-1)(n-2) < m \leq n+j(n-2)$. Then $\mathsf{RT}_k^m \leq_{\mathsf{gW}}^{j+1} \mathsf{RT}_k^n$, but $\mathsf{RT}_k^m \not\leq_{\omega}^{j} \mathsf{RT}_k^n$. Therefore $\mathsf{RT} \not\leq_{\omega}^{j} \mathsf{RT}_2^3$ for all j, although $\mathsf{RT} \leq_{\omega} \mathsf{RT}_2^3$.

Theorem (Hirschfeldt and Jockusch)

Let $j \geq 2$ and $j^m < k \leq j^{m+1}$. Then $\mathsf{RT}^1_k \leq_{\mathsf{gW}}^{m+1} \mathsf{RT}^1_j$, but $\mathsf{RT}^1_k \not\leq_{\mathsf{gW}}^m \mathsf{RT}^1_j$. Thus $\mathsf{RT}^1_{<\infty} \not\leq_{\mathsf{gW}}^m \mathsf{RT}^1_j$ for all m, although $\mathsf{RT}^1_{<\infty} \leq_{\mathsf{gW}} \mathsf{RT}^1_j$.

Theorem (Hirschfeldt and Jockusch)

Let $n \geq 3$, $j \geq 1$, and m be such that $n+(j-1)(n-2) < m \leq n+j(n-2)$. Then $\operatorname{RT}_k^m \leq_{\operatorname{gW}}^{j+1} \operatorname{RT}_k^n$, but $\operatorname{RT}_k^m \not\leq_{\omega}^j \operatorname{RT}_k^n$. Therefore $\operatorname{RT} \not\leq_{\omega}^j \operatorname{RT}_2^3$ for all j, although $\operatorname{RT} \leq_{\omega} \operatorname{RT}_2^3$.

Theorem (Hirschfeldt and Jockusch)

Let $j \geq 2$ and $j^m < k \leq j^{m+1}$. Then $\mathsf{RT}^1_k \leq_{\mathsf{gW}}^{m+1} \mathsf{RT}^1_j$, but $\mathsf{RT}^1_k \not\leq_{\mathsf{gW}}^m \mathsf{RT}^1_j$. Thus $\mathsf{RT}^1_{<\infty} \not\leq_{\mathsf{gW}}^m \mathsf{RT}^1_j$ for all m, although $\mathsf{RT}^1_{<\infty} \leq_{\mathsf{gW}} \mathsf{RT}^1_j$.

Patey showed that for $n \ge 3$, the $\mathsf{RT}_k^n \le_\omega^2 \mathsf{RT}_j^n$ for j < k, but $\mathsf{RT}_k^n \not\le_\omega^1 \mathsf{RT}_j^n$. For n = 2, the least m such that $\mathsf{RT}_k^n \le_\omega^m \mathsf{RT}_j^n$ approaches ∞ as k increases.

Extending Π_2^1 -problems

In our definition of Π_2^1 -problems, we required that instances and solutions be subsets of ω . We can extend this notion more generally as follows: Let \mathcal{M} be an \mathcal{L}_1 -structure with domain |M|. For $S\subseteq |M|$, we write (\mathcal{M},S) for the \mathcal{L}_2 -structure with first-order part \mathcal{M} and second-order part S. For an \mathcal{L}_1 -structure \mathcal{M} , an \mathcal{M} -instance of P is an $X\subseteq |M|$ such that $(\mathcal{M},\{X\})\models \Theta(X)$, and a solution to X is a $Y\subseteq |M|$ such that $(\mathcal{M},\{X,Y\})\models \Psi(X,Y)$.

Extending Π_2^1 -problems

In our definition of Π_2^1 -problems, we required that instances and solutions be subsets of ω . We can extend this notion more generally as follows: Let \mathcal{M} be an \mathcal{L}_1 -structure with domain $|\mathcal{M}|$. For $S\subseteq |\mathcal{M}|$, we write (\mathcal{M},S) for the \mathcal{L}_2 -structure with first-order part \mathcal{M} and second-order part S. For an \mathcal{L}_1 -structure \mathcal{M} , an \mathcal{M} -instance of P is an $X\subseteq |\mathcal{M}|$ such that $(\mathcal{M},\{X\})\models \Theta(X)$, and a solution to X is a $Y\subseteq |\mathcal{M}|$ such that $(\mathcal{M},\{X,Y\})\models \Psi(X,Y)$.

Let \mathcal{N} be a \mathcal{L}_1 -structure. For $X_0,\ldots,X_n\in |\mathcal{N}|$, let $\mathcal{N}[X_0,\ldots,X_n]=(\mathcal{N},\mathcal{S})$, where \mathcal{S} consists of all subsets of $|\mathcal{N}|$ that are Δ^0_1 -definable from parameters in $|\mathcal{N}|\cup\{X_0,\ldots,X_n\}$.

Let Γ be a set of \mathcal{L}_2 -formulas and P and Q be Π_2^1 -problems. The Γ -reduction game $G^{\Gamma}(Q \to P)$ is defined as follows:

▶ On the first move, Player 1 plays a countable \mathcal{L}_1 -structure \mathcal{M} and, and an \mathcal{M} -instance X_0 of P such that $\mathcal{M}[X_0]$ is consistent with Γ.

- ▶ On the first move, Player 1 plays a countable \mathcal{L}_1 -structure \mathcal{M} and, and an \mathcal{M} -instance X_0 of P such that $\mathcal{M}[X_0]$ is consistent with Γ.
- ▶ Player 2 then either plays a solution to X_0 in $\mathcal{M}[X_0]$ and wins, or plays an \mathcal{M} -instance Y_1 of Q in $\mathcal{M}[X_0]$

- ▶ On the first move, Player 1 plays a countable \mathcal{L}_1 -structure \mathcal{M} and, and an \mathcal{M} -instance X_0 of P such that $\mathcal{M}[X_0]$ is consistent with Γ.
- ▶ Player 2 then either plays a solution to X_0 in $\mathcal{M}[X_0]$ and wins, or plays an \mathcal{M} -instance Y_1 of Q in $\mathcal{M}[X_0]$
- For n > 1, on the n^{th} move, Player 1 plays a solution X_{n-1} to the instance Y_{n-1} of Q such that $\mathcal{M}[X_0, \ldots, X_{n-1}]$ is consistent with Γ.

- ▶ On the first move, Player 1 plays a countable \mathcal{L}_1 -structure \mathcal{M} and, and an \mathcal{M} -instance X_0 of P such that $\mathcal{M}[X_0]$ is consistent with Γ.
- ▶ Player 2 then either plays a solution to X_0 in $\mathcal{M}[X_0]$ and wins, or plays an \mathcal{M} -instance Y_1 of Q in $\mathcal{M}[X_0]$
- For n > 1, on the n^{th} move, Player 1 plays a solution X_{n-1} to the instance Y_{n-1} of Q such that $\mathcal{M}[X_0, \dots, X_{n-1}]$ is consistent with Γ.
- ▶ Player 2 then either plays a solution to X_0 in $\mathcal{M}[X_0, \dots, X_{n-1}]$ and wins, or plays an \mathcal{M} -instance Y_n of Q in $\mathcal{M}[X_0, \dots, X_{n-1}]$.

Let Γ be a set of \mathcal{L}_2 -formulas and P and Q be Π_2^1 -problems. The modified Γ -reduction game $\hat{G}^{\Gamma}(Q \to P)$ is defined as follows:

▶ On the first move, Player 1 plays a model $(\mathcal{M}, S) \models \Gamma$ with \mathcal{M} countable, and an \mathcal{M} -instance X_0 of P in S.

The game $\hat{G}^{\Gamma}(Q \rightarrow P)$

Let Γ be a set of \mathcal{L}_2 -formulas and P and Q be Π_2^1 -problems. The modified Γ -reduction game $\hat{G}^{\Gamma}(Q \to P)$ is defined as follows:

- ▶ On the first move, Player 1 plays a model $(\mathcal{M}, S) \models \Gamma$ with \mathcal{M} countable, and an \mathcal{M} -instance X_0 of P in S.
- ▶ Player 2 then either plays a solution to X_0 in $\mathcal{M}[X_0]$ and wins, or plays an \mathcal{M} -instance Y_1 of Q in $\mathcal{M}[X_0]$

The game $\hat{G}^{\Gamma}(Q \rightarrow P)$

Let Γ be a set of \mathcal{L}_2 -formulas and P and Q be Π_2^1 -problems. The modified Γ -reduction game $\hat{G}^{\Gamma}(Q \to P)$ is defined as follows:

- ▶ On the first move, Player 1 plays a model $(\mathcal{M}, S) \models \Gamma$ with \mathcal{M} countable, and an \mathcal{M} -instance X_0 of P in S.
- ▶ Player 2 then either plays a solution to X_0 in $\mathcal{M}[X_0]$ and wins, or plays an \mathcal{M} -instance Y_1 of Q in $\mathcal{M}[X_0]$
- For n > 1, on the n^{th} move, Player 1 plays a solution X_{n-1} to the instance Y_{n-1} of Q in S.

The game $\hat{G}^{\Gamma}(Q \rightarrow P)$

Let Γ be a set of \mathcal{L}_2 -formulas and P and Q be Π_2^1 -problems. The modified Γ -reduction game $\hat{G}^{\Gamma}(Q \to P)$ is defined as follows:

- ▶ On the first move, Player 1 plays a model $(\mathcal{M}, S) \models \Gamma$ with \mathcal{M} countable, and an \mathcal{M} -instance X_0 of P in S.
- ▶ Player 2 then either plays a solution to X_0 in $\mathcal{M}[X_0]$ and wins, or plays an \mathcal{M} -instance Y_1 of Q in $\mathcal{M}[X_0]$
- For n > 1, on the n^{th} move, Player 1 plays a solution X_{n-1} to the instance Y_{n-1} of Q in S.
- ▶ Player 2 then either plays a solution to X_0 in $\mathcal{M}[X_0, \dots, X_{n-1}]$ and wins, or plays an \mathcal{M} -instance Y_n of Q in $\mathcal{M}[X_0, \dots, X_{n-1}]$.

Results from modified games

Proposition

Let Γ be a consistent extension of Δ_1^0 -comprehension by Π_1^1 -formulas. Let P and Q be Π_2^1 - problems. If $\Gamma \vdash Q \to P$, then Player 2 has a winning strategy for $G^{\Gamma}(Q \to P)$. Otherwise, Player 1 has a winning strategy for $\hat{G}^{\Gamma+Q}(Q \to P)$.

Results from modified games

Proposition

Let Γ be a consistent extension of Δ_1^0 -comprehension by Π_1^1 -formulas. Let P and Q be Π_2^1 - problems. If $\Gamma \vdash Q \to P$, then Player 2 has a winning strategy for $G^{\Gamma}(Q \to P)$. Otherwise, Player 1 has a winning strategy for $\hat{G}^{\Gamma+Q}(Q \to P)$.

Results from modified games

Proposition

Let Γ be a consistent extension of Δ_1^0 -comprehension by Π_1^1 -formulas. Let P and Q be Π_2^1 - problems. If $\Gamma \vdash Q \to P$, then Player 2 has a winning strategy for $G^{\Gamma}(Q \to P)$. Otherwise, Player 1 has a winning strategy for $\hat{G}^{\Gamma+Q}(Q \to P)$.

For our main result, we need the mild extra assumption that Γ proves the existence of a universal Σ_1^0 -formula.

The main result

Theorem

Let Γ satisfy the conditions. Let P and Q be Π_2^1 -problems. If $\Gamma \vdash Q \to P$, then there is an n such that Player 2 has a winning strategy for $\hat{\mathsf{G}}^\Gamma(Q \to P)$ that ensures victory in at most n many moves. Otherwise, Player 1 has a winning strategy for $\hat{\mathsf{G}}^{\Gamma+Q}(Q \to P)$.

The main result

Theorem

Let Γ satisfy the conditions. Let P and Q be Π_2^1 -problems. If $\Gamma \vdash Q \to P$, then there is an n such that Player 2 has a winning strategy for $\hat{\mathsf{G}}^\Gamma(Q \to P)$ that ensures victory in at most n many moves. Otherwise, Player 1 has a winning strategy for $\hat{\mathsf{G}}^{\Gamma+Q}(Q \to P)$.

Corollary

Let $\Gamma = \mathsf{RCA}_0 + \mathit{all} \ \Pi_1^1$ -formulas true over ω . If $P \not\leq_{\omega}^n Q$ for all n, then $\Gamma \not\vdash Q \to P$.

The main result

Theorem

Let Γ satisfy the conditions. Let P and Q be Π_2^1 -problems. If $\Gamma \vdash Q \to P$, then there is an n such that Player 2 has a winning strategy for $\hat{\mathsf{G}}^\Gamma(Q \to P)$ that ensures victory in at most n many moves. Otherwise, Player 1 has a winning strategy for $\hat{\mathsf{G}}^{\Gamma+Q}(Q \to P)$.

Corollary

Let $\Gamma = \mathsf{RCA}_0 + \mathit{all} \ \Pi_1^1$ -formulas true over ω . If $P \not\leq_{\omega}^n Q$ for all n, then $\Gamma \not\vdash Q \to P$.

Example

Let $Q = RT_2^2$ and $P = RT_{<\infty}^2$. Patey showed that $RT_{<\infty}^2 \not\leq_{\omega}^n RT_k^2$ for all n, k. Therefore $\Gamma \not\vdash RT_2^2 \to RT_{<\infty}^2$.

Essential lemma

For $n \in \omega$, let $\Theta_n(e_0, \dots, e_n, X_0, \dots, X_n, Y_0, \dots, Y_n)$ be a formula asserting that

if X_0 is a P-instance then ($Y_0 = \Phi_{e_0}^{X_0} \land$ (either Y_0 is a solution to X_0 or (Y_0 is a Q-instance and if X_1 is a solution to Y_0 then ($Y_1 = \Phi_{e_1}^{X_0 \oplus X_1} \land$ (either Y_1 is a solution to X_0 or

(Y_1 is a Q-instance and if X_2 is a solution to Y_1 then ($Y_2 = \Phi_{e_2}^{X_0 \oplus X_1 \oplus X_2}$ \land (either Y_2 is a solution to X_0 or \dots

$$\dots (Y_n = \Phi_{e_n}^{X_0 \oplus \dots \oplus X_n} \wedge Y_n \text{ is a solution to } X_0)) \dots).$$

If $\Gamma \vdash Q \rightarrow P$, then there exists an $n \in \omega$ such that

$$\Gamma \vdash \forall X_0 \exists e_0, Y_0 \forall X_1 \exists e_1, Y_1 \cdots \forall X_n \exists e_n, Y_n \\ \Theta_n(e_0, \dots, e_n, X_0, \dots, X_n, Y_0, \dots, Y_n).$$

Definition

We say that P is generalized Weihrauch reducible to Q over Γ and write $P \leq_{gW}^{\Gamma} Q$, if Player 2 has a computable (i.e., Δ_1^0), winning strategy for $G^{\Gamma}(Q \to P)$.

Definition

We say that P is generalized Weihrauch reducible to Q over Γ and write $P \leq_{gW}^{\Gamma} Q$, if Player 2 has a computable (i.e., Δ_1^0), winning strategy for $G^{\Gamma}(Q \to P)$.

Definition

We say that P is generalized Weihrauch reducible to Q over Γ and write $P \leq_{gW}^{\Gamma} Q$, if Player 2 has a computable (i.e., Δ_1^0), winning strategy for $G^{\Gamma}(Q \to P)$.

We define computable reducibility over Γ and Weihrauch reducibility over Γ in a similar way.

Definition

We say that P is generalized Weihrauch reducible to Q over Γ and write $P \leq_{gW}^{\Gamma} Q$, if Player 2 has a computable (i.e., Δ_1^0), winning strategy for $G^{\Gamma}(Q \to P)$.

We define computable reducibility over Γ and Weihrauch reducibility over Γ in a similar way.

Theorem

If $P \leq_{gW}^{\Gamma} Q$, then there is an $n \in \omega$ such that Player 2 has a winning strategy for $G^{\Gamma}(Q \to P)$ that ensures victory in at most n many moves.

Recall that a coloring of $[X]^2$ is stable if $\lim_{y \in X} c(x, y)$ exists for all $x \in X$. $L \subseteq X$ is limit-homogeneous for $c : [X]^2 \to k$ if there exists an i such that $\lim_{y \in L} c(x, y) = i$ for all $x \in L$.

Recall that a coloring of $[X]^2$ is stable if $\lim_{y \in X} c(x, y)$ exists for all $x \in X$. $L \subseteq X$ is limit-homogeneous for $c : [X]^2 \to k$ if there exists an i such that $\lim_{y \in L} c(x, y) = i$ for all $x \in L$.

We have the principles:

 SRT_k^2 : every stable k-coloring of $[\mathbb{N}]^2$ has an infinite homogeneous set.

 D_k^2 : every stable k-coloring of $[\mathbb{N}]^2$ has an infinite limit-homogeneous set.

Recall that a coloring of $[X]^2$ is stable if $\lim_{y \in X} c(x, y)$ exists for all $x \in X$. $L \subseteq X$ is limit-homogeneous for $c : [X]^2 \to k$ if there exists an i such that $\lim_{y \in L} c(x, y) = i$ for all $x \in L$.

We have the principles:

 SRT_k^2 : every stable k-coloring of $[\mathbb{N}]^2$ has an infinite homogeneous set.

 D_k^2 : every stable k-coloring of $[\mathbb{N}]^2$ has an infinite limit-homogeneous set.

Theorem (Cholak, Jockusch, and Slaman) $SRT_2^2 \equiv_c D_2^2$.

Recall that a coloring of $[X]^2$ is stable if $\lim_{y \in X} c(x, y)$ exists for all $x \in X$. $L \subseteq X$ is limit-homogeneous for $c : [X]^2 \to k$ if there exists an i such that $\lim_{y \in L} c(x, y) = i$ for all $x \in L$.

We have the principles:

 SRT_k^2 : every stable k-coloring of $[\mathbb{N}]^2$ has an infinite homogeneous set.

 D_k^2 : every stable k-coloring of $[\mathbb{N}]^2$ has an infinite limit-homogeneous set.

Theorem (Cholak, Jockusch, and Slaman) $SRT_2^2 \equiv_c D_2^2$.

Theorem (Chong, Lempp, and Yang) SRT₂ and D₂ are equivalent over RCA₀.

Theorem (Dzhafarov) $SRT_2^2 \not\leq_W D_2^2$.

Theorem (Dzhafarov) $SRT_2^2 \not\leq_W D_2^2.$ Theorem (Hirschfeldt and Jockusch) $SRT_2^2 \leq_{\mathsf{oW}}^2 D_2^2.$

Theorem (Dzhafarov) $SRT_2^2 \not\leq_W D_2^2.$ Theorem (Hirschfeldt and Jockusch) $SRT_2^2 \leq_{\mathsf{oW}}^2 D_2^2.$

Theorem (Dzhafarov)

 $SRT_2^2 \not \leq_W D_2^2.$

Theorem (Hirschfeldt and Jockusch)

 $SRT_2^2 \leq_{gW}^2 D_2^2.$

We now introduce the principle

LH: For every 2-coloring of $[\mathbb{N}]^2$, every infinite limit-homogeneous set has an infinite homogeneous subset.

Theorem (Dzhafarov)

 $SRT_2^2 \not \leq_W D_2^2.$

Theorem (Hirschfeldt and Jockusch)

 $SRT_2^2 \leq_{gW}^2 D_2^2.$

We now introduce the principle

LH: For every 2-coloring of $[\mathbb{N}]^2$, every infinite limit-homogeneous set has an infinite homogeneous subset.

Note that an instance of LH includes the color i to which the set is limit-homogeneous.

In reverse math, we often consider the Σ_2^0 -bounding principle $\mathsf{B}\Sigma_2^0$.

In reverse math, we often consider the Σ_2^0 -bounding principle $\mathsf{B}\Sigma_2^0$.

Over RCA₀, B Σ_2^0 is equivalent to the principle Bound* defined as follows.

In reverse math, we often consider the Σ_2^0 -bounding principle $B\Sigma_2^0$.

Over RCA₀, B Σ_2^0 is equivalent to the principle Bound* defined as follows.

Definition

Bound* is the principle that for a simultaneous enumeration of bounded sets F_0, \ldots, F_n , there exists a common bound for the sets F_i .

In reverse math, we often consider the Σ_2^0 -bounding principle $\mathsf{B}\Sigma_2^0$.

Over RCA₀, B Σ_2^0 is equivalent to the principle Bound* defined as follows.

Definition

Bound* is the principle that for a simultaneous enumeration of bounded sets F_0, \ldots, F_n , there exists a common bound for the sets F_i .

Proposition

 $RCA_0 + LH \equiv Bound^*$.

In reverse math, we often consider the Σ_2^0 -bounding principle $\mathsf{B}\Sigma_2^0$.

Over RCA₀, B Σ_2^0 is equivalent to the principle Bound* defined as follows.

Definition

Bound* is the principle that for a simultaneous enumeration of bounded sets F_0, \ldots, F_n , there exists a common bound for the sets F_i .

Proposition

 $RCA_0 + LH \equiv Bound^*$.

In reverse math, we often consider the Σ_2^0 -bounding principle $\mathsf{B}\Sigma_2^0$.

Over RCA₀, B Σ_2^0 is equivalent to the principle Bound* defined as follows.

Definition

Bound* is the principle that for a simultaneous enumeration of bounded sets F_0, \ldots, F_n , there exists a common bound for the sets F_i .

Proposition

 $RCA_0 + LH \equiv Bound^*$.

LH is trivial with respect to Weihrauch reducibility, meaning that LH Weihrauch-reduces to the identity problem. This remains the case over $RCA_0 + B\Sigma_2^0$. However, we have

In reverse math, we often consider the Σ_2^0 -bounding principle $B\Sigma_2^0$.

Over RCA₀, B Σ_2^0 is equivalent to the principle Bound* defined as follows.

Definition

Bound* is the principle that for a simultaneous enumeration of bounded sets F_0, \ldots, F_n , there exists a common bound for the sets F_i .

Proposition

 $RCA_0 + LH \equiv Bound^*$.

LH is trivial with respect to Weihrauch reducibility, meaning that LH Weihrauch-reduces to the identity problem. This remains the case over $RCA_0 + B\Sigma_2^0$. However, we have

Theorem

 $LH \not\leq_{\alpha W}^{RCA_0} Bound^*$.

Recall that $SRT_2^2 \leq_{gW} D_2^2$.

Recall that $SRT_2^2 \leq_{gW} D_2^2$.

The following questions remain open: Is $SRT_2^2 \leq_{gW}^{RCA_0} D_2^2$? Is $LH \leq_{gW}^{RCA_0} D_2^2$?