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Introduction

Theorem (Friedberg and Muchnich, independently in 1957 and
1956 resp.)
There exists i , j ∈ ω s.t. W x

i and W x
j are ≤T -incomparable for all

x ∈ 2ω. In particular,

x <T W x
i <T x ′

for all x ∈ 2ω.

Nevertheless, this doesn’t define a canonical non-complete
c.e.-in-[x ]T degree, as the map x 7→W x

i doesn’t pass to Turing
degrees.



Question (Sacks, 1967)
Is there an e ∈ ω such that

x ≡T y =⇒ W x
e ≡T W y

e

x <T W x
e <T x ′

for all x , y ∈ 2ω?

A common way to phrase this question is: ‘Is there a degree
invariant solution to Post’s problem?’

Indeed, a function f : 2ω → 2ω is called degree invariant (DI) if
x ≡T y =⇒ f (x) ≡T f (y).

In some sense, Sacks’ question asks whether there is a “natural”
solution to Post’s problem.



Martin’s conjecture aims at generalizing Sacks’ question and
providing an explanation for the following:

Empirical phenomenon
Turing degrees of naturally occurring problems seem to be
well-ordered by ≤T .
Moreover, there seem to be no “natural” degree between a natural
degree and its jump.



Inf = { n | for infinitely many i , ϕn(i) converges } ≡T 0′′

Cof = { n | for cofinally many i , ϕn(i) converges } ≡T 0′′′

{ n | the sentence coded by n is true in N } ≡T 0(ω)

O = { n | n is the notation for a computable ordinal }

0] = { n | n codes a true statement about L }



Infx = { n | for infinitely many i , ϕx
n(i) terminates } ≡T x ′′

Cofx = { n | for cofinally many i , ϕx
n(i) terminates } ≡T x ′′′

For x ∈ 2ω, let Nx be the usual structure (N,+, ·) with an extra
unary predicate to be interpreted as x .

{ n | the sentence coded by n is true in Nx } ≡T x (ω)

Ox = { n | n is the notation for a computable-in-x ordinal }

x ] = { n | n codes a true statement about L[x ] }



Formalization of “natural” degrees

Idea: any “natural” Turing degree has a definition that can be
relativized to arbitrary x ∈ 2ω, leading to a definable degree
invariant function f : 2ω → 2ω.

So maybe the structure of non-trivial, definable DI functions is
essentially well-ordered.

In Martin’s conjecture, “definable” functions = arbitrary functions
under AD.

“Essentially” = up to Martin’s measure.



Definition
Turing determinacy (TD) is the statement that every Turing
invariant (i.e. closed under ≡T ) A ⊆ 2ω either contains a cone

{ x ∈ 2ω | x ≥T z }

or is disjoint from a cone.

Theorem (Martin)
AD implies TD.

Under TD,

µ(A) =

{
1 if A contains a cone
0 if 2ω \ A contains a cone

is a measure on the family of Turing invariant subset of 2ω called
Martin’s measure.



Given DI functions f , g : 2ω → 2ω, define

f ≤M g ⇐⇒ f (x) ≤T g(x) for almost every x

f ≡M g ⇐⇒ f (x) ≡T g(x) for almost every x .

The intuitive idea behind Martin’s conjecture is that “natural”
Turing degrees induce “natural” DI functions (by relativizing their
definition).
Moreover, under AD, we don’t have many ways to cook up
non-“natural” DI functions:
we can patch together ℵ0 many natural DI functions into a single
one. . . but by TD one of the pieces prevails almost everywhere!

So if we take the set of non-trivial DI functions under AD and we
mod out by ≡M , we morally obtain the set “natural” Turing degrees.

But we need to exclude functions that are constant on a cone,
because ≤M on them up to ≡M , corresponds to ≤T on Turing
degrees: these are the trivial functions.



Conjecture (Martin)
Under ZF+DC+AD:
1. if f : 2ω → 2ω is DI, then either f is constant (up to ≡T ) on a

cone, or f (x) ≥T x on a cone;
2. the set

{ f : 2ω → 2ω | f is DI and f (x) ≥T x on a cone }

is pre-wellordered by ≤M .
Moreover, if f has rank α, f ′ has rank α + 1.

In particular, part II of Martin’s conjecture would imply a negative
answer for Sacks’ question.
Indeed, not only DI functions of the form x 7→W x

e , but all DI
functions f whose existence can be proved in ZF+DC+AD could
not satisfy

x <T f (x) <T x ′

for almost all x .



Uniformly invariant functions

Say that x ≤T y via i if ϕy
i = x .

Say that x ≡T y via (i , j) if x ≥T y via i and x ≤T y via j .

Let A ⊆ 2ω. We say that f : A→ 2ω is uniformly degree
invariant (UDI) if there is u : ω2 → ω2 such that

x ≡T y via (i , j) =⇒ f (x) ≡T f (y) via u(i , j).

Such a u is called uniformity function for f .

Note that (f , u) can be viewed as a homomorphism of the
two-sorted relation ‘≡T via’.



Theorem (Lachlan, 1975)
There exists no uniformly degree invariant solution to Post’s
problem.
In other words, there are no e ∈ ω and u : ω2 → ω2 such that

x ≡T y via (i , j) =⇒ W x
e ≡T W y

e via u(i , j)

x <T W x
e <T x ′

for all x , y ∈ 2ω.

Theorem (Steel, 1983)
Part II of Martin’s conjecture holds for UDI functions.

Theorem (Slaman-Steel, 1988)
Part I of Martin’s conjecture holds for UDI functions.



Theorem (Becker, 1988)
(ZF+DC+AD) For every UDI function f such that f (x) >T x on a
cone, there exist a lightface pointclass Γ such that

f (x) ≡T universal Γ(x) subset of ω.

Theorem (Kihara-Montalbán, 2016)
(ZF+DC+AD) There is an isomorphism between the partial
ordering of ≡Om-degrees of Turing- to many-one uniformly invariant
functions ordered by

f ≤Om g ⇐⇒ ∃z ∈ ωω : ∀x ≥T z : f (x) ≤z
m g(x)

and the partial ordering of Wadge degrees of subsets of ωω ordered
by Wadge reducibility.



Conjecture (Steel)
Under ZF+DC+AD, every DI function is ≡M to a UDI-on-a-cone
one.

This would instantly give us a lot of knowledge on DI functions.

In particular, as a consequence of Slaman and Steel’s results, this
conjecture implies Martin’s.



The local approach

Notice that, while the structure of ≡T on each [x ]≡T
is trivial, the

structure of “≡T via” on each [x ]≡T
is not trivial.

We are going to explore the relation between the structure of “≡T

via” on single degrees and uniform Martin’s conjecture.

For instance: what are the possible degrees of the range of a UDI
function f : [x ]T → 2ω?

It can be any [y ]T ≥T [x ]T : for example consider z 7→ z ⊕ y . Are
there other possibilities?



Main results

Theorem (B.)
If f : [x ]T → 2ω is UDI, then either f is constant or f (x) ≥T x .

Theorem (Slaman and Steel, 1988)
(ZF+DC+AD) If f : 2ω → 2ω is UDI on a cone, then either f is
constant on a cone, or f (x) ≥T x on a cone.



Theorem
If f : [x ]T → 2ω is UDI, then either f is constant or f (x) ≥T x .

Corollary (Slaman and Steel’s 1988 result, improved version)
(ZF+DC+TD) For every UDI f : 2ω → 2ω, either f is constant on
a cone, or f (x) ≥T x on a cone.

Proof of the Corollary given the Theorem.
By TD, there is a cone C s.t. either f � [x ]T is constant for all
x ∈ C or f � [x ]T is non-constant for all x ∈ C .
In the latter case, f (x) ≥T x on C , by the Theorem.
In the former case, on C we have

x ≡T y =⇒ f (x) = f (y).



In the former case, on C we have

x ≡T y =⇒ f (x) = f (y).

Thus the sets { x ∈ C | f (x)(k) = 1 } are closed under ≡T , so
again by TD, f (x)(k) is constant on a cone Ck , so f (x) is literally
constant on

⋂
k Ck , which trivially contains a cone.



Theorem
The following are equivalent over ZF+DC:
1. TD
2. part I of uniform Martin’s conjecture

Proof.
We’ve just seen 1 =⇒ 2.
2 =⇒ 1: if A is Turing invariant, define

f (x) =

{
0 = 000 . . . if x ∈ A,
0′ if x ∈ 2ω \ A.

f is UDI and it cannot be that f (x) ≥T x on a cone.
So either f (x) = 0 on a cone, or f (x) = 0′. In the former case, A
contains a cone, in the latter 2ω \ A does.



Theorem (Lachlan, 1975)
There is no UDI map x 7→W x

e such that

x <T W x
e <T x ′

for all x ∈ 2ω.

can be derived by the following “local” result:

Theorem (B. and Lutz)
If z 7→W z

e is UDI on [x ]T and x ≥T 0′, then
I either W x

e ≡T x ′

I or W x
e ≡T x

I or W z
e is constantly equal to some Wa.



Plan

I proving the two local theorems
I discussing if part II of uniform Martin’s conjecture arises locally
I open problems
I an application to computable reducibility, if time suffices



Proof of the main theorems

Lemma
If f : A→ 2ω is UDI and A is Turing-invariant (i.e. closed under
≡T ), then there is a computable uniformity function for f .

Proof.
Let’s prove the easier case in which f is uniformly order-preserving,
first. This means there is u : ω → ω s.t.

x ≥T y via i =⇒ f (x) ≥T f (y) via u(i).

Denote by ij the program that composes program i with program j ,
that is

ϕ
ϕx
j

i = ϕx
ij .

Note that operation is computable and associative.



Let a, b, c ∈ ω s.t.

ϕx
c = 1_x ϕx

b = 0_x ϕ0e1_x
a = ϕx

e .

Now, fix x ∈ A and e ∈ ω such that ϕx
e is in A and notice that we

have ϕx
e = ϕx

abec .
Therefore,

f (ϕx
e ) = f

(
ϕx
abec

)
≤T f

(
ϕx
bec

)
via u(a),

since ϕx
abec ≤T ϕx

bec via a and ϕx
bec = 0e1_x ≡T x ∈ A.

By iterating this, we finally reach

f (ϕx
e ) ≤T f (x) via u(a)u(b)eu(c).

So define v(e) = u(a)u(b)eu(c)
and you’ll have
I f (ϕx

e ) ≤T f (x) via v(e), whenever ϕx
e is in A.

That is, v is a uniformity function for f ;
I v is computable.



If f is UDI and v is a uniformity function for it, let:

ϕx
c = 1_x ϕx

b = 0_x ϕx
m = x−.

We have x ≡T 1_x via (c ,m) and x ≡T 0_x via (b,m).

Let d ∈ ω be such that

ϕ0i10j1_x
d = 0j10i1_ϕx

i .

x ≡T y via (i , j) ⇐⇒ (0i10j1_x) ≡T (0j10i1_y) via (d , d)

⇐⇒ x ≡T (0j10i1_y) via (d , d)(b,m)i (b, c)(b,m)j(c ,m)

⇐⇒ x ≡T y via (m, c)(m, b)i (m, c)(m, b)j(d , d)(b,m)i (b, c)(b,m)j(c ,m)

So define v(i , j) as

u(m, c)u(m, b)iu(m, c)u(m, b)ju(d , d)u(b,m)iu(b, c)u(b,m)ju(c ,m).



Now we finally prove

Theorem
If f : [x ]T → 2ω is UDI, then either f (x) ≥T x or f is constant.

Proof.
We suppose we have y ∈ [x ]T s.t. f (x) 6= f (y) and we prove
f (x) ≥T x .



WLOG, suppose f (x)(k) = 1 and f (y)(k) = 0.
Define

xn =

{
x x(n) = 1
y x(n) = 0

and notice that f (xn)(k) = x(n) and that there is a computable
t : ω → ω and e ∈ ω such that

x ≡T xn via (t(n), e).

If u is a computable uniformity function for f , we have

f (x) ≡T f (xn) via u(t(n), e).

Then, if π is the projection the first coordinate,

ϕ
f (x)
πu(t(n),e) = f (xn).

So x is exactly n 7→ ϕ
f (x)
πu(t(n),e)(k), which is computable in f (x).



Theorem (joint with Patrick Lutz)
Suppose that x ≥T 0′ and the c.e. operator

We : z 7→W z
e

is uniformly Turing invariant on [x ]T . Then, if We is discontinuous
in x , W x

e ≡T x ′. Otherwise, if it’s continuous in x , either W z
e is

constantly equal to a c.e. set for all z ∈ [x ]T , or W x
e ≡T x .

Proof.
First, note that, for all m ∈ ω, we have W x

e (m) = 1 iff there is a
finite initial segment σ of x s.t. W σ

e (m) = 1, and hence
W z

e (m) = 1 for all z extending σ. Thus, We is continuous in x iff

∀m
(
W x

e (m) = 0 ⇐⇒ ∃σ ≺ x∀τ
(
W σ_τ

e (m) = 0
))
. (1)

Suppose that We is continuous in x . Since the property
∀τ
(
W σ_τ

e (m) = 0
)
is decidable in 0′ ≤T x , we have that W x

e is
co-c.e. in x . Of course, W x

e is also c.e. in x , hence W x
e ≤T x .



Since z 7→W z
e is uniformly degree invariant on [x ]T , we know that

it’s either constant on [x ]T or W x
e ≥T x .

In the latter case, W x
e ≡T x . In the former one, W x

e (m) = 1 iff
there is some z ≡T x and some initial segment σ of z such that
W σ

e (m) = 1. Thus, since every Turing degree is dense in 2ω, we
have

W x
e (m) = 1 ⇐⇒ ∃σ ∈ 2ω

(
W σ

e (m) = 1
)

so [x ]T 3 z 7→W z
e is constantly equal to the c.e. set

{m ∈ ω | ∃σ ∈ 2<ω : W σ
e (m) = 1 } .



Now, let’s suppose that We is not continuous in x . So in this case,
we must have

∃m ∈ ω
(
W x

e (m) = 0 ∧ ∀σ ≺ x∃τ ∈ 2<ω : W σ_τ
e (m) = 1

)
.

Note that, there’s in fact an effective procedure that, given such a
σ, finds a suitable τ . Let’s denote τσ the τ found in this way.
So, if we denote by x ′[l ] the l-th approximation of the jump of x ,
we can define a computable r such that

ϕx
r(n) =

{
x n 6∈ x ′

(x � l)_τx�l_x if l is the least such that n ∈ x ′[l ].

Let’s call ϕx
r(n) = xn. There’s also a computable s such that

ϕxn
s(n) = x for all n. Thus, we have x ≡T xn via (r(n), s(n)) with r

and s computable and W xn
e (m) = 1 iff x ′(n) = 1. So the argument

of our other main theorem gives us W x
e ≥T x ′.



Open questions

Does the second part of uniform Martin’s conjecture (that is,
Steel’s theorem) arise locally, too?

Steel’s theorem for Borel functions
Fix α < ω1. Then, if f : 2ω → 2ω Borel UDI function s.t.
f (x) ≥T x on a cone, either there is β < α s.t. f (x) ≤T x (β) on a
cone, or f (x) ≥T x (α) on a cone.

Question
Fix α < ω1 and x ∈ 2ω s.t. α < ωx

1 . Is it true that, given a Borel
UDI f : [x ]T → 2ω, either f is Baire class β for some β < α or
f (x) ≥T x (α)?



The function that maps x to the theory of the two-sorted structure
[x ]T with ‘≡T via’ is a Borel map t : 2ω → 2ω s.t.

x ≡T y =⇒ t(x) = t(y),

so it has to be constant on a cone.

Question
What is the “almost certain” theory of single Turing degrees? What
is its Turing degree? What Turing degrees have it?

Remark
The sentence ’∃i ∃x ∀y : x ≤T y via i ’ is true when interpreted in
[0]T and false when interpreted in all other degrees. So not all
Turing degrees are elementarily equivalent wrt the language of ’≤T

via’.

Are all Turing degrees elementarily equivalent wtr the language of
’≡T via’?



An application to computable reducibility

Given E and F equivalence relations on ω, we write E ≤c F when
there is a computable r : ω → ω s.t.

m E n ⇐⇒ r(m) F r(n).

Given x ∈ 2ω, define

i =T ,x j ⇐⇒ ϕx
i = ϕx

j .

Theorem
The map x 7→ =T ,x is a Borel reduction from ≤T to ≤c , i.e.

x ≤T y ⇐⇒ (=T ,x) ≤c (=T ,y )



Proof.
“ =⇒ ” is easy. Vice versa, if v is a computable reduction from
=T ,x to =T ,y , then define

f : {ϕx
i | i ∈ ω } → {ϕ

y
i | i ∈ ω }

by f (ϕx
i ) = ϕy

v(i), and notice that f is injective and

x ≥T z via i =⇒ y ≥T f (z) via v(i).

So, taking any z ∈ dom(f ), z 6= x , we’ll have f (z) 6= f (x), so we
can define

xn =

{
x n ∈ x ⊕ x̄

z otherwise

and arguing as before we get y ≥T

(
n 7→ f (xn)(k)

)
and thus

y ≥T x .



So ≤c is at least as complicated as ≤T .

Theorem (Sacks, 1961)
Every locally countable pre-order of cardinality ≤ ℵ1 is embeddable
into (2ω,≤T ).

Corollary
Every locally countable pre-order of cardinality ≤ ℵ1 embeds into
(ER,≤c), where ER denotes the set of eq. rel. on ω.

We have (≤T ) ≤B (≤c). From recent work by Patrick Lutz and
Benny Siskind, under analytic determinacy, ≤T is not a universal
locally countable Borel quasi-order.

Question
Is ≤c a universal locally countable Borel quasi-order?



That’s all! Thank you!


