Priority arguments in descriptive set theory

Andrew Marks (UCLA), joint with Adam Day

July 28, 2020

Summary

The decomposability conjecture is true, assuming Π_2^1 determinacy. This conjecture characterizes which Borel functions are piecewise continuous.

Summary

- The decomposability conjecture is true, assuming Π¹₂ determinacy. This conjecture characterizes which Borel functions are piecewise continuous.
- ► The proof uses priority arguments in the setting of descriptive set theory. They are carried out using Antonio Montalbán's true stages machinery.

I used to think that frameworks for conducting priority arguments had little value; they seemed ad-hoc and unable capture the ever-increasing complexity of all possible computer programs.

I used to think that frameworks for conducting priority arguments had little value; they seemed ad-hoc and unable capture the ever-increasing complexity of all possible computer programs.

Software engineering should be known as "The Doomed Discipline," doomed because it cannot even approach its goal since its goal is self-contradictory [...] "How to program if you cannot." –Edsger Dijkstra I used to think that frameworks for conducting priority arguments had little value; they seemed ad-hoc and unable capture the ever-increasing complexity of all possible computer programs.

Software engineering should be known as "The Doomed Discipline," doomed because it cannot even approach its goal since its goal is self-contradictory [...] "How to program if you cannot." –Edsger Dijkstra

I was wrong: True stages are a robust framework which have also arisen independently outside of computability theory. True stages are the precise tool needed to deeply understand how membership in a Σ_n^0 set is witnessed in boldface descriptive set theory. Montalbán's true stages machinery was essentially invented independently by Louveau and Saint-Raymond in set theory for proving Borel Wadge determinacy in second order arithmetic (Day-Greenberg-Turetsky).

A **Polish space** is a completely metrizable separable topological space. For example, \mathbb{R} , 2^{ω} , ω^{ω} , C[0,1].

A **Polish space** is a completely metrizable separable topological space. For example, \mathbb{R} , 2^{ω} , ω^{ω} , C[0,1].

The Borel hierarchy on a Polish space is defined as follows:

- ▶ The Σ_1^0 sets are defined to be the open sets.
- ► The Π^0_α sets are the complements of Σ^0_α sets.
- ▶ A set A is Σ_{α}^{0} if we can express A as a countable union $A = \bigcup_{i} B_{i}$ where each B_{i} is a Π_{β}^{0} set for some $\beta < \alpha$

A **Polish space** is a completely metrizable separable topological space. For example, \mathbb{R} , 2^{ω} , ω^{ω} , C[0,1].

The Borel hierarchy on a Polish space is defined as follows:

- ▶ The Σ_1^0 sets are defined to be the open sets.
- ► The Π^0_α sets are the complements of Σ^0_α sets.
- ▶ A set A is Σ_{α}^{0} if we can express A as a countable union $A = \bigcup_{i} B_{i}$ where each B_{i} is a Π_{β}^{0} set for some $\beta < \alpha$

We compare the complexity of sets by **Wadge reducibility**: if $A \subseteq X$, and $B \subseteq Y$, then $A \leq_W B$ if there is a continuous function $f: X \to Y$ such that for all $x \in X$, we have $x \in A \iff f(x) \in B$.

A **Polish space** is a completely metrizable separable topological space. For example, \mathbb{R} , 2^{ω} , ω^{ω} , C[0,1].

The Borel hierarchy on a Polish space is defined as follows:

- ▶ The Σ_1^0 sets are defined to be the open sets.
- ► The Π^0_α sets are the complements of Σ^0_α sets.
- ▶ A set A is Σ_{α}^{0} if we can express A as a countable union $A = \bigcup_{i} B_{i}$ where each B_{i} is a Π_{β}^{0} set for some $\beta < \alpha$

We compare the complexity of sets by **Wadge reducibility**: if $A \subseteq X$, and $B \subseteq Y$, then $A \leq_W B$ if there is a continuous function $f: X \to Y$ such that for all $x \in X$, we have $x \in A \iff f(x) \in B$.

A set B is Σ_{α}^{0} -hard if $A \leq_{W} B$ for every Σ_{α}^{0} set A. A set is Σ_{α}^{0} complete if it is both Σ_{α}^{0} and Σ_{α}^{0} -hard.

Assume X is Polish. $A \subseteq X$ is **meager** if its contained in a countable union of nowhere dense sets. So $B \subseteq X$ is comeager iff there are countably many dense open sets $\{D_i\}_{i \in \omega}$ so $\bigcap D_i \subseteq B$.

Assume X is Polish. $A \subseteq X$ is **meager** if its contained in a countable union of nowhere dense sets. So $B \subseteq X$ is comeager iff there are countably many dense open sets $\{D_i\}_{i \in \omega}$ so $\bigcap D_i \subseteq B$.

Say a collection $\{F_n\}_{n\in\omega}$ of closed subsets of X is **good** if $\{F_n\}_{n\in\omega}$ is closed under finite intersections, and for all F_n and all open $U\subseteq X$, if $F_n\cap U\neq\emptyset$ then there is some m such that $F_m\subseteq F_n\cap U$.

Assume X is Polish. $A \subseteq X$ is **meager** if its contained in a countable union of nowhere dense sets. So $B \subseteq X$ is comeager iff there are countably many dense open sets $\{D_i\}_{i \in \omega}$ so $\bigcap D_i \subseteq B$.

Say a collection $\{F_n\}_{n\in\omega}$ of closed subsets of X is **good** if $\{F_n\}_{n\in\omega}$ is closed under finite intersections, and for all F_n and all open $U\subseteq X$, if $F_n\cap U\neq\emptyset$ then there is some m such that $F_m\subseteq F_n\cap U$.

Theorem (Abstraction of a folklore technique)

- $A\subseteq X$ is Σ^0_3 -hard iff there are good closed sets $\{F_n\}_{n\in\omega}$ in X so:
 - ▶ If $x \in X$ is an element of infinitely many F_n , then $x \notin A$.
 - \triangleright For all F_n , A is comeager in F_n .

Assume X is Polish. $A \subseteq X$ is **meager** if its contained in a countable union of nowhere dense sets. So $B \subseteq X$ is comeager iff there are countably many dense open sets $\{D_i\}_{i \in \omega}$ so $\bigcap D_i \subseteq B$.

Say a collection $\{F_n\}_{n\in\omega}$ of closed subsets of X is **good** if $\{F_n\}_{n\in\omega}$ is closed under finite intersections, and for all F_n and all open $U\subseteq X$, if $F_n\cap U\neq\emptyset$ then there is some m such that $F_m\subseteq F_n\cap U$.

Theorem (Abstraction of a folklore technique)

 $A \subseteq X$ is Σ^0_3 -hard iff there are good closed sets $\{F_n\}_{n \in \omega}$ in X so:

- ▶ If $x \in X$ is an element of infinitely many F_n , then $x \notin A$.
- ▶ For all F_n , A is comeager in F_n .

Proof sketch: \Leftarrow : This is a finite-injury priority argument. Let $C = \{x \in 2^\omega : (\exists i)(\exists^\infty j) \, x(\langle i,j \rangle) = 1\}$ be the set of reals with some infinite column. This is a complete Σ_3^0 set in the Borel hierarchy. It suffices to construct a continuous reduction from C to A. To simplify notation, assume $X = 2^\omega$.

Proof sketch of \Leftarrow :

For each closed F_n , let $\{D_{m,n}\}_{m\in\omega}$ be open dense subsets of F_n so that $\bigcap_m D_{m,n}\subseteq A$.

To each string $s \in 2^{<\omega}$, we'll associate a string $\rho(s) \in 2^{<\omega}$ and a list $\psi(s) = (F_0^s, \dots, F_{k_s}^s)$ of decreasing closed sets so $\rho(s) \ge |s|$ and

$$[\rho(s)] \cap \bigcap_{k < k_s} F_k^s \neq \emptyset \tag{*}$$

Proof sketch of \Leftarrow :

For each closed F_n , let $\{D_{m,n}\}_{m\in\omega}$ be open dense subsets of F_n so that $\bigcap_m D_{m,n} \subseteq A$.

To each string $s \in 2^{<\omega}$, we'll associate a string $\rho(s) \in 2^{<\omega}$ and a list $\psi(s) = (F_0^s, \dots, F_{k_s}^s)$ of decreasing closed sets so $\rho(s) \ge |s|$ and

$$[\rho(s)] \cap \bigcap_{k < k_s} F_k^s \neq \emptyset \tag{*}$$

For the empty string \emptyset , let $\rho(\emptyset) = \emptyset$, and $\psi(\emptyset) = \emptyset$. Define $\rho(s)$ and $\psi(s)$ recursively as follows, where $|s| = \langle i, j \rangle$:

- For $s \cap 0$, extend our list of closed sets). Define $\psi(s \cap 0)$ extending $\psi(s)$ so $|\psi(s \cap 0)| \ge i$ and $\rho(s \cap 0) \supseteq \rho(s)$ so that (*) holds for $s \cap 0$.
- ▶ (For s^1 , injure closed sets beyond F_i^s and meet next dense open sets $D_{m,i}$ in F_i^s). Define $\psi(s^1) = \psi(s) \upharpoonright i$. Let $\rho(s^1)$ be such that $[\rho(s^1)] \subseteq D_{m,i}$ for all $m \le j$ and (*) holds.

Define the reduction f from C to A by $f(x) = \bigcup_n \rho(x \upharpoonright n)$.

Proof sketch of \Rightarrow :

 \Rightarrow : First check that there are such closed sets $\{F_n\}_{n\in\omega}$ witnessing the theorem for C. If A is Σ^0_3 hard, there is a continuous reduction of C to A. By a lemma of Harrington (in Steel (1980) "Analytic sets and Borel isomorphisms"), there is a injective continuous reduction g of C to A. Take image of the sets $\{F_n\}_{n\in\omega}$ under g.

Generalizing this theorem throughout the Borel hierarchy

If A is a countable collection of subsets of X, let $\tau(A)$ denote the topology generated by the subbasis A.

Generalizing this theorem throughout the Borel hierarchy

If A is a countable collection of subsets of X, let $\tau(A)$ denote the topology generated by the subbasis A.

Given Polish X, say that $\mathcal{A}_0, \mathcal{A}_1, \ldots, \mathcal{A}_n$ is a **suitable sequence of length** n+1 iff \mathcal{A}_0 is a countable basis of open sets for X, \mathcal{A}_m is a countable set of Π_m^0 subsets of X for $m \geq 1$, every \mathcal{A}_m is closed under finite intersections, and for all m < n,

- 1. If $B \in \mathcal{A}_0$, then $\overline{B} \in \mathcal{A}_1$, and $\mathcal{A}_m \subseteq \mathcal{A}_{m+1}$ for m > 0.
- 2. If $B \in \mathcal{A}_m$, then $X \setminus B \in \mathcal{A}_{m+1}$.
- 3. If $B \in \mathcal{A}_{m+1}$, then B is closed in $\tau(\mathcal{A}_m)$.
- 4. If $B \in \mathcal{A}_{m+1}$ and m > 0, then $\overline{B}^{\mathcal{A}_{m-1}} \in \mathcal{A}_m$.

Properties (1)-(3) are simple properties which ensure that the topology $\tau(\mathcal{A}_m)$ is Polish. Property (4) here is the difficult property to satisfy. It is key to the following theorem:

Characterizing Σ_{n+2}^0 hardness

Theorem (Day-M.)

Suppose X is Polish, $Y \subseteq X$, and $n \ge 1$. Then Y is Σ_{n+2}^0 -hard (i.e. there exists a continuous reduction of a complete Σ_{n+2}^0 set to Y) if and only if there exists a closed set $F \subseteq X$ and a suitable sequence of sets A_0, \ldots, A_n on F such that

- 1. Y is $\tau(A_n)$ -meager
- 2. Y is $\tau(A_{n-1})$ -comeager in A for all $A \in A_n$

Characterizing Σ_{n+2}^0 hardness

Theorem (Day-M.)

Suppose X is Polish, $Y \subseteq X$, and $n \ge 1$. Then Y is Σ_{n+2}^0 -hard (i.e. there exists a continuous reduction of a complete Σ_{n+2}^0 set to Y) if and only if there exists a closed set $F \subseteq X$ and a suitable sequence of sets A_0, \ldots, A_n on F such that

- 1. Y is $\tau(A_n)$ -meager
- 2. Y is $\tau(A_{n-1})$ -comeager in A for all $A \in A_n$

The proof of \Leftarrow heavily uses the true stages machinery. We construct a continuous reduction in stages. To each finite string s, we associate an approximation to f(x) which consists of a sequence (A_0, A_1, \ldots, A_n) of sets with nonempty intersection where $A_i \in \mathcal{A}_i$. True stages control the flow of the construction; we will have $f(x) \in A_i$ if |s| is an i-true stage:

Lemma (Montalbán 2014, relativized version)

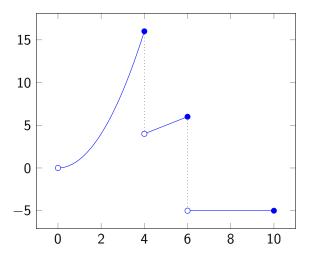
3. If $\sigma <_{k+1} \tau$, then $\sigma <_k \tau$.

There are partial orders $\{\leq_k\}_{k\in\omega}$ on $2^{<\omega}$ and a set $S_k\subseteq 2^{<\omega}$ such that:

- 1. \leq_0 is the usual prefix ordering: $\sigma \leq_0 \tau$ iff $\sigma \subseteq \tau$.
- 2. The empty sequence \emptyset has $\emptyset <_k \sigma$ for every $\sigma \in T$.
- 4. If $\sigma \leq_k \tau$ and $\sigma \in S_k$, then $\tau \in S_k$.

(*) If $\sigma \subseteq \tau \subseteq \rho$ and $\sigma \leq_{k+1} \rho$ and $\tau \leq_k \rho$, then $\sigma \leq_{k+1} \tau$. Let T_k be the tree $T_k = \{(\sigma_0, \ldots, \sigma_m) : \sigma_i <_k \sigma_{i+1} \land \forall i < k \in I\}$ $m(\neg \exists \tau (\sigma_i <_k \tau <_k \sigma_{i+1}))$ of increasing $<_k$ sequences. Then for each $x \in 2^{\omega}$ the restriction of T_{k} to x: $T_k \upharpoonright \{(\sigma_0, \ldots, \sigma_m) : (\forall i)\sigma_i \subseteq x\}$ has a single infinite branch, and we say $\tau \subseteq x$ is a k-true stage of x if τ is an element in this unique infinite branch. Then $\{x : S_k \text{ meets the } k\text{-true stages of } x\}$ is $\sum_{k=1}^{0}$ complete.

An application: what functions are piecewise continuous?



Suppose $f: X \to Y$ is a piecewise continuous function where $f = \bigcup_{i \in \omega} f_i$, where the f_i are partial continuous functions with Δ_n^0 domains.

Suppose $f: X \to Y$ is a piecewise continuous function where $f = \bigcup_{i \in \omega} f_i$, where the f_i are partial continuous functions with Δ_n^0 domains.

Then if A is is a Σ_n^0 set, $f_i^{-1}(A)$ is relatively Σ_n^0 in dom (f_i) (which is Δ_n^0), so it is Σ_n^0 . Thus, $f^{-1}(A) = \bigcup_i f_i^{-1}(A)$ is a countable union of Σ_n^0 sets, and hence is Σ_n^0 .

Suppose $f: X \to Y$ is a piecewise continuous function where $f = \bigcup_{i \in \omega} f_i$, where the f_i are partial continuous functions with Δ_n^0 domains.

Then if A is is a Σ_n^0 set, $f_i^{-1}(A)$ is relatively Σ_n^0 in dom (f_i) (which is Δ_n^0), so it is Σ_n^0 . Thus, $f^{-1}(A) = \bigcup_i f_i^{-1}(A)$ is a countable union of Σ_n^0 sets, and hence is Σ_n^0 .

Conjecture (2000's, various authors)

 $f: X \to Y$ is a countable union of continuous functions with Δ_n^0 domains iff the preimage of every Σ_n^0 set is Σ_n^0 .

Conjecture (2000's, the decomposability conjecture)

 $f: X \to Y$ is a countable union of Baire class m functions with Δ_n^0 domains iff the preimage of every Σ_{n-m+1}^0 set is Σ_n^0 .

Conjecture (2000's, the decomposability conjecture)

 $f: X \to Y$ is a countable union of Baire class m functions with Δ_n^0 domains iff the preimage of every Σ_{n-m+1}^0 set is Σ_n^0 .

Theorem (Day-M.)

The decomposability conjecture is true assuming Σ_2^1 determinacy.

Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Ding-Kihara-Semmes-Zhao, 2018)

The decomposability conjecture is true for n = 3.

Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Ding-Kihara-Semmes-Zhao, 2018)

The decomposability conjecture is true for n = 3.

These theorems are proved the following way: Suppose $f: X \to Y$ is not a union of Baire class m functions with Δ_n^0 domains. Then construct a Σ_{n-m+1}^0 set A whose preimage is not Σ_n^0 (i.e. $f^{-1}(A)$ is Π_n^0 hard).

Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Ding-Kihara-Semmes-Zhao, 2018)

The decomposability conjecture is true for n = 3.

These theorems are proved the following way: Suppose $f: X \to Y$ is not a union of Baire class m functions with Δ_n^0 domains. Then construct a Σ_{n-m+1}^0 set A whose preimage is not Σ_n^0 (i.e. $f^{-1}(A)$ is Π_n^0 hard).

Proposition

To prove the decomposability conjecture, it's enough to prove the case where m = n - 1.

Suppose we change our topology (X, τ) on X to a new Polish topology (X, η) where we make countably many Π_n^0 sets in (X, τ) the new basic open sets of (X, η) .

Suppose we change our topology (X, τ) on X to a new Polish topology (X, η) where we make countably many Π_n^0 sets in (X, τ) the new basic open sets of (X, η) .

• Any Σ^0_1 set in (X, η) is Σ^0_{n+1} in (X, τ) .

Suppose we change our topology (X, τ) on X to a new Polish topology (X, η) where we make countably many Π_n^0 sets in (X, τ) the new basic open sets of (X, η) .

- Any Σ_1^0 set in (X, η) is Σ_{n+1}^0 in (X, τ) .
- Any Σ_k^0 set in (X, η) is Σ_{n+k}^0 in (X, τ) .

Suppose we change our topology (X, τ) on X to a new Polish topology (X, η) where we make countably many Π_n^0 sets in (X, τ) the new basic open sets of (X, η) .

- Any Σ_1^0 set in (X, η) is Σ_{n+1}^0 in (X, τ) .
- Any Σ_k^0 set in (X, η) is Σ_{n+k}^0 in (X, τ) .
- ▶ If A is not Σ_{n+k}^0 in (X,τ) , it is not Σ_k^0 in (X,η) .

Suppose we change our topology (X, τ) on X to a new Polish topology (X, η) where we make countably many Π_n^0 sets in (X, τ) the new basic open sets of (X, η) .

- Any Σ_1^0 set in (X, η) is Σ_{n+1}^0 in (X, τ) .
- Any Σ_k^0 set in (X, η) is Σ_{n+k}^0 in (X, τ) .
- ▶ If A is not Σ_{n+k}^0 in (X,τ) , it is not Σ_k^0 in (X,η) .

The converses of these statements are **very** false.

Suppose $f: (X, \tau) \to Y$ is not a union of Baire class n-1 functions with Δ_n^0 domains.

- Suppose $f: (X, \tau) \to Y$ is not a union of Baire class n-1 functions with Δ_n^0 domains.
- ► Change the topology (X, τ) to (X, η) by making some Π_{n-2}^0 sets in (X, τ) the new basic open sets of (X, η) .

- Suppose $f: (X, \tau) \to Y$ is not a union of Baire class n-1 functions with Δ_n^0 domains.
- ► Change the topology (X, τ) to (X, η) by making some Π_{n-2}^0 sets in (X, τ) the new basic open sets of (X, η) .
- ► Then $f: (X, \eta) \to Y$ is not a union of Baire class 1 functions with Δ_3^0 domains.

- ▶ Suppose $f: (X, \tau) \to Y$ is not a union of Baire class n-1 functions with Δ_n^0 domains.
- ► Change the topology (X, τ) to (X, η) by making some Π_{n-2}^0 sets in (X, τ) the new basic open sets of (X, η) .
- ► Then $f: (X, \eta) \to Y$ is not a union of Baire class 1 functions with Δ_3^0 domains.
- Apply the techniques of Ding-Kihara-Semmes-Zhao and obtain a Σ_2^0 set $A \subseteq Y$ so that $f^{-1}(A)$ is not Σ_3^0 in (X, η) .

- ▶ Suppose $f: (X, \tau) \to Y$ is not a union of Baire class n-1 functions with Δ_n^0 domains.
- ► Change the topology (X, τ) to (X, η) by making some Π_{n-2}^0 sets in (X, τ) the new basic open sets of (X, η) .
- ► Then $f: (X, \eta) \to Y$ is not a union of Baire class 1 functions with Δ_3^0 domains.
- Apply the techniques of Ding-Kihara-Semmes-Zhao and obtain a Σ_2^0 set $A \subseteq Y$ so that $f^{-1}(A)$ is not Σ_3^0 in (X, η) .
- ▶ Hope that this set which is not Σ_3^0 in (X, η) is not Σ_n^0 in the original topology (X, τ) .

Each time our idea fails, we get a canonical new Π_{n-2}^0 set to add to our change of topology. (This requires a careful analysis of the n=3, m=2 decomposability proof).

Each time our idea fails, we get a canonical new Π_{n-2}^0 set to add to our change of topology. (This requires a careful analysis of the n=3, m=2 decomposability proof).

If we add this set to our change of topology and try again, we'll eventually succeed at some countable ordinal stage. If not, we would contradict the following:

Theorem (Harrington 1978, AD)

Fix $\alpha < \omega_1$. There is no ω_1 length sequence of distinct Π^0_{α} sets.

Each time our idea fails, we get a canonical new Π_{n-2}^0 set to add to our change of topology. (This requires a careful analysis of the n=3, m=2 decomposability proof).

If we add this set to our change of topology and try again, we'll eventually succeed at some countable ordinal stage. If not, we would contradict the following:

Theorem (Harrington 1978, AD)

Fix $\alpha < \omega_1$. There is no ω_1 length sequence of distinct Π^0_{α} sets.

This way of proving the theorem is cheating. A better way (which wouldn't use determinacy) would be to use standard techniques/reflection phenomena from Gandy-Harrington forcing to define from the outset the correct suitable sequence of sets needed to witness there is a Σ^0_{n-m+1} set with a preimage that is Π^0_n hard. (See e.g. Louveau's characterization of lightface Δ^1_1 sets that are boldface Σ^0_α for a construction of such suitable sequences).

Each time our idea fails, we get a canonical new Π_{n-2}^0 set to add to our change of topology. (This requires a careful analysis of the n=3, m=2 decomposability proof).

If we add this set to our change of topology and try again, we'll eventually succeed at some countable ordinal stage. If not, we would contradict the following:

Theorem (Harrington 1978, AD)

Fix $\alpha < \omega_1$. There is no ω_1 length sequence of distinct Π^0_{α} sets.

This way of proving the theorem is cheating. A better way (which wouldn't use determinacy) would be to use standard techniques/reflection phenomena from Gandy-Harrington forcing to define from the outset the correct suitable sequence of sets needed to witness there is a Σ^0_{n-m+1} set with a preimage that is Π^0_n hard. (See e.g. Louveau's characterization of lightface Δ^1_1 sets that are boldface Σ^0_α for a construction of such suitable sequences). This is still open.

