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Summary

I The decomposability conjecture is true, assuming Π1
2

determinacy. This conjecture characterizes which Borel
functions are piecewise continuous.

I The proof uses priority arguments in the setting of descriptive
set theory. They are carried out using Antonio Montalbán’s
true stages machinery.
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I used to think that frameworks for conducting priority arguments
had little value; they seemed ad-hoc and unable capture the
ever-increasing complexity of all possible computer programs.

Software engineering should be known as “The Doomed Disci-
pline,” doomed because it cannot even approach its goal since
its goal is self-contradictory [...] “How to program if you can-
not.” –Edsger Dijkstra

I was wrong: True stages are a robust framework which have also
arisen independently outside of computability theory. True stages
are the precise tool needed to deeply understand how membership
in a Σ0

n set is witnessed in boldface descriptive set theory.
Montalbán’s true stages machinery was essentially invented
independently by Louveau and Saint-Raymond in set theory for
proving Borel Wadge determinacy in second order arithmetic
(Day-Greenberg-Turetsky).
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The Borel hierarchy

A Polish space is a completely metrizable separable topological
space. For example, R, 2ω, ωω, C [0, 1].

The Borel hierarchy on a Polish space is defined as follows:

I The Σ0
1 sets are defined to be the open sets.

I The Π0
α sets are the complements of Σ0

α sets.

I A set A is Σ0
α if we can express A as a countable union

A =
⋃

i Bi where each Bi is a Π0
β set for some β < α

We compare the complexity of sets by Wadge reducibility: if
A ⊆ X , and B ⊆ Y , then A ≤W B if there is a continuous function
f : X → Y such that for all x ∈ X , we have x ∈ A ⇐⇒ f (x) ∈ B.

A set B is Σ0
α-hard if A ≤W B for every Σ0

α set A. A set is Σ0
α

complete if it is both Σ0
α and Σ0

α-hard.
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An easy priority argument
Assume X is Polish. A ⊆ X is meager if its contained in a
countable union of nowhere dense sets. So B ⊆ X is comeager iff
there are countably many dense open sets {Di}i∈ω so

⋂
Di ⊆ B.

Say a collection {Fn}n∈ω of closed subsets of X is good if {Fn}n∈ω
is closed under finite intersections, and for all Fn and all open
U ⊆ X , if Fn ∩U 6= ∅ then there is some m such that Fm ⊆ Fn ∩U.

Theorem (Abstraction of a folklore technique)

A ⊆ X is Σ0
3-hard iff there are good closed sets {Fn}n∈ω in X so:

I If x ∈ X is an element of infinitely many Fn, then x /∈ A.

I For all Fn, A is comeager in Fn.

Proof sketch: ⇐: This is a finite-injury priority argument. Let
C = {x ∈ 2ω : (∃i)(∃∞j) x(〈i , j〉) = 1} be the set of reals with
some infinite column. This is a complete Σ0

3 set in the Borel
hierarchy. It suffices to construct a continuous reduction from C to
A. To simplify notation, assume X = 2ω.
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Proof sketch of ⇐:

For each closed Fn, let {Dm,n}m∈ω be open dense subsets of Fn so
that

⋂
m Dm,n ⊆ A.

To each string s ∈ 2<ω, we’ll associate a string ρ(s) ∈ 2<ω and a
list ψ(s) = (F s

0 , . . . ,F
s
ks

) of decreasing closed sets so ρ(s) ≥ |s| and

[ρ(s)] ∩
⋂
k≤ks

F s
k 6= ∅ (*)

For the empty string ∅, let ρ(∅) = ∅, and ψ(∅) = (). Define ρ(s)
and ψ(s) recursively as follows, where |s| = 〈i , j〉:
I (For sa0, extend our list of closed sets). Define ψ(sa0)

extending ψ(s) so |ψ(sa0)| ≥ i and ρ(sa0) ⊇ ρ(s) so that (*)
holds for sa0.

I (For sa1, injure closed sets beyond F s
i and meet next dense

open sets Dm,i in F s
i ). Define ψ(sa1) = ψ(s) � i . Let ρ(sa1)

be such that [ρ(sa1)] ⊆ Dm,i for all m ≤ j and (*) holds.

Define the reduction f from C to A by f (x) =
⋃

n ρ(x � n).
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Proof sketch of ⇒:

⇒: First check that there are such closed sets {Fn}n∈ω witnessing
the theorem for C . If A is Σ0

3 hard, there is a continuous reduction
of C to A. By a lemma of Harrington (in Steel (1980) “Analytic
sets and Borel isomorphisms”), there is a injective continuous
reduction g of C to A. Take image of the sets {Fn}n∈ω under
g .



Generalizing this theorem throughout the Borel hierarchy

If A is a countable collection of subsets of X , let τ(A) denote the
topology generated by the subbasis A.

Given Polish X , say that A0,A1, . . . ,An is a suitable sequence
of length n + 1 iff A0 is a countable basis of open sets for X ,
Am is a countable set of Π0

m subsets of X for m ≥ 1, every Am is
closed under finite intersections, and for all m < n,

1. If B ∈ A0, then B ∈ A1, and Am ⊆ Am+1 for m > 0.

2. If B ∈ Am, then X \ B ∈ Am+1.

3. If B ∈ Am+1, then B is closed in τ(Am).

4. If B ∈ Am+1 and m > 0, then B
Am−1 ∈ Am.

Properties (1)-(3) are simple properties which ensure that the
topology τ(Am) is Polish. Property (4) here is the difficult
property to satisfy. It is key to the following theorem:
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Characterizing Σ0
n+2 hardness

Theorem (Day-M.)

Suppose X is Polish, Y ⊆ X, and n ≥ 1. Then Y is Σ0
n+2-hard

(i.e. there exists a continuous reduction of a complete Σ0
n+2 set to

Y ) if and only if there exists a closed set F ⊆ X and a suitable
sequence of sets A0, . . . ,An on F such that

1. Y is τ(An)-meager

2. Y is τ(An−1)-comeager in A for all A ∈ An

The proof of ⇐ heavily uses the true stages machinery. We
construct a continuous reduction in stages. To each finite string s,
we associate an approximation to f (x) which consists of a
sequence (A0,A1, . . . ,An) of sets with nonempty intersection
where Ai ∈ Ai . True stages control the flow of the construction;
we will have f (x) ∈ Ai if |s| is an i-true stage:
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Lemma (Montalbán 2014, relativized version)

There are partial orders {≤k}k∈ω on 2<ω and a set Sk ⊆ 2<ω such
that:

1. ≤0 is the usual prefix ordering: σ ≤0 τ iff σ ⊆ τ .

2. The empty sequence ∅ has ∅ ≤k σ for every σ ∈ T.

3. If σ ≤k+1 τ , then σ ≤k τ .

4. If σ ≤k τ and σ ∈ Sk , then τ ∈ Sk .

(♣) If σ ⊆ τ ⊆ ρ and σ ≤k+1 ρ and τ ≤k ρ, then σ ≤k+1 τ .

Let Tk be the tree Tk = {(σ0, . . . , σm) : σi <k σi+1 ∧ ∀i <
m (¬∃τ(σi <k τ <k σi+1))} of increasing <k sequences. Then for
each x ∈ 2ω the restriction of Tk to x:
Tk � {(σ0, . . . , σm) : (∀i)σi ⊆ x} has a single infinite branch, and
we say τ ⊆ x is a k-true stage of x if τ is an element in this unique
infinite branch. Then {x : Sk meets the k-true stages of x} is Σ0

k+1

complete.



An application: what functions are piecewise continuous?
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The decomposability conjecture

Suppose f : X → Y is a piecewise continuous function where
f =

⋃
i∈ω fi , where the fi are partial continuous functions with ∆0

n

domains.

Then if A is is a Σ0
n set, f −1i (A) is relatively Σ0

n in dom(fi ) (which
is ∆0

n), so it is Σ0
n. Thus, f −1(A) =

⋃
i f
−1
i (A) is a countable

union of Σ0
n sets, and hence is Σ0

n.

Conjecture (2000’s, various authors)

f : X → Y is a countable union of continuous functions with ∆0
n

domains iff the preimage of every Σ0
n set is Σ0

n.
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The decomposability conjecture

Conjecture (2000’s, the decomposability conjecture)

f : X → Y is a countable union of Baire class m functions with ∆0
n

domains iff the preimage of every Σ0
n−m+1 set is Σ0

n.

Theorem (Day-M.)

The decomposability conjecture is true assuming Σ1
2 determinacy.
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Prior progress

Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Ding-Kihara-Semmes-Zhao, 2018)

The decomposability conjecture is true for n = 3.

These theorems are proved the following way: Suppose f : X → Y
is not a union of Baire class m functions with ∆0

n domains. Then
construct a Σ0

n−m+1 set A whose preimage is not Σ0
n (i.e. f −1(A)

is Π0
n hard).

Proposition

To prove the decomposability conjecture, it’s enough to prove the
case where m = n − 1.
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Changing topology

Suppose we change our topology (X , τ) on X to a new Polish
topology (X , η) where we make countably many Π0

n sets in (X , τ)
the new basic open sets of (X , η).

I Any Σ0
1 set in (X , η) is Σ0

n+1 in (X , τ).

I Any Σ0
k set in (X , η) is Σ0

n+k in (X , τ).

I If A is not Σ0
n+k in (X , τ), it is not Σ0

k in (X , η).

The converses of these statements are very false.
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A naive attempt at proving decomposability

I Suppose f : (X , τ)→ Y is not a union of Baire class n − 1
functions with ∆0

n domains.

I Change the topology (X , τ) to (X , η) by making some Π0
n−2

sets in (X , τ) the new basic open sets of (X , η).

I Then f : (X , η)→ Y is not a union of Baire class 1 functions
with ∆0

3 domains.

I Apply the techniques of Ding-Kihara-Semmes-Zhao and
obtain a Σ0

2 set A ⊆ Y so that f −1(A) is not Σ0
3 in (X , η).

I Hope that this set which is not Σ0
3 in (X , η) is not Σ0

n in the
original topology (X , τ).



A naive attempt at proving decomposability

I Suppose f : (X , τ)→ Y is not a union of Baire class n − 1
functions with ∆0

n domains.

I Change the topology (X , τ) to (X , η) by making some Π0
n−2

sets in (X , τ) the new basic open sets of (X , η).

I Then f : (X , η)→ Y is not a union of Baire class 1 functions
with ∆0

3 domains.

I Apply the techniques of Ding-Kihara-Semmes-Zhao and
obtain a Σ0

2 set A ⊆ Y so that f −1(A) is not Σ0
3 in (X , η).

I Hope that this set which is not Σ0
3 in (X , η) is not Σ0

n in the
original topology (X , τ).



A naive attempt at proving decomposability

I Suppose f : (X , τ)→ Y is not a union of Baire class n − 1
functions with ∆0

n domains.

I Change the topology (X , τ) to (X , η) by making some Π0
n−2

sets in (X , τ) the new basic open sets of (X , η).

I Then f : (X , η)→ Y is not a union of Baire class 1 functions
with ∆0

3 domains.

I Apply the techniques of Ding-Kihara-Semmes-Zhao and
obtain a Σ0

2 set A ⊆ Y so that f −1(A) is not Σ0
3 in (X , η).

I Hope that this set which is not Σ0
3 in (X , η) is not Σ0

n in the
original topology (X , τ).



A naive attempt at proving decomposability

I Suppose f : (X , τ)→ Y is not a union of Baire class n − 1
functions with ∆0

n domains.

I Change the topology (X , τ) to (X , η) by making some Π0
n−2

sets in (X , τ) the new basic open sets of (X , η).

I Then f : (X , η)→ Y is not a union of Baire class 1 functions
with ∆0

3 domains.

I Apply the techniques of Ding-Kihara-Semmes-Zhao and
obtain a Σ0

2 set A ⊆ Y so that f −1(A) is not Σ0
3 in (X , η).

I Hope that this set which is not Σ0
3 in (X , η) is not Σ0

n in the
original topology (X , τ).



A naive attempt at proving decomposability

I Suppose f : (X , τ)→ Y is not a union of Baire class n − 1
functions with ∆0

n domains.

I Change the topology (X , τ) to (X , η) by making some Π0
n−2

sets in (X , τ) the new basic open sets of (X , η).

I Then f : (X , η)→ Y is not a union of Baire class 1 functions
with ∆0

3 domains.

I Apply the techniques of Ding-Kihara-Semmes-Zhao and
obtain a Σ0

2 set A ⊆ Y so that f −1(A) is not Σ0
3 in (X , η).

I Hope that this set which is not Σ0
3 in (X , η) is not Σ0

n in the
original topology (X , τ).



This works eventually if we just keep trying
Each time our idea fails, we get a canonical new Π0

n−2 set to add
to our change of topology. (This requires a careful analysis of the
n = 3, m = 2 decomposability proof).

If we add this set to our change of topology and try again, we’ll
eventually succeed at some countable ordinal stage. If not, we
would contradict the following:

Theorem (Harrington 1978, AD)

Fix α < ω1. There is no ω1 length sequence of distinct Π0
α sets.

This way of proving the theorem is cheating. A better way (which
wouldn’t use determinacy) would be to use standard
techniques/reflection phenomena from Gandy-Harrington forcing to
define from the outset the correct suitable sequence of sets needed
to witness there is a Σ0

n−m+1 set with a preimage that is Π0
n hard.

(See e.g. Louveau’s characterization of lightface ∆1
1 sets that are

boldface Σ0
α for a construction of such suitable sequences).

This is still open.
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Thanks!


