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» The proof uses priority arguments in the setting of descriptive
set theory. They are carried out using Antonio Montalban's
true stages machinery.
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| was wrong: True stages are a robust framework which have also
arisen independently outside of computability theory. True stages
are the precise tool needed to deeply understand how membership
in a X0 set is witnessed in boldface descriptive set theory.
Montalbadn's true stages machinery was essentially invented
independently by Louveau and Saint-Raymond in set theory for
proving Borel Wadge determinacy in second order arithmetic
(Day-Greenberg-Turetsky).
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» The N9 sets are the complements of ¥ sets.

> Aset Ais X0 if we can express A as a countable union
A = J; Bi where each B; is a I'I% set for some 8 < «

We compare the complexity of sets by Wadge reducibility: if
AC X, and BC Y, then A <\ B if there is a continuous function
f: X — Y such that for all x € X, we have x € A <= f(x) € B.

A set B is £0-hard if A <\, B for every 0 set A. A set is X0
complete if it is both £9 and ¥2-hard.
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Theorem (Abstraction of a folklore technique)

AC X is Zg—hard iff there are good closed sets { Fp,} pey, in X so:
» If x € X is an element of infinitely many F,, then x ¢ A.

» For all F,, A is comeager in Fp,.

Proof sketch: <: This is a finite-injury priority argument. Let

C ={x€2¥: (3)(3*) x((i,j)) = 1} be the set of reals with
some infinite column. This is a complete Zg set in the Borel
hierarchy. It suffices to construct a continuous reduction from C to
A. To simplify notation, assume X = 2%,
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For each closed F,, let {Dm n}mew be open dense subsets of F, so
that ,,, Dm,n C A.
To each string s € 2<%, we'll associate a string p(s) € 2<“ and a

list ¥(s) = (Fg, ..., Fi,) of decreasing closed sets so p(s) > |s| and
[o(N N () Fi#0 (*)
k<ks

For the empty string 0, let p(0) = 0, and (0) =
and v(s) recursively as follows, where |s| = (i, j):
» (For s™0, extend our list of closed sets). Define 9(s~0)
extending 1(s) so [(s70)| > i and p(s~0) D p(s) so that (*)
holds for s~0.
» (For s™1, injure closed sets beyond F? and meet next dense
open sets Dy, in F7). Define )(s™1) = (s) [ i. Let p(s"1)

I

be such that [p(s"1)] C Dp,; for all m < j and (*) holds.
Define the reduction f from C to A by f(x) =J, p(x | n).

(). Define p(s)



Proof sketch of =:

= First check that there are such closed sets {F,}nc,, witnessing
the theorem for C. If Ais Zg hard, there is a continuous reduction
of C to A. By a lemma of Harrington (in Steel (1980) “Analytic
sets and Borel isomorphisms” ), there is a injective continuous
reduction g of C to A. Take image of the sets {F,}nc,, under

g- L]
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If A is a countable collection of subsets of X, let 7(.4) denote the
topology generated by the subbasis A.

Given Polish X, say that Ag, A1, ..., A, is a suitable sequence
of length n+ 1 iff Ag is a countable basis of open sets for X,
A, is a countable set of I'I?n subsets of X for m > 1, every A,, is
closed under finite intersections, and for all m < n,

1. If B € Ap, then B € Ay, and A,,, C A1 for m > 0.

2. If Be Ay, then X\ B € Apq1.

3. If B€ Apny1, then Bis closed in 7(Ap,).

4. If B € Apy1 and m > 0, then Bt e An.

Properties (1)-(3) are simple properties which ensure that the
topology 7(.Ap,) is Polish. Property (4) here is the difficult
property to satisfy. It is key to the following theorem:
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Characterizing 2., hardness

Theorem (Day-M.)

Suppose X is Polish, Y C X, and n>1. Then Y is Zg+2-hard
(i.e. there exists a continuous reduction of a complete X9, set to
Y ) if and only if there exists a closed set F C X and a suitable
sequence of sets Ay, ..., A, on F such that

1. Y is 7(Ap)-meager
2. Y is T(An—1)-comeager in A for all A € A,

The proof of <= heavily uses the true stages machinery. We
construct a continuous reduction in stages. To each finite string s,
we associate an approximation to f(x) which consists of a
sequence (Ag, A1, ..., Ap) of sets with nonempty intersection
where A; € A;. True stages control the flow of the construction;
we will have f(x) € A; if |s| is an i-true stage:



Lemma (Montalban 2014, relativized version)

There are partial orders {<y}xew on 2<% and a set Sy C 2<% such
that:

1. <g is the usual prefix ordering: o <o T iffo C T.

2. The empty sequence () has ) <y o for everyc € T.

3. Ifo k417, theno <y 7.

4. Ifo <, 7 and o € Sy, then 7 € 5.

(b) If o CTCpando <gy1pandT <ygp, theno <yi1 7.

Let Ty be the tree T = {(00, .. .,Um)Z i <k oiy1 ANVi <
m(—37(0; <k T <k 0i+1))} of increasing <y sequences. Then for
each x € 2¥ the restriction of Ty to x:

Tk 1 {(00,--.,0m): (Vi)o; C x} has a single infinite branch, and
we say T C x is a k-true stage of x if T is an element in this unique
infinite branch. Then {x: Sy meets the k-true stages of x} is 22+1
complete.



An application: what functions are piecewise continuous?
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Conjecture (2000's, the decomposability conjecture)
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Theorem (Day-M.)

The decomposability conjecture is true assuming 3 determinacy.
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Prior progress

Theorem (Jayne-Rogers, 1982)

The decomposability conjecture is true for n = 2.

Theorem (Ding-Kihara-Semmes-Zhao, 2018)

The decomposability conjecture is true for n = 3.

These theorems are proved the following way: Suppose f: X — Y
is not a union of Baire class m functions with A% domains. Then
construct a ¥9_ . set A whose preimage is not £9 (i.e. f1(A)
is MY hard).

Proposition

To prove the decomposability conjecture, it's enough to prove the
case where m = n — 1.
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topology (X, n) where we make countably many M2 sets in (X, 7)
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The converses of these statements are very false.
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A naive attempt at proving decomposability

» Suppose f: (X,7) — Y is not a union of Baire class n — 1
functions with A% domains.

» Change the topology (X,7) to (X,7) by making some M2 _,
sets in (X, 7) the new basic open sets of (X, 7).

» Then f: (X,n) — Y is not a union of Baire class 1 functions
with A domains.

» Apply the techniques of Ding-Kihara-Semmes-Zhao and
obtain a 9 set A C Y so that f1(A) is not X3 in (X, 7).

> Hope that this set which is not £ in (X, 7) is not £ in the
original topology (X, 7).
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If we add this set to our change of topology and try again, we'll
eventually succeed at some countable ordinal stage. If not, we
would contradict the following:

Theorem (Harrington 1978, AD)

Fix oo < wy. There is no wy length sequence of distinct MY sets.

This way of proving the theorem is cheating. A better way (which
wouldn't use determinacy) would be to use standard
techniques/reflection phenomena from Gandy-Harrington forcing to
define from the outset the correct suitable sequence of sets needed
to witness there is a £9_ ; set with a preimage that is 19 hard.
(See e.g. Louveau's characterization of lightface Al sets that are
boldface X0 for a construction of such suitable sequences).

This is still open.



Thanks!



