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Martin-Löf randomness

A central algorithmic randomness notion for infinite bit sequences

is the one of Martin-Löf. There are several equivalent ways to

define it. Here is one.

Z ∈ 2N is Martin-Löf random ⇐⇒
for every computable sequence (σi)i∈N of binary strings with∑

i 2
−|σi| <∞, there are only finitely many i such that σi is

an initial segment of Z.

Note that limi 2−|σi| = 0, so this means that we cannot “Vitali cover” Z,

viewed as a real number, with the collection of dyadic intervals

corresponding to (σi)i∈N.
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What does a ML-random compute?

I The Kučera-Gacs theorem says that each set A ⊆ N is

Turing below some ML-random Z.

I If A is ∆0
2, we can take Chaitin’s Ω because Ω ≡T ∅′

Conversely, if we are given a ML-random, which sets are Turing

below it?

Theorem (Kučera 1985)

Each ∆0
2 ML-random has a noncomputable c.e. set Turing below it.

Notation: ML stands for Martin-Löf.

MLR is the class of ML-random infinite bit sequences.
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The randomness enhancement principle (N. 2010)

The less a ML-random Z computes, the more random it gets.

Example: Z is called weakly 2-random if Z is in no null Π0
2 class.

This is stronger than ML-randomness.

Weak 2-random ⇐⇒ ML-random and forms a minimal pair with ∅′.

These results suggest a spectrum of randomness strength

I from ML-random (including examples such as Ω that

computes all ∆0
2 sets)

I to weakly 2-random (computing none but the computable

sets).
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Enter the K-trivials

Recall the Schnorr-Levin theorem:

I Z ∈ 2N is ML-random if and only if K(Z � n) ≥+ n.

In the other extreme,

Definition (Chaitin, 1975)

A ∈ 2N is K-trivial if K(A� n) ≤+ K(n).

I computable ⇒ K-trivial

I Chaitin: all K-trivials are ∆0
2

I Solovay, ‘75: there is a noncomputable K-trivial set.

Letters A,B denote K-trivials. Letters Y, Z denote ML-randoms.
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Characterisations of K-trivials

Theorem (Nies-Hirschfeldt;Nies 2003)

The following are equivalent for A ∈ 2N:

1. A is K-trivial.

2. KA =+ K (A is low for K).

3. MLRA = MLR (A is low for ML-randomness).

Theorem (Nies 2003)

1. K-triviality is Turing-invariant.

2. The K-trivial Turing degrees form an ideal contained in the

superlow sets.

3. Every K-trivial set is Turing below a c.e. K-trivial set.
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Basis for randomness

Theorem (Hirschfeldt, Nies, Stephan, 2006)

A ∈ 2N is K-trivial if and only if A ≤T Z for some Z ∈ MLRA.

Left to right follows from the equivalence of K-triviality with

lowness for ML-randomness, and the Kučera-Gacs Theorem.

Proposition (Hirschfeldt, Nies, Stephan, 2006)

If A ≤T Z where A is c.e. and Z is ML-random with ∅′ 6≤T Z,

then Z ∈ MLRA. And hence A is K-trivial.

I In other words, if A is c.e. and NOT K-trivial, then any

ML-random Z ≥T A is above ∅′.
I So there is no version of Kučera-Gacs within the Turing

incomplete sets.
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Characterising the c.e. K-trivials in terms of plain

ML-randomness and computability notions

We’ve seen that every c.e. set below an incomplete ML-random is

K-trivial. The converse stayed open for a while.

Theorem (Bienvenu, Greenberg, Kucera, N., Turetsky ‘16 & Day,

Miller, ’16)

The following are equivalent for a c.e. set:

I A is computable from some incomplete ML-random;

I A is K-trivial.

And in fact, there is a single incomplete ∆0
2 ML-random above all

the K-trivials!
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ML-reducibility
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By 2016 there were 17 or so characterisations of the class, but little

was known about the internal structure of the K-trivials:

They form an ideal in the Turing degrees that is contained in

superlow, generated by its c.e. members, and has no greatest

degree (nonprincipal).

It turns out that Turing reducibility ≤T is too fine to understand the

structure. We are standing too close to see the structure. A coarser

“reducibility” is suggested by the results above.

Definition (main for this talk)

For sets A,B, we write B ≥ML A if

∀Z ∈ MLR [Z ≥T B ⇒ Z ≥T A].

(Any ML-random computing B also computes A.)
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Recall: For sets A,B, we write B ≥ML A if

∀Z ∈ MLR[Z ≥T B ⇒ Z ≥T A].

I A common paradigm: computational lowness means to be not

overly useful as an oracle. ≤LR and other weak reducibilities are

based on this. Later on we will introduce ≤SJT , a weakening of

≤T , also following this paradigm.

I ML-reducibility seeks to understand relative complexity of sets via

an alternative lowness paradigm: computational lowness means

being computed by many oracles.

Some facts

I By HNS 06, the ML-degree of ∅′ contains all the non-K-trivial

c.e. sets. So among the c.e. sets one can focus on K-trivials.

I Each K-trivial A is ML-equivalent to a c.e. K-trivial D ≥T A.

(GMNT, arXiv 1707.00258)
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Structure of the K-trivials w.r.t. ≤ML

I The least degree consists of the computable sets (by the low

basis theorem with upper cone avoiding).

I There is a ML-complete K-trivial, called a “smart” K-trivial.

(BGKNT, JEMS 2016)

I There is a dense hierarchy of principal ideals Bq, q ∈ (0, 1)Q.

E.g., B0.5 consists of the sets that are computed by both “halves”

of a ML-random Z, namely Zeven and Zodd (GMN, JML 2019)

I further interesting subclasses of the K-trivials are downward

closed under ≤ML.

I E.g. the strongly jump traceables, or equivalently the sets

below all the ω-c.a. ML-randoms (by HGN, Adv. Maths 2012,

along with GMNT). 12 / 27



A bit of degree theory for ≤ML on the K-trivials
Recall: B ≥ML A if ∀Z ∈ MLR[Z ≥T B ⇒ Z ≥T A].

Results from GMNT, arxiv 1707.00258

I For each noncomputable c.e. K-trivial D there are c.e.

A,B ≤T D such that A |ML B.

I No minimal pairs.

I For each c.e. A there is c.e. B >T A such that B ≡ML A.

The first is based on a method of Kučera. The second and third use cost

functions.

Density? No idea.

The problem is we don’t even know whether ≤ML is arithmetical. So

it’s hard to envisage a construction showing density. The results also

hold for the even coarser, but arithmetical reducibility where Z is

restricted to the ∆0
2 sets. Density may be easier to show there.
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Cost functions
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Definition

A cost function is a computable function c : N2 → R≥0.

Extra requirements: monotonicity (c(x, s) ≥ c(x+ 1, s) and

c(x, s) ≤ c(x, s+ 1)); finiteness (for all x, c(x) = lims c(x, s)

exists); the limit condition (limx c(x) = 0).

Definition

Let 〈As〉 be a computable approximation of a ∆0
2 set A; let c be a

cost function. The total cost c(〈As〉) is∑
s

c(x, s)[[x is least s.t. As(x) 6= As−1(x)]].

A ∆0
2 set A obeys a cost function c if there is some computable

approximation 〈As〉 of A for which the total cost c(〈As〉) is finite.

Write A |= c for this. There is a c.e. A |= c.
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Cost functions characterising ML-ideals
Recall: a ∆0

2 set obeys c if it can be computably approximated

obeying the “speed limit” given by c.

Let cΩ(x, s) = Ωs − Ωx (where 〈Ωs〉 is an increasing approximation

of Ω).

Theorem (N., Calculus of cost functions, 2017)

A ∆0
2 set is K-trivial if and only if it obeys cΩ.

Let cΩ,1/2(x, s) = (Ωs − Ωx)
1/2.

Theorem (GMN, 2019)

The following are equivalent:

1. A is computed by both halves of a ML-random.

2. A obeys cΩ,1/2.
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Cost functions and computing from randoms

Definition

Let c be a cost function. A c-test is a sequence (Un) of uniformly

Σ0
1 subsets of {0, 1}N satisfying λ(Un) = O(c(n)).

Main Fact

Suppose that Z ∈ MLR is captured by a c-test, and A obeys c.

Then A ≤T Z.

Proof idea: Collect the oracles that may become invalid through

A-change into a Solovay test.

If an approximation of A obeying c changes A(n) at stage s, then Un,s
is listed as a component of the test.

Z is outside almost all components, so Z computes A correctly a.e.
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Definition (ML-completeness for a cost function, GMNT)

Let c ≥ cΩ be a cost function. We say that a K-trivial A is smart

for c if A is ML-complete among the sets that obey c.

Thus A |= c and B ≤ML A for each B |= c.

Theorem (GMNT, extending BGKNT result for cΩ)

For each c ≥ cΩ there is a c.e. set A that is smart for c.

May assume c(k) ≥ 2−k. Build A. There is a particular Turing

functional Γ such that it suffices to show A = ΓY ⇒ Y fails some c-test.

I During construction, let

Gk,s = {Y : ΓYt � 2k+1 ≺ At for some k ≤ t ≤ s}.

I Error set Es: those Y such that ΓYs is to the left of As.

I Ensure λGk,s ≤ c(k, s) + λ(Es − Ek). If this threatens to fail put

next x ∈ [2k, 2k+1) into A. Then 〈Gk〉 is the required c-test.
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ML-completeness for a cost function

Definition (recall)

Let c ≥ cΩ be a cost function. We say that a K-trivial A is smart

for c if A is ML-complete among the sets that obey c.

Theorem (GMNT)

For each K-trivial A there is a cost function cA ≥ cΩ such that A

is smart for cA.

This shows that there are no ML-minimal pairs:

if K-trivials A,B are noncomputable, there is a noncomputable c.e.

D such that D |= cA + cB.

Then D ≤ML A,B.
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Smartness and half-bases

Recall:

Theorem (BGKNT)

Not every K-trivial is a half-base.

Proof.

I Ωeven and Ωodd are low;

I If Y ∈ MLR is captured by a cΩ-test, then it is superhigh.

I So a smart K-trivial is not a half-base.
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Dual reducibility

Definition

For Z, Y ∈ MLR, let Z ≤ML∗ Y if for every K-trivial A,

A ≤T Z ⇒ A ≤T Y .

We say that Z ∈ MLR is feeble for c if Z is captured by a c-test

and has least ML∗-degree among those. For example:

I For rational p ∈ (0, 1), any appropriate “p-part” of Ω is feeble

for cΩ,p.

I Top degree: all randoms captured by a cΩ-test (non

Oberwolfach-randoms).

I Bottom degree: the weakly 2-randoms.
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Pieces of Ω w.r.t. ≤ML∗

I For any infinite computable R ⊆ N, let ΩR be the bits of Ω

with position in R.
I We can define a corresponding cost function cΩ,R similar to

cΩ,p: A obeys cΩ,R ⇐⇒ A ≤T ΩR.
I Thus, ΩR is feeble for cΩ,R.

For each R, let BR be a K-trivial smart for cΩR
.

Theorem (GMNT)

The following are equivalent for infinite, computable R, S ⊆ N:

1. ΩS ≤ML∗ ΩR;

2. BS ≥ML BR;

3. |S ∩ n| ≤+ |R ∩ n|.

For instance, by (3), Ωeven and Ωodd compute the same K-trivials!
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Other weak reducibilities
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I Note that A ≤T B if JA = ΨB for some functional Ψ (where

JX = φXe (e) is the jump of X).

I Suppose B instead only can make a small, small number of

guesses for JA(x)?

Definition (N. 2009; related to Cole and Simpson 06)

We write A ≤SJT B if for each order function h, there is a uniform

list 〈Ψr〉 of functionals such that JA(x), if defined, equals ΨB
r (x)

for some r ≤ h(x).

I A is strongly jump traceable (FNS 05) if A ≤SJT ∅. These sets

are properly contained in the K-trivials.

I There is no ≤SJT -largest K-trivial, essentially by relativizing

this.
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Recall that Y is ω-c.a. if Y ≤wtt ∅′.
Let C be the class of the ω-c.a., superlow, or superhigh sets.

Theorem (Work in progress with Greenberg and Turetsky)

The following are equivalent for K-trivial c.e. sets A,B.

(a) A ≤SJT B
(b) A ≤T B ⊕ Y for each Y ∈ C ∩MLR.

This generalises work of [GHN 2012] where B = ∅.
So we have on the K-trivials that

≤T ⇒ ≤ML ⇒ ≤ω−c.a.−ML

≤T ⇒ ≤SJT ⇒ ≤ω−c.a.−ML

and none of ≤ML, ≤SJT implies the other.
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Questions

I Is being a smart K-trival an arithmetical property? Stronger:

is ≤ML an arithmetical relation?

I Are the ML-degrees of the K-trivials dense?

I Can a smart K-trivial be cappable? Can it obey a cost

function much stronger than cΩ?

I Is there an incomplete ω-c.a. ML-random above all the

K-trivials?
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Some references

I Bienvenu, Greenberg, Kučera, Nies, Turetsky: Coherent

randomness tests and computing the K-trivial sets, JEMS 2016

I Greenberg, J. Miller, Nies: Computing from projections of

random points, JML 2019

I Greenberg, J. Miller, Nies, Turetsky: Martin-Löf reducibility

and cost functions. Early version arxiv 1707.00258
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