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Martin-Lof randomness

A central algorithmic randomness notion for infinite bit sequences
is the one of Martin-Lof. There are several equivalent ways to
define it. Here is one.

7 € 2N is Martin-Lof random <>

for every computable sequence (0;);cy of binary strings with
> 2-19il < o0, there are only finitely many 7 such that o; is
an initial segment of Z.

Note that lim; 27191l = 0, so this means that we cannot “Vitali cover” Z,
viewed as a real number, with the collection of dyadic intervals

corresponding to (0;);eN.
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What does a ML-random compute?

» The Kucera-Gacs theorem says that each set A C N is
Turing below some ML-random Z.

> If Ais AY, we can take Chaitin’s Q because Q) =

Conversely, if we are given a ML-random, which sets are Turing
below it?

Theorem (Kucera 1985)

Each AY ML-random has a noncomputable c.e. set Turing below it.

Notation: ML stands for Martin-Lof.
MLR is the class of ML-random infinite bit sequences.
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The randomness enhancement principle (N. 2010)

The less a ML-random Z computes, the more random it gets.

Example: Z is called weakly 2-random if Z is in no null II class.
This is stronger than ML-randomness.

Weak 2-random <= ML-random and forms a minimal pair with (.

These results suggest a spectrum of randomness strength
» from ML-random (including examples such as ) that
computes all AY sets)
» to weakly 2-random (computing none but the computable

sets).
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Enter the K-trivials

Recall the Schnorr-Levin theorem:

» 7 ¢ 2V is ML-random if and only if K(Z | n) >* n.

In the other extreme,

Definition (Chaitin, 1975)
A € 2V is K-trivial if K(A] n) <t K(n).

» computable = K-trivial
» Chaitin: all K-trivials are Ag

» Solovay, ‘75: there is a noncomputable K-trivial set.

Letters A, B denote K-trivials. Letters Y, Z denote ML-randoms.
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Characterisations of K-trivials

Theorem (Nies-Hirschfeldt;Nies 2003)
The following are equivalent for A € 2N
1. Ais K-trivial.
2. KA =% K (Ais low for K).
3. MLR* = MLR (A is low for ML-randomness).

Theorem (Nies 2003)
1. K-triviality is Turing-invariant.
2. The K-trivial Turing degrees form an ideal contained in the
superlow sets.

3. Every K-trivial set is Turing below a c.e. K-trivial set.
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Basis for randomness

Theorem (Hirschfeldt, Nies, Stephan, 2006)
A € 2V is K-trivial if and only if A < Z for some Z € MLRA.

Left to right follows from the equivalence of K-triviality with
lowness for ML-randomness, and the Kucera-Gacs Theorem.
Proposition (Hirschfeldt, Nies, Stephan, 2006)

If A<r Z where A is c.e. and Z is ML-random with () L1 Z,
then Z € MLR?. And hence A is K-trivial.

» In other words, if A is c.e. and NOT K-trivial, then any
ML-random Z >, A is above (.

» So there is no version of Kucera-Gacs within the Turing
incomplete sets.
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Characterising the c.e. K-trivials in terms of plain

ML-randomness and computability notions

We've seen that every c.e. set below an incomplete ML-random is
K-trivial. The converse stayed open for a while.

Theorem (Bienvenu, Greenberg, Kucera, N., Turetsky ‘16 & Day,
Miller, ’16)

The following are equivalent for a c.e. set:

» A is computable from some incomplete ML-random;
» Ais K-trivial.

And in fact, there is a single incomplete Ay ML-random above all
the K-trivials!
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ML-reducibility
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By 2016 there were 17 or so characterisations of the class, but little
was known about the internal structure of the K-trivials:

They form an ideal in the Turing degrees that is contained in
superlow, generated by its c.e. members, and has no greatest
degree (nonprincipal).

It turns out that Turing reducibility < is too fine to understand the
structure. We are standing too close to see the structure. A coarser

“reducibility” is suggested by the results above.

Definition (main for this talk)
For sets A, B, we write B >, A if

(Any ML-random computing B also computes A.)
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Recall: For sets A, B, we write B >, A if
VZ € MLR[Z >r B= 7 >p A]

» A common paradigm: computational lowness means to be not
overly useful as an oracle. <y and other weak reducibilities are
based on this. Later on we will introduce <gjr, a weakening of
<7, also following this paradigm.

» ML-reducibility seeks to understand relative complexity of sets via
an alternative lowness paradigm: computational lowness means
being computed by many oracles.

Some facts
» By HNS 06, the ML-degree of (/' contains all the non- K -trivial
c.e. sets. So among the c.e. sets one can focus on K-trivials.
» Each K-trivial A is ML-equivalent to a c.e. K-trivial D >r A.
(GMNT, arXiv 1707.00258)

11 / 27



Structure of the K-trivials w.r.t. <yt

» The least degree consists of the computable sets (by the low
basis theorem with upper cone avoiding).

» There is a ML-complete K-trivial, called a “smart” K-trivial.
(BGKNT, JEMS 2016)

» There is a dense hierarchy of principal ideals B,, ¢ € (0, 1)g.
E.g., By 5 consists of the sets that are computed by both “halves”
of a ML-random Z, namely Z,., and Z,4q (GMN, JML 2019)

» further interesting subclasses of the K-trivials are downward
closed under <j;;.

» E.g. the strongly jump traceables, or equivalently the sets
below all the w-c.a. ML-randoms (by HGN, Adv. Maths 2012,
along with GMNT). ) 5



A bit of degree theory for <;;; on the K-trivials
Recall: B >y, AifVZ € MLR[Z >r B=7Z>r A]

Results from GMNT, arxiv 1707.00258
» For each noncomputable c.e. K-trivial D there are c.e.
A,B ST D such that A ‘]WL B.

» No minimal pairs.

» For each c.e. A there is c.e. B >1 A such that B =, A.

The first is based on a method of Kucera. The second and third use cost
functions.

Density? No idea.

The problem is we don’t even know whether <j;;, is arithmetical. So
it’s hard to envisage a construction showing density. The results also
hold for the even coarser, but arithmetical reducibility where 7 is

restricted to the AY sets. Density may be easier to show there.
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Cost functions
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Definition

A cost function is a computable function c: N? — R=Y.
Extra requirements: monotonicity (c(z,s) > c(x + 1, s) and
c(z,s) < c(z,s+ 1)); finiteness (for all z, c(x) = lim, c(z, s)
exists); the limit condition (lim, c(z) = 0).

Definition

Let (A,) be a computable approximation of a A) set A; let ¢ be a
cost function. The total cost c((As)) is

Z c(xz, s)[x is least s.t. Ag(x) # As_1(z)].

A AY set A obeys a cost function c if there is some computable
approximation (Ay) of A for which the total cost c({A;)) is finite.

Write A | ¢ for this. There is a c.e. A |~ c.
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Cost functions characterising ML-ideals

Recall: a AJ set obeys c if it can be computably approximated
obeying the “speed limit” given by c.

Let cq(z, s) = Qs — Q, (where (€) is an increasing approximation
of Q).

Theorem (N., Calculus of cost functions, 2017)

A A set is K-trivial if and only if it obeys cq.

Let cq1/2(z, s) = (s — Q)2
Theorem (GMN, 2019)

The following are equivalent:
1. A is computed by both halves of a ML-random.
2. A obeys cq /2.
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Cost functions and computing from randoms

Definition

Let ¢ be a cost function. A c-test is a sequence (U,,) of uniformly
39 subsets of {0, 1} satisfying A\(U,,) = O(c(n)).

Main Fact
Suppose that Z € MLR is captured by a c-test, and A obeys c.
Then A <, Z.

Proof idea: Collect the oracles that may become invalid through
A-change into a Solovay test.

If an approximation of A obeying c changes A(n) at stage s, then U, ,
is listed as a component of the test.

Z is outside almost all components, so Z computes A correctly a.e.
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Definition (ML-completeness for a cost function, GMNT)

Let ¢ > cq be a cost function. We say that a K-trivial A is smart
for ¢ if A is ML-complete among the sets that obey c.

Thus A |= c and B <j1, A for each B = c.
Theorem (GMNT, extending BGKNT result for cq)

For each ¢ > cq there is a c.e. set A that is smart for c.

May assume c(k) > 27%. Build A. There is a particular Turing
functional T' such that it suffices to show A =T'Y = Y fails some c-test.

» During construction, let
Grs = {Y: T} | 261 < A, for some k < t < s}.

» Error set &: those Y such that Fg/ is to the left of A,.

» Ensure AGy s < c(k,s) + A(Es — &). If this threatens to fail put
next z € [2¥,21) into A. Then (Gy) is the required c-test.
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ML-completeness for a cost function

Definition (recall)
Let ¢ > cq be a cost function. We say that a K-trivial A is smart
for c if A is ML-complete among the sets that obey c.

Theorem (GMNT)
For each K-trivial A there is a cost function ¢4 > cq such that A
is smart for cy4.

This shows that there are no ML-minimal pairs:

if K-trivials A, B are noncomputable, there is a noncomputable c.e.
D such that D = c4 + cp.

Then D <, A, B.
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Smartness and half-bases

Recall:

Theorem (BGKNT)
Not every K-trivial is a half-base.

Proof.
» Qopen and 2,44 are low;

» If Y € MLR is captured by a cq-test, then it is superhigh.

» So a smart K-trivial is not a half-base.
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Dual reducibility

Definition
For Z,Y € MLR, let Z <1 Y if for every K-trivial A,

ASTZ = ASTY

We say that Z € MLR is feeble for c if Z is captured by a c-test
and has least M L*-degree among those. For example:

» For rational p € (0,1), any appropriate “p-part” of € is feeble
for cq .

» Top degree: all randoms captured by a cq-test (non
Oberwolfach-randoms).

» Bottom degree: the weakly 2-randoms.
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Pieces of ) w.r.t. < r+

» For any infinite computable R C N, let Q2 be the bits of {2
with position in R.

» We can define a corresponding cost function cq r similar to
cop: Aobeyscor = A <p Qg

» Thus, (g is feeble for cq g.

For each R, let Br be a K-trivial smart for cq,.

Theorem (GMNT)

The following are equivalent for infinite, computable R, S C N:
1. Qs <pr- Qr;
2. Bs 2u1 Bg;
3. [SNn| <t |RNn.

For instance, by (3), Qepen, and ,44 compute the same K-trivials!
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Other weak reducibilities
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» Note that A <; B if J4 = U for some functional ¥ (where
JX = ¢X(e) is the jump of X).

» Suppose B instead only can make a small, small number of
guesses for J4(x)?

Definition (N. 2009; related to Cole and Simpson 06)

We write A <g; 7 B if for each order function h, there is a uniform
list (¥,) of functionals such that J4(z), if defined, equals W5 (x)
for some r < h(x).

> A is strongly jump traceable (FNS 05) if A <g;7 (). These sets
are properly contained in the K-trivials.

» There is no <gjr-largest K-trivial, essentially by relativizing
this.
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Recall that Y is w-c.a. if Y <y 0.

Let C be the class of the w-c.a., superlow, or superhigh sets.

Theorem (Work in progress with Greenberg and Turetsky)

The following are equivalent for K-trivial c.e. sets A, B.

(a) A<syr B
(b) A<y B®Y for each Y € C N MLR.

This generalises work of [GHN 2012] where B = ().

So we have on the K-trivials that
<r = <ur = <w-ca-ML
<r = <sir = <w-ca-ML

and none of <,;7, <gyr implies the other.
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Questions

» Is being a smart K-trival an arithmetical property? Stronger:
is <y, an arithmetical relation?

» Are the ML-degrees of the K-trivials dense?

» Can a smart K-trivial be cappable? Can it obey a cost
function much stronger than cqg?

» [s there an incomplete w-c.a. ML-random above all the
K-trivials?
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Some references

» Bienvenu, Greenberg, Kucera, Nies, Turetsky: Coherent
randomness tests and computing the K-trivial sets, JEMS 2016

» Greenberg, J. Miller, Nies: Computing from projections of
random points, JML 2019

» Greenberg, J. Miller, Nies, Turetsky: Martin-Lof reducibility
and cost functions. Early version arxiv 1707.00258
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