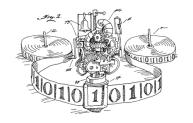
Randomness and ITTM

Benoit Monin

Université Paris-Est Créteil

The ITTM model



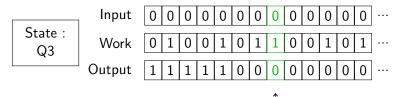
Section 1

The ITTM model

Infinite time Turing machines

An infinite-time Turing machine is a Turing machine with three tapes whose cells are indexed by natural numbers :

- The input tape
- The output tape
- The working tape

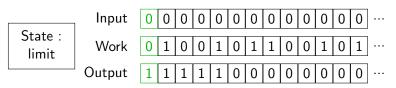


It behaves like a standard Turing machine at successor steps of computation.

Infinite time Turing machines

At limit steps of computation:

- The head goes back to the first cell.
- The machine goes into a "limit" state.
- The value of each cell equals the lim inf of the values at previous stages of computation.



Writable reals

What is the equivalent of computable for an ITTM?

Definition

A real X is **writable** if there in an ITTM M such that :

$$M(0) \downarrow [\alpha] = X$$
 for some ordinal α .

M enters its **halting state** at step $\alpha + 1$

M(0) $\downarrow [\alpha] = X$

M starts with 0 on its input tape

X is on the output tape when M halts

Decidable classes

Which reals are writable?

Definition

A class of real \mathcal{A} is **decidable** if there is an ITTM M such that $M(X) \downarrow = 1$ if $X \in \mathcal{A}$ and $M(X) \downarrow = 0$ if $X \notin \mathcal{A}$.

Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) = 1$ iff n < m) is decidable.

Decide well-orders

Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n,m\rangle)=1$ iff n< m) is decidable.

The algorithm is as follow, where < is the order coded by X:

Algorithm to decide well-orders

When < is empty, write 1 and halts.

Decide well-orders

How to find the smallest element?

```
Algorithm to find the smallest element
Write 1 on the first cell. Set the current element c = +\infty
if state is successor then
    if there exists a < c then
        Update c = a
        Flip the first cell to 0 and then back to 1
    end
else
    if If the first cell is 0 then
        There is no smallest element
    else
    c is the smallest element
    end
end
```

Decidable and writable sets

Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n,m\rangle)=1$ iff n< m) is decidable.

Corollary (Hamkins, Lewis)

Every Π_1^1 set of reals is decidable.

Corollary (Hamkins, Lewis)

Every Π_1^1 set of integers is writable.

Computational power of ITTM

 ω_1^{ck} steps of computations are enough to write any Π_1^1 set of integers. But there is no bound in the ordinal step of computation an ITTM can use.

Using a program that writes Kleene's O, we can design a program which writes the double hyperjump O^O and then $O^{(O^O)}$ and so on.

Where does it stop?

Proposition (Hamkins, Lewis)

Whatever an ITTM does, it does it before stage ω_1 .

Computational power of ITTM

Proposition (Hamkins, Lewis)

Whatever an ITTM does, it does it before stage ω_1 .

The configuration of an ITTM is given by :

- Its tapes
- Its state
- The position of the head.

Let $C(\alpha) \in 2^{\omega}$ be a canonical encoding of the tapes of an ITTM at stage α .

There must be some *limit ordinal* $\alpha < \omega_1$ such that $C(\alpha) = C(\omega_1)$. The full configuration of the machine at step ω_1 is then the same than the one step α .

Computational power of ITTM

$$\omega_1$$
 0 1 0 0 0 0 0 0 0 1 0 0 1 ...

..

$$\sup\nolimits_{n}\alpha_{n}^{+}\quad \boxed{0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1} \, \cdots$$

...

$$\alpha_2^+ > \alpha_1^+$$
 0 1 0 1 0 1 0 0 1 1 1 1 1 ...

$$\alpha_0$$
 0 1 1 1 0 1 0 0 1 1 1 1 1 .

 α_0 : The smallest ordinal such that every cell converging at step ω_1 (in green) will never change pass that point.

 α_{n+1}^+ : The smallest ordinal $> \alpha_n^+$ such that the n+1 non-converging cells (in red) change value at least once in the interval $[\alpha_n^+, \alpha_{n+1}^+]$

Beyond the writable ordinals

Definition (Hamkins, Lewis)

An ordinal α is **writable** if there is an ITTM which writes an encoding of a well-order of ω with order-type α .

Proposition (Hamkins, Lewis)

The writables are all initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let λ be the supremum of the writable ordinals.

Proposition (Hamkins, Lewis)

There is an ITTM which writes λ on its output tape, then leave the output tape unchanged without ever halting.

Beyond the writable ordinals

Proposition (Hamkins, Lewis)

There is a univeral ITTM U which runs simultaneously all the ITTM computations $P_e(0)$ for every $e \in \omega$.

Algorithm to eventually write λ

for every stage *s* **do**

Run the universal machine U for one step.

Compute the sum α_s of all ordinals which are on the output tapes of programs simulated by U[s] and which have terminated.

Write α_s on the output tape.

end

Let s be the smallest stage such that every halting ITTM have halted by stage s in the simulation U.

- We clearly have $\alpha_s \geqslant \lambda$.
- 2 We clearly have that $\alpha_t = \alpha_s$ for every $s \ge t$.

Beyond the eventually writable ordinals

Definition (Hamkins, Lewis)

A real is **eventually writable** if there in an ITTM and a step α such that for every $\beta \geqslant \alpha$, the real is on the output tape at step β .

Proposition (Hamkins, Lewis)

The eventually writable ordinals are an initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let ζ be the supremum of the eventually writable ordinals.

Proposition (Hamkins, Lewis)

There is an ITTM which at some point writes ζ on its output tape.

Beyond the eventually writable ordinals

Algorithm to accidentally write ζ

for every stage s do

Run the universal machine U for one step.

Compute the sum α_s of all ordinals which are on the output tapes of programs simulated by U[s].

Write α_s on the output tape.

end

Let s be the smallest stage such that every ITTM writing an eventually writable ordinal, have done so by stage s in the simulation U. We clearly have $\alpha_s \geqslant \zeta$.

Beyond the eventually writable ordinals

Definition (Hamkins, Lewis)

A real is **accidentally writable** if there in an ITTM and a step α such that the real is on the output tape at step α .

Proposition (Hamkins, Lewis)

The accidentally writables are all initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let Σ be the supremum of the accidentally writables.

Proposition (Hamkins, Lewis)

We have $\lambda < \zeta < \Sigma$.

ITTM and constructibility

Section 2

ITTM and constructibility

The constructibles

Definition (Godel)

The **constructible universe** is defined by induction over the ordinals as follow:

$$\begin{array}{rcl} L_\varnothing &=& \varnothing \\ L_{\alpha^+} &=& \{X\subseteq L_\alpha \ : \ X \text{ is f.o. definable with param. in } L_\alpha\} \\ L_{\sup_n \alpha_n} &=& \bigcup_n L_{\alpha_n} \end{array}$$

Theorem (Hamkins, Lewis)

- If α is writable and $X \in 2^{\omega} \cap L_{\alpha}$ then X is writable.
- If α is eventually writable and $X \in 2^{\omega} \cap L_{\alpha}$ then X is eventually writable.
- If α is accidentally writable and $X \in 2^{\omega} \cap L_{\alpha}$ then X is accidentally writable.

The admissibles

Definition (Admissibility)

An ordinal α is **admissible** if L_{α} is a model of Σ_1 -replacement. Formally for any Σ_1 formula Φ with parameters and any $N \in L_{\alpha}$ we must have :

 $\omega, \omega_1^{ck}, \omega_2^{ck}, \omega_3^{ck}, etc...$ are the first admissible ordinals.

Consider the formula $\exists n \ \forall k < n \ \exists m \ A(n,k,m)$ (with $A \ \Delta_0$). The formula is Σ_1 : This is because if for every k < n, there exists a witness m_k such that $A(n,k,m_k)$, then $\sup_k m_k$ is still finite.

The admissible are the sets for which this property is still true.

The admissibles

Proposition (Hamkins, Lewis)

The ordinals λ and ζ are admissible.

Suppose that for some $N \in L_{\lambda}$ and a Σ_1 formula Φ we have :

$$L_{\lambda} \models \forall n \in N \ \exists z \ \Phi(n, z)$$

We define the following ITTM:

Algorithm to show λ admissible

Write a code for N

for every $n \in N$ **do**

Look for the first writable α_n such that $L_{\alpha_n} \models \exists z \ \Phi(n, z)$

Write α_n somewhere.

end

Write $\sup_{n \in N} \alpha_n$

The admissibles

Proposition (Hamkins, Lewis)

The ordinals λ is the λ -th admissible.

The ordinals ζ is the ζ -th admissible.

Suppose λ is the α -th admissible for $\alpha < \lambda$.

Algorithm to show λ is the λ -th admissible

Write α

while $\alpha > 0$ do

Look for the smallest element e of α and remove it from α Look for the next admissible writable ordinal and write it to the e-th tape

end

Write the smallest admissible greater than all the one written previously.

How big is λ

Definition

An ordinal is **recursively inaccessible** if it is admissible and limit of admissible.

Proposition (Hamkins, Lewis)

The ordinals λ is the λ -th recursively admissible.

The ordinals ζ is the ζ -th recursively admissible.

Definition

An ordinal is **meta-recursively inaccessible** if it is admissible and a limit of recursively inaccessible.

Proposition (Hamkins, Lewis)

The ordinals λ is the λ -th meta recursively admissible.

The ordinals ζ is the ζ -th meta recursively admissible.

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \lambda}$ converges, then for every $\alpha \in [\lambda, \Sigma]$ we have $C_i(\alpha) = C_i(\lambda)$.

Suppose w.l.o.g. that $\{C_i(\alpha)\}_{\alpha<\lambda}$ converges to 0. Let β be the smallest such that for all $\alpha\in[\beta,\lambda]$ we have $C_i(\alpha)=0$.

Algorithm

end

Suppose there is an accidentally writable ordinal $\alpha > \beta$ s.t. $C_i(\alpha) = 1$. Then U will write such an ordinal at some point, and the above program will then write $\alpha > \lambda$ and halt. This is a contradiction.

Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ . In particular, it enters an infinite loop at stage ζ .

The theorem follows from the two following lemmas:

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \zeta}$ converges, then for every $\alpha \in [\zeta, \Sigma]$ we have $C_i(\alpha) = C_i(\zeta)$.

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \zeta}$ diverges, then the sequence $\{C_i(\alpha)\}_{\alpha < \Sigma}$ diverges.

```
Suppose w.l.o.g. that \{C_i(\alpha)\}_{\alpha<\zeta} converges to 0.
Let \beta be the smallest such that for all \alpha\in[\beta,\zeta] we have C_i(\alpha)=0.
The ordinal \beta is eventually writable through different versions \{\beta_s\}_{s\in ORD}
```

Algorithm

end

Suppose there is an accidentally writable ordinal $\alpha>\beta$ s.t. $C_i(\alpha)=1$. Then some ordinal $\alpha'\geqslant\alpha$ will be written at some stage at which β_s has stabilized. Thus the above program will then eventually write some $\alpha'>\zeta$. This is a contradiction.

Suppose $\{C_i(\alpha)\}_{\alpha<\Sigma}$ converges.

Algorithm

end

```
Set \beta=0

for every \alpha>\beta written by U do

Simulate another run of U for \alpha steps

if C_i(\gamma) changes for \gamma\in[\beta,\alpha] then

Let \beta=\alpha

Write \alpha

end
```

The algorithm will eventually write some ordinal α s.t. $\{C_i(\gamma)\}$ does not change for $\gamma \in [\alpha, \Sigma]$. But then α is eventually writable and $\{C_i(\alpha)\}_{\alpha < \zeta}$ converges.

Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ . In particular, it enters an infinite loop at stage ζ .

Corollary (Welch)

 λ is the supremum of the ITTM's halting times.

Indeed, suppose that we have $M(0)\downarrow [\alpha]$ for some M and α accidentally writable. Then we can run $M(0)[\beta]$ for every β accidentally writable until we find one for which M halts, and then write β . Thus α must be writable.

Suppose now that $M(0) \uparrow [\Sigma]$. Then M will never halt. Thus if M halts, it halts at a writable step.

Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ . In particular, it enters an infinite loop at stage ζ .

Corollary (Welch)

- The writable reals are exactly the reals of L_{λ} .
- ullet The eventually writable reals are exactly the reals of L_{ζ} .
- ullet The accidentally writable reals are exatly the reals of L_{Σ} .

We can construct every successive configurations of a running ITTM. Also to compute a writable reals, there are less than λ steps of computation and then less than λ steps of construction. Thus every writable real is in L_{λ} .

The argumet is similar for ζ and Σ .

Definition

Let $\alpha \leqslant \beta$. We say that L_{α} is *n*-stable in L_{β} and write $L_{\alpha} \prec_{n} L_{\beta}$ if

$$L_{\alpha} \models \Phi \leftrightarrow L_{\beta} \models \Phi$$

For every Σ_n formula Φ with parameters in L_α .

Theorem (Welch)

 (λ, ζ, Σ) is the lexicographically smallest triplet such that :

$$L_{\lambda} <_1 L_{\zeta} <_2 L_{\Sigma}$$

Theorem (Welch)

The ordinal Σ is not admissible.

To see this, we define the following function $f: \omega \to \Sigma$:

$$f(0) = \zeta$$

 $f(n) = \text{the smallest } \alpha \text{ s.t. } C(\alpha) \upharpoonright_n = C(\zeta) \upharpoonright_n$

It is not very hard to show that we must have $\sup_{n} f(n) = \Sigma$

$\mathsf{Theorem}\;(\mathsf{Welch})$

The ordinal Σ is a limit of admissible.

Otherwise, if α is the greatest admissible smaller than Σ , one could compute $\Sigma \leqslant \omega_1^{\alpha}$.

ITTM and randomness

Section 4

ITTM and randomness

ITTM and randomness

Definition (Carl, Schlicht)

X is α -random if *X* is in no set whose Borel code is in L_{α} .

Definition

An open set U is α -c.e. if $U = \bigcup_{\sigma \in A} [\sigma]$ for a set $A \subseteq 2^{<\omega}$ such that :

$$\sigma \in A \leftrightarrow L_{\alpha} \models \Phi(\sigma)$$

for some Σ_1 formula Φ with parameters in L_{α} .

Definition (Carl, Schlicht)

X is α -ML-random if X is in no set uniform intersection $\bigcap_n U_n$ of α -c.e. open set, with $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

Projectibles and ML-randomness

Definition

We say that α is **projectible** into $\beta < \alpha$ if there is an injective function $f: \alpha \to \beta$ that is Σ_1 -definable in L_{α} .

The least β such that α is projectible into β is called the **projectum** of α and denoted by α^* .

Theorem (Angles d'Auriac, Monin)

The following are equivalent for α limit such that $L_{\alpha} \models$ everything is countable :

- α is projectible into ω .
- There is a universal α -ML-test.
- α -ML-randomness is strictly stronger than α -randomness.

λ -ML-randomness

Theorem

The ordinal λ is projectible into ω without using any parameters.

Each writable ordinal can be effectively assigned to the code of the ITTM writting it.

Corollary

Most work in Δ_1^1 and Π_1^1 -ML-randomness still work with λ -ML-randomness and λ -randomness. In particular λ -ML-randomness is strictly stronger than λ -randomness.

ζ -ML-randomness

Theorem

The ordinal ζ is not projectible into ω .

Suppose that an eventually writable parameter α can be used to have a projuctum $f:\zeta\to\omega$. Then every eventually writable ordinal become writable using α . Then ζ becomes eventually writable using α . But then ζ is eventually writable.

Corollary

 ζ -randomness coincides with ζ -ML-randomness. An analogue of Ω for ζ -randomness does not exists.

Σ -ML-randomness

Theorem

The ordinal Σ is projectible into ω , using ζ as a parameter.

We can use the fact that (ζ, Σ) is the least pair such that : $C(\zeta) = C(\Sigma)$, with the function :

$$f(0) = \zeta$$

 $f(n) = \text{the smallest } \alpha \text{ s.t. } C(\alpha) \upharpoonright_n = C(\zeta) \upharpoonright_n$

Every ordinal f(n) is then Σ_1 -definable with ζ as a parameter.

As L_{Σ} \models "everything is countable", it follows that every ordinal smaller than f(n) for some n is Σ_1 -definable with ζ as a parameter.

As $\sup_n f(n) = \Sigma$, it follows that every accidentally writable is Σ_1 -definable with ζ as a parameter.

The projectum is then a code for the formula defining each ordinal.

Definition (Hamkins, Lewis)

A class of real \mathcal{A} is **semi-decidable** if there is an ITTM M such that $M(X) \downarrow$ if $X \in \mathcal{A}$.

Definition (Carl, Schlicht)

A sequence X is **ITTM-random** if X is in no semi-decidable set of measure 0.

Definition

We say that X is low for λ if $\lambda^X = \lambda$.

We say that X is low for ζ if $\zeta^X = \zeta$.

We say that X is low for Σ if $\Sigma^X = \Sigma$.

$\mathsf{Theorem}\;(\mathsf{Carl},\,\mathsf{Schlicht})$

The following are equivalent for a sequence X:

- X is ITTM-random
- 2 X is Σ -random and $\Sigma^X = \Sigma$
- **3** X is ζ -random and $\Sigma^X = \Sigma$

Theorem (M., Angles d'Auriac)

We have :

- **1** λ -randoms $\subsetneq \lambda$ -ML-randoms \subsetneq ITTM-randoms
- ② ζ -randoms = ζ -ML-randoms \subsetneq ITTM-randoms
- **③** Σ -randoms ⊆ ITTM-randoms \subsetneq Σ -ML-randoms

Question

Does there exists X such that X is Σ -random but not ITTM random?

 \to Does there exists a Σ -random set X such that $L_{\zeta}[X] \not\downarrow_2 L_{\Sigma}[X]$?

Fact : If X is Σ -random we have $L_{\lambda}[X] \prec_1 L_{\zeta}[X] \prec_1 L_{\Sigma}[X]$

Presumably easier question

Does there exists any set X such that $L_{\zeta}[X] \prec_1 L_{\Sigma}[X]$ but $L_{\zeta}[X] \not\prec_2 L_{\Sigma}[X]$?

Question

Does there exists any set $X \subseteq \omega$ such that $L_{\zeta}[X] \prec_1 L_{\Sigma}[X]$ but $L_{\zeta}[X] \not\nmid_2 L_{\Sigma}[X]$?

We would need a set X which encodes Σ , but with a decoding requiring at least Σ steps to be performed...

Proof sketch by Sy Friedman:

- **1** Perform ζ -Cohen forcing to build a subset $A \subseteq \zeta$ such that for any extension $B \ge A$ with $B \subseteq \Sigma$ we have $L_{\zeta}[B] <_1 L_{\Sigma}[B]$.
- ② Consider the extension B of A which adds only 0 on ordinals bigger than ζ
- **3** Note that we must have $L_{\zeta}[B] \not\leftarrow_2 L_{\Sigma}[B]$ as B is co-final below ζ but not below Σ
- **9** Perform almost disjoint forcing to find a set $x \subseteq \omega$ which is able to encode B in Σ steps and such that $L_{\mathcal{L}}[B][x] \prec_1 L_{\Sigma}[B][x]$

Almost disjoint coding

Given a set $A \subseteq \Sigma$ consider Σ -definable almost disjoint sets $\{X_{\alpha}\}_{{\alpha}<\Sigma}$. The forcing conditions are partial functions $p:\omega \to \{0,1\}$ such that :

- dom $p \cap X_{\alpha}$ is finite for $\alpha \in A$
- $\{n : p(n) = 1\}$ is finite.

A sufficiently generic set $G \subseteq \omega$ will be such that $G \cap X_{\alpha}$ is infinite iff $\alpha \in A$.

$$\rightarrow L_{\Sigma}[A][G] = L_{\Sigma}[G]$$
 and $L_{\zeta}[A][G] = L_{\zeta}[G]$.

We can the use the real G to decode $A \subseteq \Sigma$ but so to speak only one ordinal at a time, when they appear. In order to do so we need to make sure each X_{α} is Cohen-generic over L_{α} relative to $\{X_{\gamma}\}_{\gamma<\alpha}$.

Almost disjoint coding

Almost disjoint coding was used by Beller, Jensen and Welch in a 300 pages proof called "coding the universe" to show that any model M of ZFC is a submodel of L[X] for some $X \subseteq \omega$.

The idea is:

- First to make M a submodel of L[A] for $A \subseteq ORD$ a proper class of ordinals (done by Lévy).
- Then to perform iterated almost disjoint coding to be able to retrieve more and more of A as more and more ordinals become available. This step is decomposed cardinal by cardinal.

Another question raised

As we play with stability, this leads to another question.

Theorem (Sacks)

A countable ordinal α is admissible iff $\alpha = \omega_1^X$ for some X.

Can we obtain a similar result with ITTM?

Question

Let α, β, γ be countable ordinals such that $L_{\alpha} <_1 L_{\beta} <_2 L_{\gamma}$. Do we have $X \subseteq \omega$ such that $\alpha = \lambda^X, \beta = \zeta^X$ and $\gamma = \Sigma^X$?

Conjecture: yes with some forcing involving almost disjoint coding.

Some positive result with ITTM-genericity

Definition

A co-meager set is a countable intersection of dense open sets. The complement of a co-meager set is a meager set.

Definition

We say that X is generic over L_{α} if X is in every dense open set with code in L_{α} .

Definition

We say that X is ITTM-generic if X is in no ITTM-semi-decidable meager set.

Genericity

The theorem relating ITTM-genericity and genericity over L_{Σ} holds like for ITTM-randomness :

$\mathsf{Theorem}$

Let X be a real. Then X is ITTM-generic $\leftrightarrow X$ is generic over L_{Σ} and $\Sigma^X = \Sigma$

But in fact

Theorem

If G is generic over L_{Σ} then $L_{\zeta}[G] <_2 L_{\Sigma}[G]$. In particular $\Sigma^G = \Sigma$.

Corollary

ITTM-genericity and genericity over L_{Σ} are two equivalent notions.

Questions summary

Question

Let α, β, γ be countable ordinals such that $L_{\alpha} <_1 L_{\beta} <_2 L_{\gamma}$. Do we have $X \subseteq \omega$ such that $\alpha = \lambda^X, \beta = \zeta^X$ and $\gamma = \Sigma^X$?

Question

Does there exists a Σ -random set X such that $L_{\zeta}[X] \nmid_2 L_{\Sigma}[X]$?