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Motivation

We represent problems as formulas:
P :=Vx(A(x) — Jy B(x,y)).
N~ ~———
domain matrix

Can we find a system of (at least) second-order arithmetic A and a
calculus C such that the following holds for two problems P and Q7

AF"Q <w P”
2N
CHP = Q.
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Results in this direction

Theorem (Hirst and Mummert 2019)

Suppose P and Q are nice problems of the form

P :=Vx(A(x) = JyB(x,y))
Q :=Vu(C(u) — IvD(u, v)).

then the following are equivalent:
a) iRCA§ proves Q with one typical use of P,
b) iRCAF F Q <w P.

Theorem (Fujiwara 2020)
Several characterization results of Weihrauch reducibility in
E-PA¥ /E-PA" | +AC¥ /NJ-AC®0 / QF-ACO0,

Both results rely on a special proof structure
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A first approach

Theorem 6.4 (Kuyper JSL 2017)

Characterizes compositional Weihrauch reducibility in RCAq using
ELo (elementary intuitionistic analysis)+ MP (Markov's principle).

Theorem 7.1 (Kuyper JSL 2017)

Characterizes Weihrauch reducibility in RCAq using (ELg + MP)3*2
that is defined like ELg + MP but

» contraction is only allowed for formulas without function
quantifiers and

> weakening is only allowed for subformulas of daA where A
does not contain function quantifiers.

Counterexamples (Uftring M.Sc. thesis 2018)
But the general idea seems to be correct.
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The goal

Consider

X (A(x) = 3y B(x,y))

P:=V
Q = VYu'(C(u) — 3viD(u, v))

Theorem (Simplified)
The following are equivalent:
a) E-LPAY +TI* proves P' — Q'
b) E-PA¥ + QF-AC®0 4T proves Q < P
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Linear Logic
Every formula is a resource
Symbols of linear logic
» Conjunctions: A®Q B, A& B
» Disjunctions: A% B, A® B
> Modal: A, 7A
» Involution: At
> Abbreviation: (A — B) := At 7% B
Embedding of classical logic into linear logic
A* = A where A is atomic,
(—A)* = (A*)4
(AAB)" =A"®B",
(AVB)* =A"7B",
(A— B)* := A® — B".
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Linear Logic (Intuition)
Every argument must be used exactly once:

Examples

FARB—oB®A

FA—o(B—A®B)

FA—oARA
FIA— AR A
FARB—A
FARIB—-A

Dualities

We cannot simply multiply A.
We may use !A as often as we like.

We must use B.

We may choose to use !B not at all.

(Ao By = At ® Bt
(1A)t =24

Connectives % and “?" do not have a simple intuition.
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Motivating a linear predicate

Problem: Quantifiers in problems cause problems
Solution: Proof theory on nonstandard arithmetic
(van den Berg, Briseid, Safarik 2012)
Standard Predicate

> st(x) Ax =y —st(y)

» st(t.) where t. is closed

> st(f) Ast(x) — st(fx)

> ®(0) AVERO(®(n) — D(n+ 1)) — VtnOd(n)
Nonstandard Dialectica only extracts information about standard
values.

Idea: Adapt this predicate to linear logic

» Only extract information about the Weihrauch reduction

» Uniform extraction that works with problems involving
quantifiers
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E-LPAY
Extensional Linear Peano Arithmetic in all finite types with linear
predicate consists of the following three parts:

» The axioms and rules of linear logic,
> The axioms of E-PA“ translated to linear logic,

» Additional axioms for the new linear predicate /:

F4(te) HAL 1A, FO(t) —o £(t) @ U(t)

nl>
6 (8), (), £(tr)
F (VxP3yPaxy =¢ 0)1, IYH(Vx(ax(Yx) =0 0)®!({(a) — £(Y)))
Abbreviations: £, 4 .— Vx(£(x) —o A)
XA = Ix(U(x) ® )
IXA 1= 3Ix((x) ® € =0 0® A)

Fore:=0and e:=1, foA behaves like 3'xA and L, respectively.
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Formalization of Weihrauch reducibility

Problems

X (A(x) = 3y'B(x,y))

P:=V
Q :=Vu(C(v) = IV D(u, v))

In E-LPAY
" L P = VO (AY(x) — 3B (x,y))

Q =Vl (C*(u) — IVID*(u,v))

Weihrauch reducibility formalized using associates
There are closed terms t and s such that the formulas
Vil (C(u) = t-ul ANA(t - 1))
and  Vu',y (C(u) A B(t-u,y) = s-j(u,y)L A D(u,s - j(u,y)))
hold.
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The Characterization of Weihrauch reducibility

Theorem (Uftring 2018, 2020)

Let A(x1), B(x,y'), C(u'), and D(u,v') be formulas of E-PA“.
Let I be a set of formulas of the same language. Consider:

+ VEX]'(A.(X) —o Elfle'(x,y)) —o Vgul(C'(u) —o Elfle'(u, v)).
The following are equivalent:
a) E-LPAY 4T* proves the sequent.
b) E-APAY +I'* proves the sequent.
c) E-PA® 4+ QF-AC%0 4T proves both
Clu) = t-ul NA(t - u)
and C(u)/\B(t'u7y)_>5'j(u7y)\l//\D(u75'j(u7Y))

for some closed terms t* and s' of L(E-PAY).
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Godel’s Dialectica interpretation for linear logic

Inspired by work due to de Paiva (1991), Shirahata (2006), and
Oliva (2008-2011):
|A| := A for unnegated + nonlinear atomic A,
AL

As B\”k = (k=0 00 |AR) ® (1k #0 0@ [BIY),

(JAlY)* for unnegated atomic A,

(A& BID, o = (Thk =0 0 — |A}) & (Tk #0 0 — |B}),
A BLE =AM ® (BIE,

A® Blrg = AR @ [Blg

[EFZ1 = JZ|Af7,

VZA[§ = Vz|A[7,

7A], =73X|A[},

1A =IVY[AfS.

Biggest modification: Quantified values are not interpreted
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Interpretation of the linear predicate

Interpreting the standard predicate (simplified)
st = x =t

Constructing a term §—1

(T})) = 7P.
Hereditary version of associates (Kleene, Kreisel 1959)
cong(st, t%) = IxO(sx #0 0) AVX(sx #9 0 — sx =q t + 1),
con, (s, t7P) = VxP, yP(con,(x,y) — con,(sx, ty)).
Theorem: For each closed term t there is some t with con(%, t).
Interpreting the linear predicate

[(t)]* := con®(x, t)
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“History” of our functional interpretation

Godel’s Dialectica

7N

Nonstandard Dialectica
(van den Berg, Briseid, Safarik 12)

N, S

Linear Dialectica + linear predicate

|

Linear Dialectica + linear predicate + computability

Linear Dialectica
(de Paiva 91 / Shirahata 06)
+ Oliva 08-11
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Soundness Theorem of Dialectica for E-LPAY

Theorem
Let Ay, ..., A, be formulas of L(E-LPAY'), and T a set of formulas
in L(E-PA¥), and assume that E-LPAY 4-T* (or E-APA7 +T°)
proves

F AL A,

then E-LPAY +T'* (or E-APA} +T*) proves

F1ALRS, - - -5 [Anl3n

Xp?

for tuples of terms ag, ..., a, where the free variables of each a;
are among those in the sequence of terms xg, . .., Xj—1,Xj+1y -« -, Xn-
In particular, the variables x; are not free in a;.

Proof.

Induction on the proof length, i.e., for all rules. O
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Proof sketch for the Characterization Theorem
Given a proof of the following in E-LPA} +I* + QF-AC%0:

F szl(A.(X) —o Elile'(x,y)) —o Vzul(C'(u) —o Elﬁle'(u, v)).

“6 :: 171

F VX (A®(x) —o 1)) —o Veul(C*(u) —o 1).
Extract term t’ mapping each & with C(u) to an X with A(x)
= Associate t computing for each v with C(u) an x with A(x)

“e := 0" 4+ previous result

FVt (3B (t - u,y) —o C*(u) — FVID®(u, v)).

Extract term s’ mapping each &, ¥ with B(t - u,y) and C(u) to ¥ with
D(u, v).
= Associate s computing for each v and y with B(t- u,y) and C(u) a v
with D(u, v).
Associates t and s compute the Weihrauch reduction in E-PA¥ +I O
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The Characterization of Weihrauch reducibility (pretty)

Theorem (Uftring 2020)

Let A(x1), B(x,y'), C(u'), and D(u,v') be formulas of E-PA“.
Let I be a set of formulas of the same language. Consider:

F VX (A®(x) — Fy1B%(x,y)) —o Viul (C*(u) — FvID*(u, v)).
The following are equivalent:
a) E-LPAY 4T* proves the sequent.
b E-APAY +T* proves the sequent.
c) E-PA® 4+ QF-AC%0 4T proves both
Clu) = t-ul NA(t - u)
and C(u)/\B(t-u,y)—>s-j(u,y)¢/\D(u,s-j(u,y))

for some closed terms t* and s' of L(E-PAY).
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Making the result more pretty

What happens if we use 3’ instead of 3¢?
In affine logic, we need it to ensure that the first Weihrauch
program halts:

Vi (A*(x) — 3y B*(x,))
Vet (C*(u) —o IvID*(u, v))

Here, an affine proof might drop the premise.

Thus, it does not (necessarily) contain a method for producing x
with A(x) from u with C(u).

Conclusion: Affine logic prevents us from using the premise more
than once, but not from using the premise not at all.
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Making the result more pretty

How did we solve this problem? ;
What happens if we use 3¢ instead of 3¢?

VEx(A®(x) —o Jyt(e =0 0 ® B*(x,y)))
VO (C*(u) —o Fvi(e =0 0 ® D*(u, v)))

Assume there were an affine proof that does not use the premise.
C must not contain the variablee =— C — L
This entails a trivial Weihrauch reduction

This solution is a bit “hacky”, can it be improved?
Yes, but not in affine logic
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Making the result more pretty

Why do we care for affine logic?
Our verifying system E-PA“ 4+ QF-AC%? 4T is classical

Fr
T ™

In a classical verifying system, interpreting weakening is trivial.

Linear Dialectica does not retrieve more information than Affine
Dialectica

Solution: Use something that is not Dialectica in order to capture
that Linear Logic has no (affine) weakening.
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Idea: Apply tags to linear predicates
Suppose we have a proof

VixH(A*(x) — FyiB*(x,y))

éw\ —o \[ﬁ
Veul(C(u) — 3vID*(u,v))

How can we make sure that the proof is structured in a certain
way?

Idea: Apply tags to both negatively occurring linear predicates.
Follow these tags through the proof. If both left £ and both right ¢
have the same tag, this implies a proof in the style of a Weihrauch
reduction.

Next step: Show that in a linear setting, this is the only possible

configuration for tags.
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Simplified phase semantics for Linear Logic

Phase space

Multiplicative monoid P := {0, 1} together with antiphases
1:={1} CP.

Involution
Qt:={pcP:VgcQ pgc l}forQCP

Facts
Subsets Q of P with Q1+ = Q. Qis validiff1 € Q
» 0:=(: Non-valid fact
» 1:={1}: Valid fact
» T:={0,1}: Valid fact
{0}t =0t =T #{0} = {0} isnot a fact
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Simplified phase semantics for Linear Logic
Assume that Q and R are subsets of the phase space P

Connectives

QR :={qr:qe Qand re R}
Q&R =QUR
7 =QU1

QPR =(QTeQH)*
RPR=QNR
IRQ:=QnN1

P—oQ=1{s:gseRforall gc Q}
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Simplified phase semantics for Linear Logic

The following is valid

since the fact 1 is valid.

Is the following valid?
T—1

We know T —o 1 =0 is not a valid fact.

Conclusion: Our semantics reject (affine) weakening!
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Soundness of phase semantics

Lemma

Let T be a set of formulas such that E-PA® +T + QF-AC%0 js
consistent.

If E-LPA} +-I'* proves the sequent

FA,
then it holds semantically with respect to P, i.e.

= A.

Corollary

E-LPAY +T* rejects (affine) weakening for I where
E-PA“ 4T + QF-AC%? js consistent.
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Dialectica with tags

We introduce a new modified Dialectica that applies one of two
possible tags to each linear predicate.

Tags of linear predicates that occur
P> negatively can be chosen arbitrarily,

» positively are determined by the functional interpretation.

For simplification, we use tags with the following colors:
> red tags with semantics 1,
» blue tags with semantics 0 or T.

In the case of blue tags, the choice must be uniform.
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Proving the (prettier) Theorem

We apply the following tags (red and blue):
F VX (A®(x) — 3y1B%(x,y)) —o Viul (C®(u) — FVID*(u, v)).

The functional interpretation might give one of the following
colorings:

F VXL (A%(x) — 1B (x, y)) —o Viul(C*(u) — FvID*(u, v)).
F VA (A% (x) — 3B (x,y)) —o Viul (C®(u) — FVID*(u, v)).
F VXL (A% (x) — Iy B2 (x, y)) —o Viul(C*(u) — FVID*(u, v)).
F VXL (A%(x) —o 1B (x, y)) —o Viul(C*(u) — FVID*(u, v)).

Only the second variant is possible for both semantics of blue tags.
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Proving the (prettier) Theorem

F VA (A% (x) — 3B (x,y)) —o Viul (C®(u) — FVID*(u, v)).

The linear predicates with blue tags may be replaced by a certain
class of formulas.
We choose:

U(x) = €(x) ® (e =0 0)

Thus, we can use the above sequent to prove the following:

F VX (A®(x) —o 3Ey1B%(x,y)) —o Yiul(C®(u) — FvID*(u, v)).

In fact, the provability of both sequents in E-LPAY +1* is
equivalent. O
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The Characterization of Weihrauch reducibility (pretty)

Theorem (Uftring 2020)

Let A(xY), B(x,y'), C(u?), and D(u, v') be formulas of E-PA“.
Let I be a set of formulas of the same language. Consider:

F VXL (A%(x) —o Fy1B® (X, y)) —o Youl(C*(u) — FVID*(u, v)).

The following are equivalent:
a) E-LPAY 4T proves the sequent.
b) E-PA“ 4+ QF-AC%C 4T proves both

Clu) = t-ul NA(t- u)
and CuyANB(t-u,y) —s-j(u,y)L AND(u,s-j(u,y))

for some closed terms t! and s' of L(E-PA¥).
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