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The project

In a 2015 Dagstuhl seminar I asked “What do the Weihrauch
hierarchies look like once we go to very high levels of reverse
mathematics strength?”

In other words, I proposed to study the multi-valued functions
arising from theorems which lie around ATR0 and Π1

1-CA0.

People who have contributed to this project so far include Takayuki
Kihara, Arno Pauly, Jun Le Goh, Jeff Hirst, Paul-Elliot Anglès
d’Auriac, and my students Manlio Valenti and Vittorio Cipriani.
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Represented spaces

A representation σX of a set X is a surjective partial function
σX : ⊆NN → X.

The pair (X,σX) is a represented space.

If x ∈ X a σX -name for x is any p ∈ NN such that σX(p) = x.

Representations are analogous to the codings used in reverse
mathematics to speak about various mathematical objects in
subsystems of second order arithmetic.



The negative representation of closed
sets

Let (X,α, d) be a computable metric space.

In the negative representation of the set A−(X) of closed subsets
of X a name for the closed set C is a sequence of open balls with
center in D and rational radius whose union is X \ C.
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When X = NN or X = 2N the negative representation is
computably equivalent to the representation of C by a tree
T ⊆ N<N such that [T ] = C.



Realizers

If (X,σX) and (Y, σY ) are represented spaces and f : ⊆X ⇒ Y a
realizer for f is a function F : ⊆NN → NN such that
σY (F (p)) ∈ f(σX(p)) whenever f(σX(p)) is defined, i.e. whenever
p is a name of some x ∈ dom(f).

p ∈ NN F //

σX

��

F (p) ∈ NN

σY
��

x ∈ X //
f
// y ∈ f(x)

Notice that different names of the same x ∈ dom(f) might be
mapped by F to names of different elements of f(x).

f is computable if it has a computable realizer.



Weihrauch reducibility
Let f : ⊆X ⇒ Y and g : ⊆Z ⇒W be partial multi-valued
functions between represented spaces. f ≤W g means that the
problem of computing f can be computably and uniformly solved
by using in each instance a single computation of g.

Φ ΨG

F

p F (p)

If G is a realizer for g then F is a realizer for f .

1 Φ : ⊆NN → NN is a computable function that modifies (a
name for) the input of f to feed it to g;

2 Ψ : ⊆NN × NN → NN is a computable function that, using
also (the name for) the original input, transforms (the name
of) any output of g into (a name for) a correct output of f .



Arithmetic Weihrauch reducibility

Arithmetic Weihrauch reducibility is obtained from Weihrauch
reducibility by relaxing the condition on Ψ and Φ and requiring
them to be arithmetic rather than computable.

It is immediate that f ≤W g implies f ≤aW g.

Arithmetic Weihrauch reducibility was introduced by Kihara-Anglès
D’Auriac and independently by Goh.

This might be the most appropriate reducibility for multi-valued
functions above ACA0.



The Weihrauch lattice

≤W is reflexive and transitive and induces the equivalence relation
≡W. The ≡W-equivalence classes are called Weihrauch degrees.

The partial order on the sets of Weihrauch degrees is a distributive
bounded lattice with several natural and useful algebraic
operations: the Weihrauch lattice.



Products

The parallel product of f : ⊆X ⇒ Y and g : ⊆Z ⇒W is
f × g : ⊆X × Z ⇒ Y ×W defined by

(f × g)(x, z) = f(x)× g(z).

The compositional product f ? g satisfies

f ? g≡W max
≤W

{f1 ◦ g1 | f1≤W f ∧ g1≤W g}

and thus is the hardest problem that can be realized using first g,
then something computable, and finally f .



Parallelization

If f : ⊆X ⇒ Y is a multi-valued function, the (infinite)
parallelization of f is the multi-valued function f̂ : XN ⇒ Y N with
dom(f̂) = dom(f)N defined by f((xn)n∈N) =

∏
n∈N f(xn).

f̂ computes f countably many times in parallel.

f is parallelizable if f̂ ≡W f .

The finite parallelization of f is the multi-valued function
f∗ : X∗ ⇒ Y ∗ where X∗ =

⋃
i∈N({i} ×Xi) with

dom(f∗) = dom(f)∗ defined by f∗(i, (xj)j<i) = {i}×
∏
j<i f(xj).



Some examples

• The limited principle of omniscience is the function
LPO : NN → 2 such that LPO(p) = 0 iff ∀i p(i) = 0.

• lim : ⊆(NN)N → NN maps a convergent sequence in Baire
space to its limit.

lim is parallelizable, while LPO is not (and in fact L̂PO≡W lim).



Choice functions

Let X be a computable metric space and recall that A−(X) is the
space of its closed subsets represented by negative information.

CX : ⊆A−(X)⇒ X is the choice function for X: it picks from a
nonempty closed set in X one of its elements.

UCX : ⊆A−(X)→ X is the unique choice function for X: it picks
from a singleton (represented as a closed set) in X its unique
element (in other words, UCX is the restriction of CX to
singletons).

TCX : A−(X)⇒ X is the total continuation of the choice
function for X: it extends CX by setting TCX(∅) = X.

In general we have UCX ≤W CX ≤W TCX and, for example,
CN<W TCN and C2N ≡W TC2N .

It is important for us that UCNN <W CNN <W TCNN .



The Weihrauch lattice
and reverse mathematics

We can locate theorems in the Weihrauch lattice by looking at the
multi-valued functions they naturally translate into.

In most cases the Weihrauch lattice refines the classification
provided by reverse mathematics: statements which are equivalent
over RCA0 may give rise to functions with different Weihrauch
degrees.

Weihrauch reducibility is finer because requires both uniformity
and use of a single instance of the harder problem.

We have a good understanding of the connection between reverse
mathematics and the Weihrauch lattice for levels up to ACA0:

• computable functions correspond to RCA0;

• C2N corresponds to WKL0;

• lim and its iterations correspond to ACA0.



Arithmetical Transfinite Recursion

ATR is the function producing, for a well-order X, a jump
hierarchy along X.

Theorem (Kihara-M-Pauly)

UCNN ≡W ATR.

ATR2 is the function producing, for a linear order X, either a jump
hierarchy along X or a descending sequence in X.

Theorem (Goh)

UCNN <W ATR2<W CNN .



Comprehension functions around
ATR0 and Π1

1-CA0

Tr is the set of subtrees of N<N.
If T ∈ Tr then [T ] is the set of the infinite paths through T .

• Σ1
1-Sep : ⊆(Tr× Tr)N ⇒ 2N has domain
{ (Sn, Tn)n∈N | ∀n¬([Sn] 6= ∅ ∧ [Tn] 6= ∅) } and maps
(Sn, Tn)n∈N to ATR0

{ f ∈ 2N | ∀n([Sn] 6= ∅ → f(n) = 0) ∧ ([Tn] 6= ∅ → f(n) = 1) }.
• ∆1

1-CA is the restriction of Σ1
1-Sep to

{ (Sn, Tn)n∈N | ∀n([Sn] = ∅ ↔ [Tn] 6= ∅) }. < ATR0

• χΠ1
1

: Tr→ 2 such that χΠ1
1
(T ) = 0 iff T is ill-founded.

• Π1
1-CA = χ̂Π1

1
maps (Tn)n∈N to the characteristic function of

{n ∈ N | [Tn] 6= ∅ }. Π1
1-CA0

Theorem (Kihara-M-Pauly)

UCNN ≡W Σ1
1-Sep≡W ∆1

1-CA.



Comparability of well-orders

WO is the set of well-orders on N.

• CWO : WO×WO→ NN maps a pair of well-orders to the
order preserving map from one of them onto an initial
segment of the other. ATR0

• WCWO : WO×WO⇒ NN maps a pair of well-orders to the
order preserving maps from one of them to the other. ATR0

Theorem (Kihara-M-Pauly)

CWO≡W ŴCWO≡W UCNN .

Theorem (Goh)

WCWO≡W UCNN .



The perfect tree theorem
The Perfect Tree Theorem asserts that if T ∈ Tr, then either [T ] is
countable or T has a perfect subtree.

• PTT1 : ⊆Tr⇒ Tr maps a tree with uncountably many paths
to the set of its perfect subtrees. ATR0

• List : ⊆Tr⇒ (NN)N maps a tree with no perfect subtree to a
list of its paths, including the number of paths. ATR0

• wList : ⊆Tr⇒ (NN)N maps a tree with no perfect subtree to
a list of its paths, without information about the number of
paths. ATR0

• PTT2 : ⊆Tr⇒ Tr× (NN)N maps a tree to a pair (T ′, (pn))
such that either T ′ is a perfect subtree of T or (pn) lists all
elements of [T ]. ATR0

Theorem (Kihara-M-Pauly)

wList≡W List≡W UCNN <W PTT1≡W CNN <W

<W TCNN <W PTT2<W TC∗NN ≡W PTT∗2<W Π1
1-CA.



Recap

UCNN , ATR, Σ1
1-Sep, ∆1

1-CA
CWO, WCWO, List, wList

ATR2

CNN , PTT1

TCNN

PTT2

TC∗NN , PTT∗2

Π1
1-CA



Further results around ATR0

Further work has been carried out on:

• open and clopen determinacy (Kihara-M-Pauly);

• König’s duality theorem (Goh);

• functions corresponding to Σ1
1-AC0 and Σ1

1-DC0 (Anglès
D’Auriac-Kihara).



Spaces of infinite sets

We work in the space [N]N of infinite subsets of N.
A member of [N]N can be identified with the strictly increasing
function that enumerates it.

If X ∈ [N]N then [X]N is the set of infinite subsets of X.

Notice that if f (increasingly) enumerates X, then
[X]N = { f · g | g is strictly increasing }.

Every [X]N, and in particular [N]N, is a closed subspace of NN.
Thus [X]N is a Polish space, and in fact is isometric to NN.



Homogeneous sets

If P ⊆ [N]N we let

H(P ) = {X ∈ [N]N | [X]N ⊆ P ∨ [X]N ∩ P = ∅ }
= { f ∈ [N]N | ∀g(f · g ∈ P ) ∨ ∀g(f · g /∈ P ) }.

The elements of H(P ) are called homogeneous sets for P .
If [X]N ⊆ P then X lands in P .
If [X]N ∩ P = ∅ then X avoids P .

Notice that a given P can have both homogeneous sets landing in
P and homogeneous sets avoiding P .

P is Ramsey if H(P ) 6= ∅, i.e. if there exist homogeneous sets for
P .



Which subsets of [N]N are Ramsey?

• Every clopen set is Ramsey (Nash-Williams)

• Every Borel set is Ramsey (Galvin-Prikry)

• Every analytic set is Ramsey (Silver)

• (ZFC + measurable cardinals) Every Σ1
2 set is Ramsey (Silver)

• (ZF + ADR) Every set is Ramsey (Prikry)



The reverse mathematics of the
infinite Ramsey theorem

• Every clopen set is Ramsey ATR0

• Every open set is Ramsey ATR0

• Every ∆0
2 set is Ramsey Π1

1-CA0

• Every Borel set is Ramsey Π1
1-TR0

• Every analytic set is Ramsey Σ1
1-MI0



Representing open and clopen sets

Σ0
1([N]N) is the represented space of open subsets of [N]N.

A name for P ∈ Σ0
1([N]N) is a list of finite strictly increasing

sequences (σi) such that X ∈ P if and only if ∃i σi @ X.

This representation is equivalent to representing [N]N \ P as an
element of A−([N]N).

∆0
1([N]N) is the represented space of clopen subsets of [N]N.

A name for D ∈∆0
1([N]N) consists of two names for members of

Σ0
1([N]N): one for D and one for [N]N \D.

This representation is equivalent to representing D and [N]N \D as
elements of A−([N]N).



Some observations about the open
Ramsey theorem

Fix P ⊆ [N]N open.

• The set of elements of H(P ) which avoid P is closed;
given a name 〈P 〉 for P it is easy to define a tree T〈P 〉 such
that [T〈P 〉] is precisely this set.

• The set of elements of H(P ) which land in P is Π1
1;

it can be Π1
1-complete.

The ATR0 proof of open determinacy in Simpson’s book proceeds
by assuming that there is no set avoiding P and using the
well-foundedness of T〈P 〉 to construct a set landing in P .

This proof is asymmetric: to find a set avoiding P it suffices to
find a path in T〈P 〉 (even if there are sets landing in P ), yet it gives
no clue about building a set landing in P when there exist sets
avoiding P .



Multi-valued functions associated to
the open Ramsey theorem

full Σ0
1-RT : Σ0

1([N]N)⇒ [N]N defined by Σ0
1-RT(P ) = H(P );

strong open FindHSΣ0
1

:⊆ Σ0
1([N]N)⇒ [N]N defined by

dom(FindHSΣ0
1
) = {P ∈ Σ0

1([N]N) | H(P ) ∩ P 6= ∅ } and

FindHSΣ0
1
(P ) = H(P ) ∩ P ;

strong closed FindHSΠ0
1

:⊆ Σ0
1([N]N)⇒ [N]N defined by

dom(FindHSΠ0
1
) = {P ∈ Σ0

1([N]N) | H(P ) * P } and

FindHSΠ0
1
(P ) = H(P ) \ P ;

weak open wFindHSΣ0
1

is the restriction of FindHSΣ0
1

to

{P ∈ Σ0
1([N]N) | H(P ) ⊆ P };

weak closed wFindHSΠ0
1

is the restriction of FindHSΠ0
1

to

{P ∈ Σ0
1([N]N) | H(P ) ∩ P = ∅ }.



Multi-valued functions associated to
the clopen Ramsey theorem

full ∆0
1-RT : ∆0

1([N]N)⇒ [N]N defined by
∆0

1-RT(D) = H(D);

strong FindHS∆0
1

:⊆∆0
1([N]N)⇒ [N]N defined by

dom(FindHS∆0
1
) = {D ∈∆0

1([N]N) | H(D) ∩D 6= ∅} and

FindHS∆0
1
(D) = H(D) ∩D;

weak wFindHS∆0
1

is the restriction of FindHS∆0
1

to

{D ∈∆0
1([N]N) | H(D) ⊆ D }.



Between UCNNand CNN

Theorem (M-Valenti)

UCNN ≡W wFindHSΣ0
1
≡W wFindHS∆0

1
≡W ∆0

1-RT.

Theorem (M-Valenti)

UCNN <W wFindHSΠ0
1
≤W CNN ≡W C2N ? wFindHSΠ0

1
.

Theorem (M-Valenti)

CNN ≡W FindHS∆0
1
≡W FindHSΠ0

1
.



Σ0
1-RT is fairly strong

Theorem (M-Valenti)

Σ0
1-RT�W CNN , TCNN <W C2N ?Σ

0
1-RT and

wFindHSΠ0
1
<W Σ0

1-RT.



FindHSΣ0
1

is very strong

Theorem (M-Valenti)

Σ0
1-RT<W FindHSΣ0

1
, TCNN × CNN <W FindHSΣ0

1
,

CNN ?Σ0
1-RT<W FindHSΣ0

1
and χΠ1

1
<W FindHSΣ0

1
.

Thus FindHSΣ0
1

escapes the levels of complexity found so far for
multi-valued functions connected to ATR0 and approaches
Π1

1-CA0. We do not know whether Π1
1-CA≤W FindHSΣ0

1
.

It is however true that the restatement of the open Ramsey
theorem arising from FindHSΣ0

1
is quite unnatural:

if P is open and not all homogeneous sets avoid P ,
then there exists an homogeneous set landing in P .



Some arithmetic results

Theorem (M-Valenti)

• wFindHSΠ0
1
≡aW CNN ;

• CNN <aW Σ0
1-RT ≡aW TCNN ;

• Σ0
1-RT <aW FindHSΣ0

1
.



Recap

UCNN ,wFindHSΣ0
1
,wFindHS∆0

1
,∆0

1-RT

wFindHSΠ0
1

CNN ,FindHS∆0
1
,FindHSΠ0

1

TCNN

Σ0
1-RTC2N ?Σ

0
1-RT

FindHSΣ0
1



Perfect kernels of trees

The Perfect Kernel Theorem asserts that if T ∈ Tr, then T has a
largest (possibly empty) perfect subtree, called the perfect kernel
of T .

Let PKTr : Tr→ Tr be the function that maps a tree T to its
perfect kernel. Π1

1-CA0

Theorem (Hirst)

Π1
1-CA≡W PKTr.



The Cantor-Bendixson Theorem for
trees

The Cantor-Bendixson Theorem asserts that if T ∈ Tr, then T has
a (possibly empty) perfect subtree T ′ such that [T ] \ [T ′] is
countable.

CBTr : Tr⇒ Tr× (NN)N maps a tree T to the pairs consisting of
the perfect kernel T ′ of T and a list of [T ] \ [T ′], including the
number of members of this set. Π1

1-CA0

wCBTr : Tr⇒ Tr× (NN)N maps a tree T to the pairs consisting of
the perfect kernel of T and a list of [T ] \ [T ′], without information
about the number of members of this set. Π1

1-CA0

Theorem (Cipriani-M-Valenti)

Π1
1-CA≡W wCBTr≤W CBTr.



Perfect kernels of closed sets

The perfect kernel theorem extends to closed sets in Polish spaces.

For X a computable metric space let PKX : A−(X)→ A−(X) be
the function mapping a closed set C to its perfect kernel, i.e. the
largest perfect closed subset of C. Π1

1-CA0

Theorem (Cipriani-M-Valenti)

1 PK2N ≡W PKNN ;

2 PKNN and χΠ1
1
are incomparable;

3 PKNN <W Π1
1-CA≤W lim ?PKNN ;

4 PKNN �W CNN ;

5 Π1
1-CA ≡aW PKTr ≡aW PK2N ≡aW PKNN .

We do not know whether CNN ≤W PKNN .



The Cantor-Bendixson Theorem for
closed sets

The Cantor-Bendixson Theorem also extends to closed sets in
Polish spaces.

For X a computable metric space CBX : A−(X)⇒ A−(X)×XN

maps a closed set C to the pairs consisting of the perfect kernel C ′

of C and a list of the elements of C \ C ′, including the number of
members of this set. Π1

1-CA0

wCBX : Tr⇒ A−(X)⇒ A−(X)×XN maps a closed set C to
the pairs consisting of the perfect kernel C ′ of C and a list of the
elements of C \ C ′, without information about the number of
members of this set. Π1

1-CA0

Theorem (Cipriani-M-Valenti)

PKNN <W CBNN .



The end

Thank you for your attention!
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