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Reverse mathematics over weak base theory

L Introduction

Reverse mathematics

> Reverse mathematics studies the strength of axioms needed to
prove various mathematical theorems. This is done by proving
implications between the theorems and/or various logical
principles over a relatively weak base theory.

» Often, the theorem is H% of the form YX3Yw, and its strength
is related to the difficulty of computing Y given X.

» In the early days, many theorems were proved equivalent to
one of a few principles like “for each set, its jump exists” etc.

» Later work: theorems from e.g. Ramsey theory form a great
mess of (non)implications (the “reverse mathematics zoo”).

» Today'’s talk: we focus on the base theory.
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Reverse mathematics over weak base theory

leroduction

Usual base theory: RCA,

Language:
vbles x,y,z,...,i,j, k... for natural numbers;
vbles X, Y, Z, ... for sets of naturals; symbols +,-,2%,<,0,1,€.

Axioms:
> +,-,2* etc. have their usual basic properties,

> A‘f comprehension: if X = Xi,..., X; are sets and v (x, X)
is computable relative to X, then {n: ¢ (n,X)} is a set.

> ¥ induction: if X are sets and v (x, X) is r.e. relative to X,

theny(0,X)AVn (y(n,X) =>y(n+1,X) = Vny(nX).
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Weaker base theory: RCA;

Language:
vbles x,y,z,...,i,j, k... for natural numbers;
vbles X, Y, Z, ... for sets of naturals; symbols +,-,2%,<,0,1,€.

Axioms:
> +,-,2* etc. have their usual basic properties,
> A‘f comprehension: if X = Xi,..., X; are sets and v (x, X)
is computable relative to X, then {n: ¢ (n,X)} is a set.
> A‘l) induction: if X are sets and v (x, X) is computable relative to
X, theny(0,X) AVn (y(n,X) = y(n+1,X) = Vny(nX).

Introduced in Simpson-Smith 86. Studied a bit both in traditional
reverse maths and “reverse recursion theory”. Most results have had
the form “this still holds over RCA;” or “this is equivalent to RCAy”.
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Reverse mathematics over weak base theory

L Introduction

What is the zoo like over RCA;?

Main principles we consider:
> RT%: for every f: [N]? — 2 there is infinite HS N
such that f[ ;. = const.

» CAC: for every partial ordering < on N there is infinite H <N
such that (H, <) is either a chain or an antichain.

> ADS: in every linear ordering < on N there is either an infinite
ascending sequence or an infinite descending sequence.

> CRT%: for every f: [N]?> — 2 there is infinite HZ N
such that Vxe HIye HVze H(z= y= (f(x,2) = f(x,1))).

Over RCA, we have RT5 = CAC = ADS = CRT5. (HS07; LST 13)
How do these principles behave over RCA;?
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Reverse mathematics over weak base theory

L Introduction

What does failure of IZ) mean?

If amodel (M, &) of RCA(’)k is not a model of RCAy,
then X¢ induction fails:

> thereisa Z(l’ definable proper cutJ
(contains 0, closed downwards and under +1),

» there is an infinite (zunbounded) set Ae & s.t. A={a;: i€ ]}
enumerated in increasing order. We can say that |A| = J.

A M (et
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Reverse mathematics over weak base theory

Llnlroduclion

Two flavours of Ramsey-theoretic principles

In RCAj, “for every f there exists infinite H S N...”
can mean (at least) one of two things:

> “for every f there exists unbounded H € N...” (normalversion),
> “for every f there exists H < N with |H| =N s.t. ...” (fat version).

We will consider both versions, starting with normal.
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Reverse mathematics over weak base theory

L Normal versions

Normal versions: relativization to cuts

Given a proper cut J in (M, %) = RCAy, the family Cod(M/]) is
{BNnJ:Be %'}. This family depends only on M and /, not on &'.

If J is closed under x — 2%, then (J, Cod(M/]) satisfies WKL
(= RCAg + “every infinite tree in {0, 1N hasa length-N path”).
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LNormal versions

Normal versions: relativization to cuts
Given a proper cut J in (M, %) |= RCA;, the family Cod(M/]) is
{BnJ:Be Z}. This family depends only on M and J, not on &'.

If J is closed under x— 2%, then (J, Cod(M/]) satisfies WKL
(= RCAS + “every infinite tree in {0, 1N hasa length-N path”).

Theorem
Let (M, %) = RCA; and let] < M be a proper Z(l’-deﬁnable cutin M.
Lety be any of (normal) RTY, CAC, ADS, CRT%. Then:

(M, Z) =V iff J,Cod(M/])) = V.
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Normal versions: relativization to cuts
Given a proper cut J in (M, %) |= RCA;, the family Cod(M/]) is
{BnJ:Be Z}. This family depends only on M and J, not on &'.

If J is closed under x— 2%, then (J, Cod(M/]) satisfies WKL
(= RCAS + “every infinite tree in {0, 1N hasa length-N path”).

Theorem
Let (M, %) = RCA; and let] < M be a proper Z(l’-deﬁnable cutin M.
Lety be any of (normal) RTY, CAC, ADS, CRT%. Then:

(M, Z) =V iff J,Cod(M/])) = V.

We have a more general sufficient condition for this equivalence.
Note that L.h.s. does not depend on J, r.h.s does not depend on &'!
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Reverse mathematics over weak base theory

L Normal versions

A useful fact about coding

Theorem
Let (M, %) = RCAj and let ] < M be a proper Z‘l)-deﬁnable cutin M.
Lety be any of (normal) RT}, CAC, ADS, CRT%. Then:

M, Z) =Y iff U,Cod(M/]) = Y.
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Reverse mathematics over weak base theory

LNormal versions

A useful fact about coding

Theorem
Let M, %) |= RCA(’; and let ] < M be a proper Z(l’ -definable cut in M.
Let v be any of (normal) RT?, CAC, ADS, CRT%. Then:

(M, Z) VY iffd,Cod(M/)) = V.

We will prove the (=) direction for RT%.
Both directions are similar and rely on the following fact about Cod.
Fact (essentially Chong-Mourad 1990)

Let (M, %) = RCA, let] be a proper cutin M, let % 3 A={a;: i€ J}.
Then for every & 3 BS A, the set{i€ J: a; € B} is in Cod(M/]).

9/22



Reverse mathematics over weak base theory

LNormal versions

Proving (M, %) = RT5 = (J,Cod(M/])) = RT5.

Proof.

Let Ae & be such that A= {a;: i€ J}. Let f: [J1*> — 2 be coded.
Define a colouring of [A]? by ]”(ail, ai,) = f(i1, ip)

Extend f to [M]? by looking at nearest elements of A.

Use RT% in (M, Z) to get H< M homogeneous for f.

By Chong-Mourad, H={ieJ:Hn(a;_1,a; # @} is in Cod(M/]).

This set H is homogeneous for f. O
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Reverse mathematics over weak base theory

L Normal versions

Normal versions: what else can be said

If ¥ is the normal version of a Ramsey-theoretic principle (such as
one of our RT3, CAC, ADS, CRT3), the following things follow from
the characterization in terms of cuts:
> If (M, %) = ¥ and (lightface) Z, induction fails in M,
then (M, A;-Def(M)) = W. Le., ¥ is computably true in M!
> RCA; + V¥ does not prove any Hg sentences that are unprovable
in RCAj (i.e., RCAj + W is Hg-conservative over RCAy).
> RCA; +V is arithmetically conservative over RCAy iff
WKL ¥ (and then we also have I1; -conservativity).

(In the case of CRT%, this gives a negative answer to a question of Belanger.)
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L Normal versions

Normal versions: what else can be said

If ¥ is the normal version of a Ramsey-theoretic principle (such as
one of our RT3, CAC, ADS, CRT3), the following things follow from
the characterization in terms of cuts:
> If (M, %) = ¥ and (lightface) Z, induction fails in M,
then (M, A;-Def(M)) = W. Le., ¥ is computably true in M!
> RCA; + V¥ does not prove any Hg sentences that are unprovable
in RCAj (i.e., RCAj + W is Hg-conservative over RCAy).
> RCA; +V is arithmetically conservative over RCAy iff
WKL ¥ (and then we also have I1; -conservativity).
(In the case of CRT%, this gives a negative answer to a question of Belanger.)
Also worth mentioning:
» The implications RT% = CAC = ADS and RT% = CRT% still hold
in RCA;j. We do not know if CAC = CRT% holds.
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Reverse mathematics over weak base theory

L Fat versions

Fat versions: what is ADS?

Many principles have one natural fat version. In many cases it is
easily seen to imply RCAy. (E.g. fat-RTg, by Yokoyama 2013.)

For ADS, the issue is delicate:

> fat-ADS®®": “for every linear ordering < on N, there is H with
|H| =N s.t. 5, < either always agree or always disagree on H”.

> fat-ADS®®9: “for every linear ordering < on N, there is i: N — N
which is either an ascending or a descending sequence in <.

RCA; proves fat-RT3 = fat-CAC = fat-ADS®®" = fat-ADS®®.
Over RCA, we also have fat-ADS*¢ < fat-ADSS¢4.
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Reverse mathematics over weak base theory

L Fat versions

Some fat principles are strong

Theorem
Over RCAg, fat-ADS**" implies RCA,.
Proof.

> Assume IZ(I’ fails, so we have unbounded A= {a;: i€ J}
for proper £{-definable cut J.

> If x€la;ai+1) and y € [a;, aj,1) for i< j, set x< y.
> Ifx,y€laj ai1), setx < yiff x> y.

» Then all x-ascending sets have cardinality at most J,
and all <-descending sets are finite. So, fat-ADS®®! fails.
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Reverse mathematics over weak base theory

L Fat versions

Some fat principles are less strong

Theorem
Over RCA(j, (normal) ADS and fat-ADS®**Y are equivalent.
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Reverse mathematics over weak base theory

LFat versions

Some fat principles are less strong

Theorem
Over RCA(j, (normal) ADS and fat-ADS®**Y are equivalent.

We will prove the implication in WKL, using a variant of the
grouping principle (cf. Patey-Yokoyama 2018) specific to RCA;.

Definition
EFG (Ever fatter grouping principle) says: “for every f: [N]> — 2,
there exists an infinite family of finite sets Gy < G; <.... such that:

> the cardinalities | G;| grow to N as i increases,

» foreach i< j, we havef[G,,ij = const”.
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Reverse mathematics over weak base theory

L Fat versions

EFG pictured

G Gz

—
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Reverse mathematics over weak base theory

L Fat versions

EFG pictured
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Theorem
WKL + 129 proves EFG.
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Reverse mathematics over weak base theory

LFat versions

Proving EFG

We use the “thinning out from below/from above” method
(cf. K-Yokoyama 2020). Let f: [N]?> — 2 be given.

> Assuming —I12%, we have the usual cut J and set A= {a;: i € J}.

» Wlo.g., we have (i) |[a;, air1)| > 2% and (ii) |[a;, air1)| > |J].

Let Gy = [0, ap), G) = ag, @), Gy = [a1, @) etc.
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(cf. K-Yokoyama 2020). Let f: [N]?> — 2 be given.

> Assuming —I12%, we have the usual cut J and set A= {a;: i € J}.

» Wlo.g., we have (i) |[a;, air1)| > 2% and (ii) |[a;, air1)| > |J].

Let G = [0, a), G} = [ao, ), G = a1, @) etc.
» Using (i), take large Glc Gg, G% c G‘l), G; c Gg,
50 that f] ! constant for each xe G, i<j.
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L Fat versions

Proving EFG

We use the “thinning out from below/from above” method
(cf. K-Yokoyama 2020). Let f: [N]?> — 2 be given.

> Assuming —I12%, we have the usual cut J and set A= {a;: i € J}.

» Wlo.g., we have (i) |[a;, air1)| > 2% and (ii) |[a;, air1)| > |J].

Let Gy = [0, ap), G) = ag, @), Gy = [a1, @) etc.

> Given fixed k, using (ii) lets us take large G?c Gllc, ey G(Z) c Gé
so that f[, ;2 constant foreach i< j < k.
i
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L Fat versions

Proving EFG

We use the “thinning out from below/from above” method
(cf. K-Yokoyama 2020). Let f: [N]?> — 2 be given.

> Assuming —I12%, we have the usual cut J and set A= {a;: i € J}.

» Wlo.g., we have (i) |[a;, air1)| > 2% and (ii) |[a;, air1)| > |J].
Let Gy = [0, ap), G) = ag, @), Gy = [a1, @) etc.

» Such finite approximations to a witness to EFG form a binary
tree. Take infinite path provided by WKL. O
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Reverse mathematics over weak base theory

L Fat versions

Proving ADS + EFG = fat-ADS®**4

Let linear ordering < on N be given. We can assume —112(1).

» By EFG, we get Gy < G; < G... s.t. for i # j, points in G; are
either all <-above or all 5-below all points in G;.

» So, there is an induced <-ordering on the set of G;’s. By ADS,
there is (w.l.0.g.) a descending sequence Gj, = Gj, = Gj, ...
where iy < ij < ... The numbers | G;, | grow to N with k.

> Build length-N <-decreasing sequence by enumerating G;,
in -decreasing order, then G;, in <-decreasing order etc. [

A similar argument shows that WKL + CRT% proves fat-CRTg.
For colourings given by linear orderings (= transitive colourings),
WKL can be eliminated from proof of EFG.
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Reverse mathematics over weak base theory

L Fat versions

Normal and fat principles: summary

RCA¢ + RT5 —— RCA + CAC —— RCA( +ADS

fat-CRT%

LD

RT; CAC ADS CRT}

\—/’

Red implication known in the presence of WKL.
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Reverse mathematics over weak base theory
LThc case of COH

The curious case of COH

The principle COH is: “for every family {R, : x € N} of subsets of N,
there exists infinite H < N such that for each x,
either V*°ze H(z€ Ry) or V®°ze H(z¢ Ry)".

This strengthens CRT%: think of f(x,y) as y € Ry.
But here, f(x,) must stabilize on H for each x, not just for x€ H.

Over RCAy, RT% proves COH. Even if we do not require |H| =N, COH
has a certain “fat” aspect, due to the “for each x” condition.

How strong is COH over RCA;?
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Reverse mathematics over weak base theory
LThe case of COH

The curious case of COH (cont'd)

Theorem
A model of RCAj of the form (M, Ay -Def(M)) never satisfies COH.

Corollary
RCA} + RT3 does not prove COH.
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LThe case of COH

The curious case of COH (cont'd)

Theorem
A model of RCAj of the form (M, Ay -Def(M)) never satisfies COH.

Corollary
RCA; + RT% does not prove COH.

Proof of Theorem.

Like over RCAg, COH implies that for any set A and any two disjoint
2, (A)-sets, there is a set Band a A (B)-set separating them.

But RCA]) is enough to prove that there are disjoint X,-sets

with no separating (lightface) A,-set. O

That is pretty much all we know about COH over RCA.
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Reverse mathematics over weak base theory

LConclusion

Some open problems

» Does ADS or CAC imply CRT5 over RCA;?
> Can the grouping principle EFG be proved in RCA;j + —|IZ(1)?

» What is the strength of COH?
Does it imply 1292 Is it TIJ-conservative over RCA}?
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Reverse mathematics over weak base theory

L Conclusion

Coming soon...

Small teaser: things we have just started writing up.

>

For ¥ a Hé statement, RCAj + ¥

is I'[i -conservative over RCA; + —112(1’ iff WKL + —|IZ? proves V.

The above is false without the extra condition —|IZ(1).

For any n, the maximal I} theory that is I1} -conservative
over RCAg + B2 + -12Y is recursively axiomatized.

(Here BZ(,)Z is basically another name for IA(,),.)

If RCAg + RT% is ‘v’l'[g-conservative over BZg,
then it is H}-conservative over BZ(Z).
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L Conclusion

Coming soon...

Small teaser: things we have just started writing up.

>

For ¥ a Hé statement, RCAj + ¥
is I'[i -conservative over RCA; + —112(1’ iff WKL + —|IZ? proves V.

The above is false without the extra condition —|IZ(1).

For any n, the maximal I} theory that is I1} -conservative
over RCAg + B2 + -12Y is recursively axiomatized.

(Here BZ(,)Z is basically another name for IA(,),.)

If RCAg + RT% is ‘v’l'[g-conservative over BZg,
then it is H}-conservative over BZ(Z).

Thank you!
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