
The interplay of randomness and genericity

Laurent Bienvenu (CNRS & Université de Bordeaux)
Christopher P. Porter (Drake University)

Computabilty Theory and Applications
Online seminar
November 10, 2020



Randomness and genericity in
computability theory

(Algorithmic) randomness and genericity are central concepts of
computability theory.

A real (or infinite binary sequence) is “generic” if it is “typical” from
the point of view of Baire category theory.

A real is “random” if it is “typical” from the point of view of
measure theory.

0. 2/32



Randomness and genericity in
computability theory

(Algorithmic) randomness and genericity are central concepts of
computability theory.

A real (or infinite binary sequence) is “generic” if it is “typical” from
the point of view of Baire category theory.

A real is “random” if it is “typical” from the point of view of
measure theory.

0. 2/32



Randomness and genericity in
computability theory

(Algorithmic) randomness and genericity are central concepts of
computability theory.

A real (or infinite binary sequence) is “generic” if it is “typical” from
the point of view of Baire category theory.

A real is “random” if it is “typical” from the point of view of
measure theory.

0. 2/32



A quick reminder

Definition
A real X ∈ 2ω is (Cohen) weakly n-generic if X belongs to every
dense ∅(n−1)-effectively open set.

Definition
A real X ∈ 2ω is (Cohen) n-generic if for every ∅(n−1)-effectively
open set U , either X belongs either to U or X belongs to the
interior of U c (equivalently, for every ∅(n−1)-c.e. set of strings S,
there is an n such that X ↾ n ∈ S or X ↾ n has no extension in S).

Strict hierarchy: weak-1-generic⇐ 1-generic⇐ weak-2-generic⇐ 2-generic . . .

0. 3/32



A quick reminder

Definition
A real X ∈ 2ω is (Cohen) weakly n-generic if X belongs to every
dense ∅(n−1)-effectively open set.

Definition
A real X ∈ 2ω is (Cohen) n-generic if for every ∅(n−1)-effectively
open set U , either X belongs either to U or X belongs to the
interior of U c (equivalently, for every ∅(n−1)-c.e. set of strings S,
there is an n such that X ↾ n ∈ S or X ↾ n has no extension in S).

Strict hierarchy: weak-1-generic⇐ 1-generic⇐ weak-2-generic⇐ 2-generic . . .

0. 3/32



A quick reminder

Definition
A real X ∈ 2ω is (Cohen) weakly n-generic if X belongs to every
dense ∅(n−1)-effectively open set.

Definition
A real X ∈ 2ω is (Cohen) n-generic if for every ∅(n−1)-effectively
open set U , either X belongs either to U or X belongs to the
interior of U c (equivalently, for every ∅(n−1)-c.e. set of strings S,
there is an n such that X ↾ n ∈ S or X ↾ n has no extension in S).

Strict hierarchy: weak-1-generic⇐ 1-generic⇐ weak-2-generic⇐ 2-generic . . .

0. 3/32



A quick reminder

Definition
For n ≥ 2 a real X ∈ 2ω is weakly n-random if for every sequence
of uniformly ∅(n−2)-effectively open sets (Un) with µ(Un) → 0, we
have X /∈

∩
n Un.

Definition
A real X ∈ 2ω is n-random if for every sequence of uniformly
∅(n−1)-effectively open sets (Un) with µ(Un) ≤ 2−n, X /∈

∩
n Un.

Strict hierarchy: 1-random⇐ weak-2-random⇐ 2-random . . .

0. 4/32



A quick reminder

Definition
For n ≥ 2 a real X ∈ 2ω is weakly n-random if for every sequence
of uniformly ∅(n−2)-effectively open sets (Un) with µ(Un) → 0, we
have X /∈

∩
n Un.

Definition
A real X ∈ 2ω is n-random if for every sequence of uniformly
∅(n−1)-effectively open sets (Un) with µ(Un) ≤ 2−n, X /∈

∩
n Un.

Strict hierarchy: 1-random⇐ weak-2-random⇐ 2-random . . .

0. 4/32



A quick reminder

Definition
For n ≥ 2 a real X ∈ 2ω is weakly n-random if for every sequence
of uniformly ∅(n−2)-effectively open sets (Un) with µ(Un) → 0, we
have X /∈

∩
n Un.

Definition
A real X ∈ 2ω is n-random if for every sequence of uniformly
∅(n−1)-effectively open sets (Un) with µ(Un) ≤ 2−n, X /∈

∩
n Un.

Strict hierarchy: 1-random⇐ weak-2-random⇐ 2-random . . .

0. 4/32



Randomness vs genericity

Random reals and generic real “look” very different. A random real
looks... random (satisfies the law of large numbers in every base
and in every subsequence), whereas a generic looks nothing like
this (for example, the frequency of zeroes on initial segments
oscillates between 0 and 1).

0. 5/32



Randomness vs genericity

In fact, for sufficiently high levels of randomness and genericity,
the two notions are completely orthogonal.

Theorem (Nies, Stephan, Terwijn)
If X is 2-random and Y is 2-generic, then (X, Y) form a minimal pair
(for Turing reducibility).

0. 6/32



Randomness vs genericity

However, this orthogonality no longer holds at lower levels of
randomness. While generics are always bad at computing
randoms (folklore result: no 1-generic can compute a 1-random),
the opposite is not true.

• For any n-generic Y, there is a 1-random X such that X ≥T Y
(Kučera-Gács).

• For any 2-random X, there exists a 1-generic Y such that
X ≥T Y (Kautz).

0. 7/32



Randomness vs genericity

However, this orthogonality no longer holds at lower levels of
randomness. While generics are always bad at computing
randoms (folklore result: no 1-generic can compute a 1-random),
the opposite is not true.

• For any n-generic Y, there is a 1-random X such that X ≥T Y
(Kučera-Gács).

• For any 2-random X, there exists a 1-generic Y such that
X ≥T Y (Kautz).

0. 7/32



Randomness vs genericity

However, this orthogonality no longer holds at lower levels of
randomness. While generics are always bad at computing
randoms (folklore result: no 1-generic can compute a 1-random),
the opposite is not true.

• For any n-generic Y, there is a 1-random X such that X ≥T Y
(Kučera-Gács).

• For any 2-random X, there exists a 1-generic Y such that
X ≥T Y (Kautz).

0. 7/32



Between 1- and 2-

This raises the following question: can we get a more complete
picture of the interplay between randomness and genericity when
“randomness” is somewhere between 1-randomness and
2-randomness and/or genericity between 1-genericity and
2-genericity?

0. 8/32



Between 1- and 2-
We will look at:

0. 9/32



Demuth randomness

Anω-c.a. function g : N → N is a ∆0
2 function with a computable

approximation such that for each n, the number of mind changes
for g(n) is bounded by h(n) for some computable bound h.

Definition
Let (Ve) be an enumeration of all c.e. open sets. A Demuth test is
a sequence (Vg(n)) where g is anω-c.a. function and for all n,
µ(Vg(n)) ≤ 2−n. A real X ∈ 2ω is Demuth random if for every
Demuth test (Vg(n)), X only belongs to finitely many Vg(n)’s.

0. 10/32



A closer look at Kautz’s result

Recall Kautz’s theorem: every 2-random computes a 1-generic.
Originally, proof framed as a “measure-risking” strategy.

However, it is more informative to frame it via a so-called fireworks
argument (Shen).

0. 11/32



A closer look at Kautz’s result

Recall Kautz’s theorem: every 2-random computes a 1-generic.
Originally, proof framed as a “measure-risking” strategy.

However, it is more informative to frame it via a so-called fireworks
argument (Shen).

0. 11/32



A closer look at Kautz’s result

Suppose we walk into a fireworks shop.
• The fireworks sold there are very cheap so we are suspicious

that some of them are defective.

• Since they are cheap we can ask the owner to test a few of
them before buying one.

• Our goal: either buy a good one (untested) and take it
home OR get the owner to fail a test, and then sue him.

0. 12/32



A closer look at Kautz’s result

Suppose we walk into a fireworks shop.
• The fireworks sold there are very cheap so we are suspicious

that some of them are defective.
• Since they are cheap we can ask the owner to test a few of

them before buying one.

• Our goal: either buy a good one (untested) and take it
home OR get the owner to fail a test, and then sue him.

0. 12/32



A closer look at Kautz’s result

Suppose we walk into a fireworks shop.
• The fireworks sold there are very cheap so we are suspicious

that some of them are defective.
• Since they are cheap we can ask the owner to test a few of

them before buying one.
• Our goal: either buy a good one (untested) and take it

home OR get the owner to fail a test, and then sue him.

0. 12/32



A closer look at Kautz’s result

Clearly there is no deterministic strategy which works in all cases.
There is however, for any δ > 0, a probabilistic strategy which
wins with probability > 1− δ.

• Fix n such that 1/n < δ.
• Pick a number k at random between 0 and n.
• Test the k first fireworks (stop if you get a bad one!).
• Buy the (k+ 1)-th box.

This works because the only bad case is when k+ 1 is the
position of the first bad box.

0. 13/32



A closer look at Kautz’s result

Clearly there is no deterministic strategy which works in all cases.
There is however, for any δ > 0, a probabilistic strategy which
wins with probability > 1− δ.

• Fix n such that 1/n < δ.
• Pick a number k at random between 0 and n.
• Test the k first fireworks (stop if you get a bad one!).
• Buy the (k+ 1)-th box.

This works because the only bad case is when k+ 1 is the
position of the first bad box.

0. 13/32



A closer look at Kautz’s result

Clearly there is no deterministic strategy which works in all cases.
There is however, for any δ > 0, a probabilistic strategy which
wins with probability > 1− δ.

• Fix n such that 1/n < δ.
• Pick a number k at random between 0 and n.
• Test the k first fireworks (stop if you get a bad one!).
• Buy the (k+ 1)-th box.

This works because the only bad case is when k+ 1 is the
position of the first bad box.

0. 13/32



Back to our construction of Y. Let (Se) be an enumeration of all
c.e. sets of strings. We want to satisfy for all e:

(Re): either for some n we have Y ↾ n is in Se

or for some n, no extension of Y ↾ n is in Se

We build Y by finite extension, starting initially with the empty
string.

0. 14/32



Back to our construction of Y. Let (Se) be an enumeration of all
c.e. sets of strings. We want to satisfy for all e:

(Re): either for some n we have Y ↾ n is in Se

or for some n, no extension of Y ↾ n is in Se

We build Y by finite extension, starting initially with the empty
string.

0. 14/32



Back to our construction of Y. Let (Se) be an enumeration of all
c.e. sets of strings. We want to satisfy for all e:

(Re): either for some n we have Y ↾ n is in Se

or for some n, no extension of Y ↾ n is in Se

We build Y by finite extension, starting initially with the empty
string.

0. 14/32



The algorithm for a requirement e and global error probability δ:

Step 1 Pick a number ke between 1 and some q(e, δ) at random,
with

∑
e 1/q(e, δ) < δ. Set the ‘error counter’ to 0

Step 2 (a) Suppose we have already built some initial segment σ of X.
Make the passive guess that there is no extension of σ in Se

(b) Start handling other requirements. If we discover that our
guess was wrong, increase error counter by 1 and go back to
Step 2.a.

(c) If the error counter is < ke, go back to the beginning of
Step 2; if it is = ke, go to Step 3.

Step 3 Stop everything else we were doing for other requirements.
Let σ be the initial segment built so far; wait for some
extension τ of σ to appear in Se, and if so, let τ be our new
initial segment of X and declare the requirement satisfied
(otherwise, stay stuck in this loop forever).

0. 15/32



The algorithm for a requirement e and global error probability δ:

Step 1 Pick a number ke between 1 and some q(e, δ) at random,
with

∑
e 1/q(e, δ) < δ. Set the ‘error counter’ to 0

Step 2 (a) Suppose we have already built some initial segment σ of X.
Make the passive guess that there is no extension of σ in Se

(b) Start handling other requirements. If we discover that our
guess was wrong, increase error counter by 1 and go back to
Step 2.a.

(c) If the error counter is < ke, go back to the beginning of
Step 2; if it is = ke, go to Step 3.

Step 3 Stop everything else we were doing for other requirements.
Let σ be the initial segment built so far; wait for some
extension τ of σ to appear in Se, and if so, let τ be our new
initial segment of X and declare the requirement satisfied
(otherwise, stay stuck in this loop forever).

0. 15/32



The algorithm for a requirement e and global error probability δ:

Step 1 Pick a number ke between 1 and some q(e, δ) at random,
with

∑
e 1/q(e, δ) < δ. Set the ‘error counter’ to 0

Step 2 (a) Suppose we have already built some initial segment σ of X.
Make the passive guess that there is no extension of σ in Se

(b) Start handling other requirements. If we discover that our
guess was wrong, increase error counter by 1 and go back to
Step 2.a.

(c) If the error counter is < ke, go back to the beginning of
Step 2; if it is = ke, go to Step 3.

Step 3 Stop everything else we were doing for other requirements.
Let σ be the initial segment built so far; wait for some
extension τ of σ to appear in Se, and if so, let τ be our new
initial segment of X and declare the requirement satisfied
(otherwise, stay stuck in this loop forever).

0. 15/32



The algorithm for a requirement e and global error probability δ:

Step 1 Pick a number ke between 1 and some q(e, δ) at random,
with

∑
e 1/q(e, δ) < δ. Set the ‘error counter’ to 0

Step 2 (a) Suppose we have already built some initial segment σ of X.
Make the passive guess that there is no extension of σ in Se

(b) Start handling other requirements. If we discover that our
guess was wrong, increase error counter by 1 and go back to
Step 2.a.

(c) If the error counter is < ke, go back to the beginning of
Step 2; if it is = ke, go to Step 3.

Step 3 Stop everything else we were doing for other requirements.
Let σ be the initial segment built so far; wait for some
extension τ of σ to appear in Se, and if so, let τ be our new
initial segment of X and declare the requirement satisfied
(otherwise, stay stuck in this loop forever).

0. 15/32



Analysis of the algorithm

The algorithm works because of our discussion of the fireworks
problem: the probability to get stuck at Step 3 for
requirement (Re) is ≤ 1/q(e, δ).

Hence a global probability of failure bounded by∑
e 1/q(e, δ) < δ.

0. 16/32



Analysis of the algorithm

The algorithm works because of our discussion of the fireworks
problem: the probability to get stuck at Step 3 for
requirement (Re) is ≤ 1/q(e, δ).

Hence a global probability of failure bounded by∑
e 1/q(e, δ) < δ.

0. 16/32



Analysis of the algorithm

Suppose now that we are building Y by using the bits of an
oracle X ∈ 2ω as randomness generator. What does the failure set
of our algorithm look like?

Answer: for a given requirement (Re), the set of X’s that make the
algorithm fail because of (Re) form a difference of two effectively
open sets. Indeed, it is the difference of:

Uδ
e , the set of X’s that make us enter Step 3 for (Re),

minus Vδ
e , the set of X’s that make us enter Step 3 for (Re) and

succeed at satisfying (Re).

0. 17/32



Analysis of the algorithm

Suppose now that we are building Y by using the bits of an
oracle X ∈ 2ω as randomness generator. What does the failure set
of our algorithm look like?

Answer: for a given requirement (Re), the set of X’s that make the
algorithm fail because of (Re) form a difference of two effectively
open sets.

Indeed, it is the difference of:

Uδ
e , the set of X’s that make us enter Step 3 for (Re),

minus Vδ
e , the set of X’s that make us enter Step 3 for (Re) and

succeed at satisfying (Re).

0. 17/32



Analysis of the algorithm

Suppose now that we are building Y by using the bits of an
oracle X ∈ 2ω as randomness generator. What does the failure set
of our algorithm look like?

Answer: for a given requirement (Re), the set of X’s that make the
algorithm fail because of (Re) form a difference of two effectively
open sets. Indeed, it is the difference of:

Uδ
e , the set of X’s that make us enter Step 3 for (Re),

minus Vδ
e , the set of X’s that make us enter Step 3 for (Re) and

succeed at satisfying (Re).

0. 17/32



Analysis of the algorithm

Suppose now that we are building Y by using the bits of an
oracle X ∈ 2ω as randomness generator. What does the failure set
of our algorithm look like?

Answer: for a given requirement (Re), the set of X’s that make the
algorithm fail because of (Re) form a difference of two effectively
open sets. Indeed, it is the difference of:

Uδ
e , the set of X’s that make us enter Step 3 for (Re),

minus Vδ
e , the set of X’s that make us enter Step 3 for (Re) and

succeed at satisfying (Re).

0. 17/32



Strong difference randomness(?)

Now choose the bound function q such that for all k = ⟨e, n⟩, the
failure set Fk of the algorithm for requirement (Re) and error
bound 2−n has measure at most 2−k.

Now consider the test (Fk). If X passes the test (Fk) in the strong
sense that X belongs to only finitely many Fk’s, then this means
that for some n, X is not in any of the the failure sets F⟨e,n⟩, i.e., the
probabilistic algorithm with error bound 2−n succeeds when
using X as random source.

Thus X computes a 1-generic via this algorithm (which is just a
Turing reduction!).

0. 18/32



Strong difference randomness(?)

Now choose the bound function q such that for all k = ⟨e, n⟩, the
failure set Fk of the algorithm for requirement (Re) and error
bound 2−n has measure at most 2−k.

Now consider the test (Fk). If X passes the test (Fk) in the strong
sense that X belongs to only finitely many Fk’s, then this means
that for some n, X is not in any of the the failure sets F⟨e,n⟩, i.e., the
probabilistic algorithm with error bound 2−n succeeds when
using X as random source.

Thus X computes a 1-generic via this algorithm (which is just a
Turing reduction!).

0. 18/32



Strong difference randomness(?)

Now choose the bound function q such that for all k = ⟨e, n⟩, the
failure set Fk of the algorithm for requirement (Re) and error
bound 2−n has measure at most 2−k.

Now consider the test (Fk). If X passes the test (Fk) in the strong
sense that X belongs to only finitely many Fk’s, then this means
that for some n, X is not in any of the the failure sets F⟨e,n⟩, i.e., the
probabilistic algorithm with error bound 2−n succeeds when
using X as random source.

Thus X computes a 1-generic via this algorithm (which is just a
Turing reduction!).

0. 18/32



Strong difference randomness(?)
The shape of the test X has to pass, a family (Fk) of differences of
effectively open sets with µ(Fk) ≤ 2−k is exactly the same as the
tests used to define difference randomness (Franklin and Ng),
but the passing condition is harder (be in finitely many instead of
not being in all Fk’s).

In earlier presentation of this work, we defined strong difference
randoms to be the set of X’s such that for any family (Fk) of
differences of effectively open sets with µ(Fk) ≤ 2−k, X belongs to
finitely many Fk’s.

What we missed (thanks to Hoyrup for pointing this out!) is that
this is not a robust notion, i.e., it is not independent of the bound
2−n (unlike Demuth randomness which is: we can replace 2−n by
1/n2 or any computable sequence of bounds whose sum is a
computable real).

0. 19/32



Strong difference randomness(?)
The shape of the test X has to pass, a family (Fk) of differences of
effectively open sets with µ(Fk) ≤ 2−k is exactly the same as the
tests used to define difference randomness (Franklin and Ng),
but the passing condition is harder (be in finitely many instead of
not being in all Fk’s).

In earlier presentation of this work, we defined strong difference
randoms to be the set of X’s such that for any family (Fk) of
differences of effectively open sets with µ(Fk) ≤ 2−k, X belongs to
finitely many Fk’s.

What we missed (thanks to Hoyrup for pointing this out!) is that
this is not a robust notion, i.e., it is not independent of the bound
2−n (unlike Demuth randomness which is: we can replace 2−n by
1/n2 or any computable sequence of bounds whose sum is a
computable real).

0. 19/32



Strong difference randomness(?)
The shape of the test X has to pass, a family (Fk) of differences of
effectively open sets with µ(Fk) ≤ 2−k is exactly the same as the
tests used to define difference randomness (Franklin and Ng),
but the passing condition is harder (be in finitely many instead of
not being in all Fk’s).

In earlier presentation of this work, we defined strong difference
randoms to be the set of X’s such that for any family (Fk) of
differences of effectively open sets with µ(Fk) ≤ 2−k, X belongs to
finitely many Fk’s.

What we missed (thanks to Hoyrup for pointing this out!) is that
this is not a robust notion, i.e., it is not independent of the bound
2−n (unlike Demuth randomness which is: we can replace 2−n by
1/n2 or any computable sequence of bounds whose sum is a
computable real).

0. 19/32



Strong difference randomness(?)

Two options:
• Option 1: Quantify over all possible bounds, defining a strong

difference test to be a sequence (Fk) of differences of
effectively open sets with µ(Fk) uniformly computable in k
and

∑
k µ(Fk) a computable real.

• Option 2: Keep the bound 2−n but allow the Fk to be finite
unions of differences of effectively open sets (this time the
notion does not depend on the bound).

The first option is what we should probably call strong difference
randomness, but has not been studied in depth yet (there is recent
work by McCarthy, but used the “old” definition).

0. 20/32



Strong difference randomness(?)

Two options:
• Option 1: Quantify over all possible bounds, defining a strong

difference test to be a sequence (Fk) of differences of
effectively open sets with µ(Fk) uniformly computable in k
and

∑
k µ(Fk) a computable real.

• Option 2: Keep the bound 2−n but allow the Fk to be finite
unions of differences of effectively open sets (this time the
notion does not depend on the bound).

The first option is what we should probably call strong difference
randomness, but has not been studied in depth yet (there is recent
work by McCarthy, but used the “old” definition).

0. 20/32



Strong difference randomness(?)

An interesting turn of events:

Theorem
Option 2 is equivalent to Demuth randomness.

and thus, as a corollary, we answer a question of Barmpalias, Day
and Lewis-Pye:

Theorem
Every Demuth random real computes a 1-generic.

0. 21/32



Strong difference randomness(?)

An interesting turn of events:

Theorem
Option 2 is equivalent to Demuth randomness.

and thus, as a corollary, we answer a question of Barmpalias, Day
and Lewis-Pye:

Theorem
Every Demuth random real computes a 1-generic.

0. 21/32



Strong difference randomness(?)

An interesting turn of events:

Theorem
Option 2 is equivalent to Demuth randomness.

and thus, as a corollary, we answer a question of Barmpalias, Day
and Lewis-Pye:

Theorem
Every Demuth random real computes a 1-generic.

0. 21/32



Strong difference randomness(?)

An interesting turn of events:

Theorem
Option 2 is equivalent to Demuth randomness.

and thus, as a corollary, we answer a question of Barmpalias, Day
and Lewis-Pye:

Theorem
Every Demuth random real computes a 1-generic.

0. 21/32



Demuth randomness vs genericity

However, one cannot do better than 1-genericity in the previous
theorem, at least for existing notions of genericity.

Theorem
If X is Demuth random and Y is pb-generic, then (X, Y) form a
minimal pair.

0. 22/32



Weak-2-randomness vs genericity

We now turn to weak-2-randomness. How does it interact with
genericity?

In a nutshell: not all weak-2-random agree on the answer to this
question!

0. 23/32



Weak-2-randomness vs genericity

We now turn to weak-2-randomness. How does it interact with
genericity?

In a nutshell: not all weak-2-random agree on the answer to this
question!

0. 23/32



Weak-2-randomness vs genericity

At one end of the spectrum, there are weak-2-randoms which are
of hyperimmune-free degrees (folklore).

... but a given X computes a weak-1-generic if and only if it has
hyperimmune degree. So some weak-2-randoms cannot compute
a single weak-1-generic.

0. 24/32



Weak-2-randomness vs genericity

At one end of the spectrum, there are weak-2-randoms which are
of hyperimmune-free degrees (folklore).

... but a given X computes a weak-1-generic if and only if it has
hyperimmune degree. So some weak-2-randoms cannot compute
a single weak-1-generic.

0. 24/32



Weak-2-randomness vs genericity

At the other end of the spectrum, it follows from earlier work that
some weak-2-randoms can compute a 2-generic. The proof has
two parts.

Part 1. There is an interesting correspondance between the ability
to compute generics and the ability to compute a function that is
hard to bound. Let F be a family of functions from N to N. We say
that X has F-escaping degree if X computes a function g which is
not bounded by any f ∈ F . For example, ∆0

1-escaping =
hyperimmune degree.

0. 25/32



Weak-2-randomness vs genericity

At the other end of the spectrum, it follows from earlier work that
some weak-2-randoms can compute a 2-generic. The proof has
two parts.

Part 1. There is an interesting correspondance between the ability
to compute generics and the ability to compute a function that is
hard to bound. Let F be a family of functions from N to N. We say
that X has F-escaping degree if X computes a function g which is
not bounded by any f ∈ F . For example, ∆0

1-escaping =
hyperimmune degree.

0. 25/32



Weak-2-randomness vs genericity

The correspondance is as follows:

Theorem
• X computes a weakly 1-generic iff X has ∆0

1-escaping degree
(Kurtz)

• X computes a pb-generic iff it has (ω-c.a.)-escaping degree
(Downey-Jockusch)

• X computes a weakly 2-generic iff it has ∆0
2-escaping degree

(Andrews-Gerdes-Miller)
• If X has ∆0

3-escaping degree, it computes a 2-generic
(Andrews-Gerdes-Miller)

0. 26/32



Weak-2-randomness vs genericity

Part 2. The second part is the following surprising theorem of
Barmpalias, Downey and Ng.

Theorem
For any countable family F of functions, there exists a
weak-2-random X which has F-escaping degree.

Putting the two parts together:

Theorem
There exists a weak-2-random X which computes a 2-generic.

0. 27/32



Weak-2-randomness vs genericity

Part 2. The second part is the following surprising theorem of
Barmpalias, Downey and Ng.

Theorem
For any countable family F of functions, there exists a
weak-2-random X which has F-escaping degree.

Putting the two parts together:

Theorem
There exists a weak-2-random X which computes a 2-generic.

0. 27/32



Weak-2-randomness vs genericity

Part 2. The second part is the following surprising theorem of
Barmpalias, Downey and Ng.

Theorem
For any countable family F of functions, there exists a
weak-2-random X which has F-escaping degree.

Putting the two parts together:

Theorem
There exists a weak-2-random X which computes a 2-generic.

0. 27/32



Weak-2-randomness vs genericity

Part 2. The second part is the following surprising theorem of
Barmpalias, Downey and Ng.

Theorem
For any countable family F of functions, there exists a
weak-2-random X which has F-escaping degree.

Putting the two parts together:

Theorem
There exists a weak-2-random X which computes a 2-generic.

0. 27/32



Weak-2-randomness vs genericity

Can we do better than 2-generic? Perhaps, but not as a
consequence of Barmpalias, Downey and Ng’s theorem.

Indeed, the correspondance between computing a generic and
computing an escaping function abruptly ceases at the next level:

Theorem (Andrews, Gerdes, Miller)
There is no countable family F such that computing an
F-escaping function implies computing a weak-3-generic.

0. 28/32



Weak-2-randomness vs genericity

Can we do better than 2-generic? Perhaps, but not as a
consequence of Barmpalias, Downey and Ng’s theorem.

Indeed, the correspondance between computing a generic and
computing an escaping function abruptly ceases at the next level:

Theorem (Andrews, Gerdes, Miller)
There is no countable family F such that computing an
F-escaping function implies computing a weak-3-generic.

0. 28/32



Weak-2-randomness vs genericity

Can we do better than 2-generic? Perhaps, but not as a
consequence of Barmpalias, Downey and Ng’s theorem.

Indeed, the correspondance between computing a generic and
computing an escaping function abruptly ceases at the next level:

Theorem (Andrews, Gerdes, Miller)
There is no countable family F such that computing an
F-escaping function implies computing a weak-3-generic.

0. 28/32



Weak-2-randomness vs genericity

However, one can strengthen Barmpalias, Downey and Ng’s
theorem and get:

Theorem
For any comeager set G, there is a weak-2-random which
computes a member of G (in particular, for any n there is a
weak-2-random which computes an n-generic).

0. 29/32



Weak-2-randomness vs genericity

However, one can strengthen Barmpalias, Downey and Ng’s
theorem and get:

Theorem
For any comeager set G, there is a weak-2-random which
computes a member of G (in particular, for any n there is a
weak-2-random which computes an n-generic).

0. 29/32



A pretty complete picture

n-gen. (n ≥ 2) weakly 2-gen. pb-gen. 1-gen.
n-random (n ≥ 2) min. pair min. pair min. pair computes
weakly 2-random may compute may compute may compute may compute
Demuth random min. pair min. pair min. pair computes

1-random may compute may compute may compute may compute

A related open question:

If X is 1-random and of hyperimmune degree, does it compute a
1-generic?

0. 30/32



A pretty complete picture

n-gen. (n ≥ 2) weakly 2-gen. pb-gen. 1-gen.
n-random (n ≥ 2) min. pair min. pair min. pair computes
weakly 2-random may compute may compute may compute may compute
Demuth random min. pair min. pair min. pair computes

1-random may compute may compute may compute may compute

A related open question:

If X is 1-random and of hyperimmune degree, does it compute a
1-generic?

0. 30/32



Thank you

0. 31/32


