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Motivation

Hausdorff dimension is a standard notion in geometric measure
theory. It estimates the “size” of a set by means of open covers
of it.

The effective Hausdorff dimension can be defined in terms of
effectively presented open covers (or in terms of martingales).

If we restrict our attention to singletons, we can characterize
the effective Hausdorff dimension of {{} by means of the

Kolmogorov complexity of ¢ (J. H. Lutz and Mayordomo 2008).
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Motivation

Recently Jack and Neil Lutz proved a point-to-set principle
linking the (classical) Hausdorff dimension of a set with the
(relative) effective Hausdorff dimension of its points.

Theorem ((J. H. Lutz and N. Lutz 2017))
For every E C RY

dimy (F) = %1511\1] Slel% dim4} ()
x

Can we have something similar for the Fourier
dimension?
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Hausdorff dimension

The formal definition of the Hausdorff dimension is a bit involved.

For A € B(R?) we can characterize the Hausdorff dimension by

dimy(A) = sup{s : (3u € P(4)) (3¢ > 0) (Vz € RY) (Vr> 0)
(n(B(z, 7)) < cr’)}

This is a consequence of Frostman’s lemma.
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Fourier dimension

Let p be a finite Borel measure.

Fourier transform of p: ji: R? — C defined as

AE) = / eI ()

The Fourier dimension of 4 C R% is defined as

dimp(A) :=sup{s € [0,d : (3u € P(A)) (3c> 0) (Vz € RY)
(I(2)] < clal )}
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Fourier dimension

Proposition (Folklore)
For every A € B(R?) we have: dimp(A) < dimy (A)

A set A s.t. dimy(A) = dimp(A) is called Salem set.

0, [0,1] are Salem subsets of [0, 1].
log(2)

Cantor middle-third set has dimy =
log(3

but dimg = 0.

~—

Deterministic (non-trivial) Salem sets are rare.
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Jarnik’s fractal

One of the first explicit examples of (non-trivial) Salem sets.

For a > 0, E(«) is the set of a-well approximable numbers.

E(a) = {xe [0,1] : (3%n,m) <‘x_ nﬁl’ = m21+a>}

It is Salem with dimension 5= + . For o = 0 we have E(«) = [0, 1] by

Dirichlet’s theorem.

Jarnik’s fractal is a H3 set. However we can prove that there is a
closed subset S(«) of E(«) which is Salem of the same dimension.

S(ar) can be written as ﬂ Gy = ﬂ U I;

keN keN i< Ny,
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Question

During the IMS Graduate Summer School in Logic in 2018,
Slaman asked:

“What is the descriptive complexity of the family
of closed Salem sets in [0, 1]7”
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Descriptive complexity

We will locate the family of closed Salem sets in the Borel hierarchy

Let X and Y be Polish spaces.

A C X is Wadge reducible to B C Y (A <y B) if there is a
continuous map f: X — Y s.t.

r€A < f(x)€B

B is called T'-hard if, for every A € T'(2V), A <w B.
B is called I'-complete if it is I'-hard and B € T'(Y).
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Salem sets in |0, 1]

We work in the hyperspace K([0,1]) of compact subsets of [0, 1]
endowed with the Vietoris topology.

Lemma (Marcone, Reimann, Slaman, V.)

{(A,p) € K([0,1]) x [0,1) : dimy(A) > p} is TY;
{(4,p) € K([0,1]) x (0,1] : dimyp(A) > p} is II3

e {(A,p) € K([0,1]) x [0,1) : dimp(A4) > p} is X9;
e {(A,p) € K([0,1]) x (0,1] : dimp(A) > p} is TI3
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Salem sets in |0, 1]

Proof (Sketch).

We prove the statement for the Hausdorff dimension.
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Salem sets in |0, 1]
Proof (Sketch).

We prove the statement for the Hausdorff dimension. By
Frostman’s lemma, dimy(A) is the sup of

{s: ApeP(A))(Fc>0)(Vz e R)(Vr> 0)(u(B(z, 7)) < cr’)}
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Salem sets in |0, 1]

Proof (Sketch).
We prove the statement for the Hausdorff dimension. By
Frostman’s lemma, dimy(A) is the sup of

{s: ApeP(A))(Fc>0)(Vz e R)(Vr> 0)(u(B(z, 7)) < cr)}
Iy

using (Kechris 1995)
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Salem sets in |0, 1]

Proof (Sketch).
We prove the statement for the Hausdorff dimension. By
Frostman’s lemma, dimy(A) is the sup of

{s : Fp eP(A4))3Fc>0)(Vze R)(Vr>0)(u(B(z, 7)) < cr’)}
Iy

0
Hl

intersection of closed sets
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Salem sets in |0, 1]

Proof (Sketch).

We prove the statement for the Hausdorff dimension. By
Frostman’s lemma, dimy(A) is the sup of

{s: Fp eP(A4))(Fc>0)(Vze R)(Vr> 0)(u(B(z, 1) < cr’)}
Iy

Iy

0
22

we can quantify over rationals
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Salem sets in |0, 1]

Proof (Sketch).

We prove the statement for the Hausdorff dimension. By
Frostman’s lemma, dimy(A) is the sup of

{s: BpeP(A))(Fc>0)(VzeR)(Vr>0)(u(B(z,r) < cr’)}

0
Hl

0
22

projection of a 28 along a metrizable compact space is 23
(Andretta and Marcone 1997)
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Salem sets in |0, 1]

Proof (Sketch).
We prove the statement for the Hausdorff dimension. By
Frostman’s lemma, dimy(A) is the sup of

a X9 set D(A).
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Salem sets in |0, 1]

Proof (Sketch).
We prove the statement for the Hausdorff dimension. By
Frostman’s lemma, dimy(A) is the sup of

a X9 set D(A).
Hence
dimy(A) > p < sup D(A) > p < (3g> p)(g € D(A)) is =Y

dimy(A) > p < sup D(A) > p < (Vg < p)(g € D(4)) is II3
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Salem sets in |0, 1]

Theorem (Marcone, Reimann, Slaman, V.)

The set of closed Salem subsets of [0, 1] is TI9.

Proof.
For Borel sets we have dimp(A) < dimy/(A).

Being a Salem set can be written as

(VT‘G Q) (dlm’H(A) >1r— dlmF(A) > 7”)
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Salem sets in |0, 1]

Lemma (Marcone, Reimann, Slaman, V.)
For every p € [0, 1] there is a continuous (in fact computable)

map f,: 2N — 7([0,1]) s.t.

dim(fy () = {g A,

where Qo = {z € 2V : (V®n)(z(n) = 0)} is X9-complete.

Idea of the proof: each time we see a 1 we “control” the
Hausdorff (and hence Fourier) dimension, so that if there are
infinitely many 1’s then the set will have 0 Hausdorff (and
hence Fourier) dimension.
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Salem sets in |0, 1]

Theorem (Marcone, Reimann, Slaman, V.)

The sets

{(4,p) € K([0,1]) x [0,1) : dims(A) > p},
{(4,p) € K([0,1]) x [0,1) : dimp(4) > p},

are X9-complete.
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Salem sets in |0, 1]

Theorem (Marcone, Reimann, Slaman, V.)

The sets

{(4,p) € K([0,1]) x (0,1
{(4,p) € K([0,1]) x (0,1] : dimp(A)
{AeK([0,1)) : Ae.7([0,1])}

p},

are TI3-complete.

] : dimy(A) > p},
>
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Salem sets in |0, 1]

Proof (Sketch):

Py = {z € 2N 1 (Vm)(V*°n)(z(m, n) = 0)} IT3-complete
Given z, modify it so that if a row has infinitely many 1s then so
do all the next ones.

Consider countably many disjoint closed intervals { T}, C [0, 1].

We build a fractal within 7y with dimy = 1 and dimg = 0. We
then build a Salem set S;41 within 741 according to the #-th row
of z, so that

1 — 21 if 2(4,-) has finitely many 1

0 otherwise

dim(SiH) = {
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How about closed subset of [0, 1]%?

The upper bounds on the complexities are the same (the proof is
based on the compactness of the ambient space).

Problem: the Fourier dimension is sensitive to the ambient space.

If a set A is contained in a m-dimensional hyperplane (with m < d)
then dimp(A4) = 0.

Some “curvature” is necessary to have positive Fourier dimension.
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Solutions?

We can exploit a “higher-dimensional analogue” of Jarnik’s
fractal, recently defined by Fraser and Hambrook.

Theorem ((Fraser and Hambrook 2019))

For every a > 0, the set E(K, B,«) is a Salem set of dimension
2d/(2+ ).
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Salem sets in [0, 1]%

Similarly to the one-dimensional case we have:
Lemma (Marcone, V.)

For every p € [0, d] there exists a continuous (in fact
computable) map f,: 2N — Z([0,1]9) s.t.

dimn(fy () = {g Y,

where Qo = {z € 2V : (V®n)(z(n) = 0)} is X9-complete.
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Salem sets in [0, 1]%

Theorem (Marcone, V.)

For every d > 1, the sets

{(A,p) € K([0,1]%) x [0,d) : dimy(A) > p},

{(4,p) € K((0,1]%) x [0, d) : dimp(4) > p}

are X9-complete. Moreover the sets
{(A,p) e K([0,1]%) x (0,d] : dimy(A) >
{(4,p) € K([0,1]%) x (0,d] : dimp(4) > p},
{A e K([0,1]%) : A e (0,19}

are TI3-complete.

»},
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Relaxing compactness
Do things change if we move to R%?

Both Hausdorff and Fourier dimensions are preserved when
moving from [0, 1]¢ to R<.

In particular, every Salem set of [0,1]¢ is still Salem when seen

as a subset of R,

Hardness results (lower bounds) are corollaries, while upper
bounds are more delicate.
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Topology on F(R%)

There is no “canonical” topology on the hyperspace F(R?) of closed

subsets of RY.

We considered both the Vietoris topology 7y and the Fell topology 7r.

Vietoris

+ Familiar for topologists

+ It is “the same” topology we
put on K([0,1]9)

- Not metrizable if the ambient
space is not compact

Fell

+ 7 is Polish and compact

+ Generates a standard Borel
space

+ Coarser than Vietoris topology
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Stability of the Fourier dimension

Fourier dimension is (in general) not stable under countable unions
and not inner-regular for compacts ((Ekstrom, Persson, and
Schmeling 2015)).

dimp (U An> # supdimp(4,)
dimp(A) # sup{dimp(K) : K C A and K is compact}
There is G = |J,, K, with dimp(G) =1 and dimp(K,) = 0.

Theorem (Marcone, V.)

For every pointclass T' and every non-empty A € T(R?),

dimp(A) = sup{dimp(K) : K C A is bounded and K € T'(R%)}.
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Salem sets in R

Theorem (Marcone, V.)

Fiz d> 1. For every p < d the sets
{A € FRY) : dimy(4) > p},
{A e F(RY : dimp(A) > p}

are Eg—complete. Moreover, for every g > 0 the sets
{A e FRY) : dimy(4) > g},
{A e F(RY) : dimp(A) > g},
{A€FRY : Ae #([RY}

are TI3-complete.
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Effectivizations

All the results obtained are actually effective:

Theorem (Marcone, V.)
Let X be [0,1]% or RY for some d > 1.

e {(A,p) € F(X) x[0,d) : dimy(A4) > p} is T9-complete
e {(A,p) €F(X) x (0,d) : dimy(A) > p} is II3-complete
e {(A,p) e F(X) x [0,d) : dimp(A) > p} is B9-complete
e {(A,p) EF(X) x (0,d] : dimp(A4) > p} is II3-complete
o {A€F(X): Ae S (X)} is I3-complete
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Effective measurability

fis called Zg-measurable iff preimages f~!(U) of open sets are
20 (relatively to dom(f)).

fis called effectively Z%-measurable if the preimage can be
uniformly computed from a name of U.

Our results imply that the maps dimy and dimp are effectively
Eg—measurable.
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Weihrauch reducibility

A represented space is a pair (X, dx) where X is just a set and
Sx CNV & Xisa surjection.

If fand g are (possibly partial) multivalued functions, we say that f
is Weihrauch reducible to g (f <w g) if there are computable
®,U:.C NN - NN gt

o If p is a name for z € dom(f) then ®(p) is a name for z € dom(g)
o If ¢ is a name for w € ¢(2) then ¥(p, ¢) is a name for y € f(x)

P ® g 1 (p, q)
z € dom(f) T y € flz)
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Operations on problems

We can define operations on multivalued functions to combine
problems (x,*,",...)

In particular fx g (intuitively) captures the idea of applying g,
then do some computable operation (using the output of g) and

then apply f.
We write fI) for fx fx ...f.
——

n times
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Weihrauch degree of dimp

Let lim be the problem of finding the limit in the Baire space.

Theorem ((Brattka 2005))

. . 0
[ is effectively ¥}

1 -measurable iff fis Weihrauch reducible to lim!#

This is intuitively saying that lim* is “the most complicated”
effectively 22 -measurable problem.

We can think of lim¥ as the problem of answering countably many
22 questions in parallel.

29 /30



Weihrauch degree of dimp

Theorem (Marcone, V.)

dimp =w lim[2

Proof (Sketch).

<w: follows from (Brattka 2005), as our results imply that
dimp is effectively Zg—measurable.

>w: given a sequence (1;)ien in 2V, we can uniformly build a
closed Salem subset A of [0, 1]¢ s.t.

dim(A) =) " 27" g, (z:)
€N
In particular, it uniformly computes whether x; € Q). O

30/30



References

Vasco Brattka. “Effective Borel measurability and reducibility of
functions”. In: Mathematical Logic Quarterly 51.1 (2005).

Fredrik Ekstrém, Tomas Persson, and Jorg Schmeling. “On the
Fourier dimension and a modification”. In: Journal of Fractal
Geometry 2.3 (2015), pp. 309-337.

Robert Fraser and Kyle Hambrook. “Explicit Salem sets in R"”.
Sept. 2019. URL: https://arxiv.org/abs/1909.04581.

Jack H. Lutz and Neil Lutz. “Algorithmic Information, Plane
Kakeya Sets, and Conditional Dimension”. In: 5/th Symposium
on Theoretical Aspects of Computer Science (STACS 2017).
Vol. 66. Dagstuhl, Germany, 2017, 53:1-53:13.

Jack H. Lutz and Elvira Mayordomo. “Dimensions of Points in
Self-similar Fractals”. In: COCOON 2008: Computing and
Combinatorics. Vol. 5092. Springer Berlin Heidelberg, 2008.


https://arxiv.org/abs/1909.04581

	References

