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Abstract

Jiménez, Becerra, and Gelbukh (2013) defined a family of
symmetric Tversky ratio models S parametrized by 0 ≤ α ≤ 1
and β > 0. Letting D = 1− S we have a semimetric which we
show is a metric if and only if 0 ≤ α ≤ 1

2 and β ≥ 1/(1− α).
For β = 1/(1− α), the two endpoints α = 0, 1

2 correspond to
the normalized information distance and Jaccard distance,
respectively.
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Distance metrics are used in a wide variety of scientific contexts.
In bioinformatics, M. Li, Badger, Chen, Kwong, and Kearney
[LBC+01] introduced an information-based sequence distance. In
an information-theoretical setting, M. Li, Chen, X. Li, Ma and
Vitányi [LCL+04] rejected the distance of [LBC+01] in favor of a
normalized information distance (NID):

max{K (x | y),K (y | x)}
max{K (x),K (y)}

where K (x | y) is the prefix Kolmogorov complexity of x given y .
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The fact that the NID is in a sense a normalized metric is proved
in [LCL+04]. Then in 2017, while studying malware detection, Raff
and Nicholas [RN17] suggested Lempel–Ziv Jaccard distance
(LZJD) as a practical alternative to NID.
We show that the NID and Jaccard distances constitute the
endpoints of a parametrized family of metrics.
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For comparison, the Jaccard distance between two sets X and Y ,
and our analogue of the NID, are

|X \ Y |+ |Y \ X |
|X ∪ Y |

= 1− |X ∩ Y |
|X ∪ Y |

, and (1)

max{|X \ Y |, |Y \ X |}
max{|X |, |Y |}

, (2)
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Kraskov et al. [KSAG03, KSAG05] study the normalized
information metric,

H(X | Y ) + H(X | Y )

H(X ,Y )
= 1− I (X ;Y )

H(X ,Y )

or Rajski distance [Raj61].
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STRM (Symmetric Tversky Ratio Models) are variants of the
Tversky index proposed in [JBG13].

Definition

A semimetric on X is a function d : X × X → R that satisfies the
first three axioms of a metric space, but not necessarily the
triangle inequality: d(x , y) ≥ 0, d(x , y) = 0 if and only if x = y,
and d(x , y) = d(y , x) for all x , y ∈ X .
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Definition

For sets X and Y the Tversky index with parameters α, β ≥ 0 is a
number between 0 and 1 given by

S(X ,Y ) =
|X ∩ Y |

|X ∩ Y |+ α|X \ Y |+ β|Y \ X |
.

We also define the corresponding Tversky dissimilarity dT
α,β by

dT
α,β(X ,Y ) =

{
1− S(X ,Y ) if X ∪ Y 6= ∅;
0 if X = Y = ∅.
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Lemma

Suppose d is a metric on a collection of nonempty sets X , with
d(X ,Y ) ≤ 2 for all X ,Y ∈ X . Let X̂ = X ∪ {∅} and define
d̂ : X̂ × X̂ → R by stipulating that for X ,Y ∈ X ,

d̂(X ,Y ) = d(X ,Y ); d(X , ∅) = 1 = d(∅,X ); d(∅, ∅) = 0.

Then d̂ is a metric on X̂ .
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Definition

The Szymkiewicz—Simpson coefficient is defined by

overlap(X ,Y ) =
|X ∩ Y |

min(|X |, |Y |)

We may note that overlap(X ,Y ) = 1 whenever X ⊆ Y or Y ⊆ X ,
so that 1− overlap is not a metric.

Definition

The Sørensen–Dice coefficient is defined by

2|X ∩ Y |
|X |+ |Y |

.
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Definition ([JBG13, Section 2])

Let X be a collection of finite sets. We define S : X × X → R as
follows. For sets X ,Y ∈ X we define
m(X ,Y ) = min{|X \ Y |, |Y \ X |} and
M(X ,Y ) = max{|X \ Y |, |Y \ X |}. The symmetric TRM is
defined by

S(X ,Y ) =
|X ∩ Y |+ bias

|X ∩ Y |+ bias + β (αm + (1− α)M)

The unbiased symmetric TRM is the case where bias = 0, which is
the case we shall assume. The Tversky semimetric D ′α,β is defined
by D ′α,β(X ,Y ) = 1− S(X ,Y ), or more precisely

D ′α,β =

{
β αm+(1−α)M
|X∩Y |+β(αm+(1−α)M) , if X ∪ Y 6= ∅;

0 if X = Y = ∅.
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Theorem

Let 0 ≤ α ≤ 1 and β > 0. Then D ′α,β is a metric if and only if
0 ≤ α ≤ 1/2 and β ≥ 1/(1− α).
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A 1-parameter family of metrics
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Lemma

Let u, v ,w , ε > 0. Then

1

u
≤ 1

v
+

1

w
→ 1

u + ε
≤ 1

v + ε
+

1

w + ε
.
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Lemma

Suppose a(x , y) = axy and b(x , y) = bxy are functions. Suppose
the function d given by d(x , y) = axy/bxy is a metric, and ε > 0 is
a real number. Let d̂(x , y) =

axy
bxy+εaxy

. Then d̂ is also a metric.
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Theorem

For each α, the set of β for which D ′α,β is a metric is upward
closed.
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Some convenient notation: α = 1− α; x∩y = |X ∩ Y |, x = |X |;
xy = |X \ Y |, xzy = |X \ (Z ∪ Y )| = |(X \ Z ) \ Y |.
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Theorem

δ := αm + αM satisfies the triangle inequality if and only if
α ≤ 1/2.

The result was conjectured/discovered using Python and the proof
was verified in Lean.
It uses the identity xy + yz + zx = xz + zy + yx which holds
generally since both sides counts the elements that belong to
exactly one of X ,Y ,Z once each, and counts the elements that
belong to exactly two of X ,Y ,Z once each.
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Theorem

The function D ′α,β is a metric only if β ≥ 1/(1− α).
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Theorem

The function D ′α,β is a metric on all finite power sets only if
α ≤ 1/2.
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Can there be α and β with β ≥ 1/(1− α) and 0 ≤ α ≤ 1/2 such
that in terms of

δ = (1− α) max{K (x | y),K (y | x)}+ αmin{K (x | y),K (y | x)},

and
I (X ,Y ) = K (X ) + K (Y )− K (X ,Y ),

D ′α,β =
βδ

I (X ,Y ) + βδ

is lower or upper semicomputable?
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Terwijn et al. [TTV11] showed the answer is No in the case α = 0
and β = 1, the NID:

D ′0,1 =
max{K (x | y),K (y | x)

K (X ) + K (Y )− K (X ,Y ) + max{K (x | y),K (y | x)

=
max{K (x | y),K (y | x)

max{K (x),K (y)}

Bjørn Kjos-Hanssen November 17, 2020 Introduction 23/33



Entropy version of main result

McGill [McG54] and Hu Kuo Ting [Tin62] established a connection
between Venn diagram, signed measures, and entropies.

Lemma

The cardinalities of the 7 minimal regions of the Venn diagram of
X ,Y ,Z are definable from + and − given the cardinalities of
X ∪ Y ∪ Z, X ∪ Y , X ∪ Z, Y ∪ Z, X , Y , Z .

Proof.

We have |X \ Y | = |X ∪ Y | − |Y |,
|X ∩ Y | = |X ∪ Y | − |X \ Y | − |Y \ X |, and
|X∪Y ∪Z | = |X |+|Y |+|Z |−|X∩Y |−|X∩Z |−|Y ∩Z |+|X∩Y ∩Z |,
so |X ∩ Y ∩ Z | is definable.
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Entropy version of main result

Using the Lemma we can define conditional mutual information
I (X ;Y ;Z ), I (X ;Y | Z ) etc. from joint entropies H(X ,Y ,Z ),
H(X ,Y ), etc. The only region of the Venn diagram that may be
negative is I (X ;Y ;Z ), but |X ∩ Y ∩ Z | ≥ 0 was never used in the
proof of the main theorem above.
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By definition I (x ; y ; z) = I (x ; y)− I (x ; y | z) and
I (x ; y) = H(x , y)− H(y | x)− H(x | y) and
I (x ; y | z) = H(x , z) + H(y , z)− H(x , y , z)− H(z)
The semicolon serves to separate random variables whereas a
comma puts them together. Thus I (X ;Y ,Z ) is the mutual
information between X and the vector (Y ,Z ).

Definition

For a finite set Ω, let RΩ be the set of real-valued functions on Ω
and let P(Ω) be the set of all probability distributions on Ω. For
each P ∈ P(Ω), RV (P) = (RΩ,P) is a space of random variables.

We call RV (P) a “space” since random variables may be added,
multiplied, etc., although that fact is not used in the following
theorem.
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Theorem

Let
δ(X ,Y ) = αmin{H(X | Y ),H(Y | X )}

+(1− α) max{H(X | Y ),H(Y | X )}.

Let

D ′α,β(X ,Y ) =

{
β δ(X ,Y )
I (X ;Y )+β(δ(X ,Y )) , H(X ,Y ) > 0,

0, H(X ,Y ) = 0.

The following are equivalent.

I D ′α,β is a metric on all spaces RV (Ω);

I 0 ≤ α ≤ 1/2 and β ≥ 1/(1− α).
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Theorem

Let X1,X2,X3 be random variables. The following quantities are
nonnegative: H(Xi ),H(Xi ∪ Xj),H(X1 ∪ X2 ∪ X3),
H(Xi ) + H(Xj)− H(Xi ∪ Xj), ... but not necessarily
I (X1;X2;X3) = ...

See [CT06, Chapter 2, Theorem 2.6.3, Exercise 2.29]. Jensen’s
Inequality is used to show I (X ;Y ) ≥ 0.
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Negative mutual information

We have negative “mutual information” I (X ;Y ;Z ). for
X = 1001010100010110,Y = 0110110110100011,Z =
1111100010110101.

However, using Watanabe’s [Wat60] total correlation instead,∑
H(Xi )− H(X1, . . . ,Xk), the answer is positive.

Romaschenko and Zimand [RZ19] state that “mutual information
is only defined for two strings”.
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Note that for entropy purposes, random variables are in 1–1
correspondence with partitions of Ω.
When embedding semilattices into the Turing degrees we use
representations of lattices by equivalence relations.
This means that “high entropy” correspond to “high Turing
degree”.
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For the constructed functions g [k] in initial segment constructions,
it is clear that C (g [i ] � n) ≤ C (g [j] � n) when i ≤ j in the lattice,
simply because the use is identity-bounded.
This suggests that the Turing degrees of unsolvability are ordered
the “correct” way, i.e., we should not put 0 on top because it is
the “most solvable”.
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Representations of lattices originate by equivalence relations are of
interest when studying the lattice of all subalgebras or quotient
algebras of a structure.
A quotient of a free structure can be a complicated structure, and
a quotient of a complicated structure can be a singleton. The
identity relation and the “all” relation are both “simple”. The
point is that the identity relation has higher entropy (no matter
the distribution).
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