Automorphism argument and reverse mathematics

Keita Yokoyama (JAIST)

joint work with Marta Fiori Carones, Leszek Kołodziejczyk, Katarzyna Kowalik and Tin Lok Wong

> CTA seminar December 16, 2020

Theorem (Smoryński)

Let $M \models I\Delta_0$ be countable recursively saturated, let $I \subseteq_e M$ be closed under exp, and let d > I. If $\bar{a}, \bar{b} < d$ satisfy $\operatorname{Th}_{\Delta_0}(\bar{a}, x, d) = \operatorname{Th}_{\Delta_0}(\bar{b}, x, d)$ for any $x \in I$, then there exists an automorphism $h : d \to d$ with fixing I pointwise and $h(\bar{a}) = \bar{b}$.

Given $M \models I\Delta_0$ and $A \subseteq M$, we write $(M; A) \models I\Sigma_n^0$ or $I\Sigma_n(A)$ (resp. $B\Sigma_n^0$ or $B\Sigma_n(A)$) if M satisfies Σ_1 -induction (resp. bounding) with A as a unary predicate.

Theorem (Essentially Kossak)

If $(M; A) \models B\Sigma_1^0 + exp + \neg I\Sigma_1^0$, then M has continuum many automorphisms.

Weak fragments of second-order arithmetic

In this talk, we care about the hierarchy of induction and bounding.

- EFA: "discrete ordered semi-ring"+ "2^x is total"+ Σ₀-induction.
- $I\Sigma_n^0$: EFA+ Σ_n^0 induction.
- $B\Sigma_n^0$: EFA+ Σ_n^0 bounding:

 $\forall u (\forall x < u \exists y \psi(x, y) \rightarrow \exists v \forall x < u \exists y < v \psi(x, y))$

Kirby-Paris hierarchy: $B\Sigma_1^0 < I\Sigma_1^0 < B\Sigma_2^0 < I\Sigma_2^0 < B\Sigma_3^0 < \dots$

And, I would like to talk about models of...

- RCA_0^* : EFA+ Σ_0^0 induction+ Δ_1^0 comprehension.
- RCA₀: RCA₀^{*}+ Σ_1^0 induction.
- WKL₀^{*}: RCA₀^{*} + weak König's lemma.
- WKL₀: RCA₀ + weak König's lemma.
- $\mathsf{RCA}_0 + \mathrm{COH} + \mathrm{B}\Sigma_2^0$, $\mathsf{RCA}_0 + \mathrm{RT}_2^2$,...

An \mathcal{L}_2 -structure is a pair (M, X), where M is an \mathcal{L}_1 -structure and $X \subseteq \mathcal{P}(M)$.

In this talk, we mostly consider models (*M*, *X*) ⊨ RCA₀^{*}, and always assume that both of *M* and *X* are countable.

Definition

Let $(M, X) \models \text{RCA}_0^*$. A coded submodel (or c.c. ω -submodel) is a set $\mathcal{W} = \{W_k : k \in M\} \in X$, where $x \in W_k \leftrightarrow (x, k) \in \mathcal{W}$. Then, (M, \mathcal{W}) is an $(\omega$ -)substructure of (M, X).

- Note that a coded submodel is not equipped with its truth definition.
- However, $(M, W) \models \psi$ can be always described by an arithmetical formula within (M, X).

Coded submodels

We will use the following theorem throughout this talk.

Theorem

Let $(M, X) \models \mathsf{RCA}_0^*$. Then the following are equivalent.

$$\bigcirc (M, X) \models \mathsf{WKL}_0^*.$$

② For any A ∈ X, there exists a coded submodel $W \in X$ such that A ∈ W and $(M, W) \models WKL_0^*$.

- We often consider models $(M, X) \models \mathsf{WKL}_0^* + \mathsf{B}\Sigma_n^0 + \neg \mathsf{I}\Sigma_n^0$.
- Since $\neg I\Sigma_n^0$ is a Σ_1^1 -statement, we may fix $A_0 \in X$ such that $(M; A_0) \models \neg I\Sigma_n(A_0)$.
- Then, any coded submodel which contains A_0 satisfies $B\Sigma_n^0 + \neg I\Sigma_n^0$.
- Moreover, if n = 1, A₀ ⊆ M can be taken as an unbounded set which is described by an increasing enumeration
 A₀ = (d : i ∈ l) where l = cord (A₀) is a proper ∑⁰ definable.

 $A_0 = \{d_i : i \in I\}$ where $I = \operatorname{card}_M(A_0)$ is a proper Σ_1^0 -definable cut.

Automorphism argument for WKL^{*}₀

Theorem

Let (M, X) be a countable recursively saturated model of $WKL_0^* + \neg I\Sigma_1^0$, and let $\mathcal{W} = \{W_k : k \in M\} \in X$ be a coded submodel of (M, X) satisfying $WKL_0^* + \neg I\Sigma_1^0$. Then, for any $\bar{a} \in M$ and $\bar{A} \in \mathcal{W}$, there exists an isomorphism h between (M, X) and (M, \mathcal{W}) such that $h(\bar{a}) = \bar{a}$ and $h(\bar{A}) = \bar{A}$.

- ((M, X), (M, W)) form a recursively saturated pair.
- $h: M \to M$ is just an automorphism, and will not be identity.

Idea of the proof.

Build the isomorphism h by a B & F as follows:

take $A_0 = \{d_i : i \in I\} \in \mathcal{W}$ where $I = \operatorname{card}_M(A_0)$ is a proper cut and I < b, and then construct h so that for each $\overline{r}, \overline{s} \in M, \overline{R} \in \mathcal{X}, \overline{S} \in \mathcal{W}, h(\overline{r}) = \overline{s}, h(\overline{R}) = h(\overline{S})$ implies (#) for each Δ_0 formula $\delta, n \in \omega, j \leq \exp_n(b)$, and $i \in I$,

$$(M, X) \models \delta(d_i, j, \overline{r}, \overline{R}) \leftrightarrow \delta(d_i, j, \overline{s}, \overline{S}).$$

Theorem

Let (M, X) be a countable recursively saturated model of WKL₀^{*} + $\neg I\Sigma_1^0$, and let $\mathcal{W} = \{W_k : k \in M\} \in X$ be a coded submodel of (M, X) satisfying WKL₀^{*} + $\neg I\Sigma_1^0$. Then, for any $\bar{a} \in M$ and $\bar{A} \in \mathcal{W}$, there exists an isomorphism h between (M, X) and (M, \mathcal{W}) such that $h(\bar{a}) = \bar{a}$ and $h(\bar{A}) = \bar{A}$.

Corollary

Let (M, X) be a model of $WKL_0^* + \neg I\Sigma_1^0$, and let $W \in X$ be code a submodel of (M, X) satisfying $WKL_0^* + \neg I\Sigma_1^0$. Then, (M, W) is an elementary submodel of (M, X).

We will see some (weird) consequences of this theorem.

Collapsing analytic hierarchy

Within WKL₀^{*} + $\neg I\Sigma_1^0$, analytic hierarchy collapses.

Proposition

Let $(M, X) \models WKL_0^* + \neg I\Sigma_1^0$, and let $\bar{a} \in M$, $\bar{A} \in X$. For any \mathcal{L}_2 -formula $\psi(\bar{x}, \bar{X})$, the following are equivalent.

- $(M, X) \models \psi(\bar{a}, \bar{A}).$
- For any coded submodel $\mathcal{W} = \{W_k : k \in M\} \in \mathcal{X} \text{ with } \overline{A} \in W, (M, \mathcal{W}) \models \psi(\overline{a}, \overline{A}).$
- There exists a coded submodel $\mathcal{W} = \{W_k : k \in M\} \in X$ with $\overline{A} \in W$ such that $(M, \mathcal{W}) \models \psi(\overline{a}, \overline{A})$.

Corollary

Within WKL₀^{*} + \neg I Σ_1^0 , any \mathcal{L}_2 -formula $\psi(\bar{x}, \bar{X})$ is equivalent to a Π_1^1 -formula and a Σ_1^1 -formula.

Undefinability of coded models

Over $\text{RCA}_0^* + \neg I\Sigma_1^0$, low basis theorem fails badly...

- Let (M, X) ⊨ WKL^{*}₀ + ¬IΣ⁰₁ and let W ∈ X be a coded submodel satisfying WKL^{*}₀ + IΣ⁰₁.
- Assume that $\mathcal{W}(\subseteq M)$ is definable in (M, \mathcal{W}) as

$$\mathcal{W} = \{a \in M : (M, \mathcal{W}) \models \theta(a)\}.$$

• Then, $(M, X) \models \exists Z(Z = \theta(\mathbb{N}))$ but $(M, W) \models \neg \exists Z(Z = \theta(\mathbb{N}))$, which is a contradiction.

Corollary

If $(M, X) \models \mathsf{WKL}_0^*$ and $X \subseteq \mathrm{ARITH}(M)$, then $(M, X) \models \mathsf{WKL}_0$.

Corollary

The following are equivalent over RCA₀^{*}.

Ο ΙΣ₁⁰.

Por any infinite tree T ⊆ 2^{<ℕ}, there exists a Σ_n(T)-definable path of T which satisfies BΣ₁⁰ (n ≥ 2).

Maximal Π¹₁-conservative extension

Theorem

- (Simpson/Smith) WKL^{*}₀ is Π¹₁-conservative over RCA^{*}₀.
- Let $T \supseteq \text{RCA}_0^*$ be a Π_2^1 -theory. If φ, ψ are Π_2^1 -sentences and $T + \varphi$ and $T + \psi$ are both Π_1^1 -conservative over T, then $T + \varphi + \psi$ is Π_1^1 -conservative over T.
- Assume that a Π_2^1 -sentence φ is Π_1^1 -conservative over $\text{RCA}_0^* + \neg I\Sigma_1^0$.
- Then $WKL_0^* + \neg I\Sigma_1^0 + \varphi$ is also Π_1^1 -conservative over $RCA_0^* + \neg I\Sigma_1^0$.
- Within $WKL_0^* + \neg I\Sigma_1^0$, φ is equivalent to a Π_1^1 -sentence $\tilde{\varphi}$.
- Then $\text{RCA}_0^* + \neg I\Sigma_1^0 \vdash \tilde{\varphi}$, and thus $\text{WKL}_0^* + \neg I\Sigma_1^0 \vdash \varphi$.

Corollary

A Π_2^1 -sentence ψ is Π_1^1 -conservative over RCA₀^{*} + $\neg I\Sigma_1^0$ if and only if WKL₀^{*} + $\neg I\Sigma_1^0$ proves ψ .

Generalization to $RCA_0^* + B\Sigma_n^0 + \neg I\Sigma_n^0$

Let $(M, X) \models \mathsf{RCA}_0^* + \mathsf{B}\Sigma_n^0$.

 Given A, B ∈ X, we write A ≪_{Δn} B if there exists a Δ_n(M; B)-definable coded submodel of WKL^{*}₀ containing A⁽ⁿ⁻¹⁾, or equivalently all Δ_n(M; A) sets.

Definition

 $\Delta_n \text{WKL}: \forall X \exists Y (X \ll_{\Delta_n} Y).$

- $(M, X) \models B\Sigma_n^0 + \Delta_n WKL \iff (M, \Delta_n(M, X)) \models WKL_0^*.$
- Δ_2 WKL is equivalent to COH over RCA₀ + B Σ_2^0 (Belanger).
- RCA^{*}₀ + BΣ⁰_n + Δ_nWKL is Π¹₁-conservative over RCA^{*}₀ + BΣ⁰_n (essentially Belanger).

Theorem

Let $(M, X) \models \text{RCA}_0^* + B\Sigma_n^0 + \neg I\Sigma_n^0$ be recursively saturated. Let $A, B \in X$ such that $(M; A) \models \neg I\Sigma_n(A)$ and $A \ll_{\Delta_n} B$. Then, there exists $\mathcal{Y} \subseteq \Delta_n(M; B)$ such that $A \in \mathcal{Y}, (M, X)$ is isomorphic to (M, \mathcal{Y}) with fixing A and $\Delta_n(M, \mathcal{Y}) \subseteq \Delta_n(M; B)$.

Theorem (Cholak/Jockusch/Slaman)

 $RCA_0 + RT_2^2 + I\Sigma_2^0 a \Pi_1^1$ -conservative extension of $RCA_0 + I\Sigma_2^0$.

• Indeed, any countable model of $(M, X) \models \text{RCA}_0 + I\Sigma_2^0$ has an ω -extension $\mathcal{Y} \supseteq X$ such that $(M, \mathcal{Y}) \models \text{RCA}_0 + \text{RT}_2^2 + I\Sigma_2^0$.

Question (Cholak/Jockusch/Slaman)

Is $RCA_0 + RT_2^2$ a Π_1^1 -conservative extension of $RCA_0 + B\Sigma_2^0$?

• To answer to this question, we need to know when $(M, \mathcal{X}) \models \text{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$ can be extended to a model of $(M, \mathcal{Y}) \models \text{RCA}_0 + \text{RT}_2^2(+\neg I\Sigma_2^0).$

Models of $RCA_0 + RT_2^2 + \neg I\Sigma_2^0$

- Let (M, X) ⊨ RCA₀ + RT₂² + ¬IΣ₂⁰ be recursively saturated, and let A ∈ X such that (M; A) ⊨ ¬IΣ₂(A).
- Since $RCA_0 + RT_2^2 \vdash COH$, we have $(M, X) \models \Delta_2 WKL$.
- Let $f \in X$ be a coloring $f : [M]^2 \to 2$, and let $B \in X$ such that $f \oplus A \ll_{\Delta_2} B$.
- Then, there exists $\mathcal{Y} \subseteq \Delta_2(M; B)$ such that $f \oplus A \in \mathcal{Y}$, (M, X) is isomorphic to (M, \mathcal{Y}) with fixing $f \oplus A$ and $\Delta_2(M, \mathcal{Y}) \subseteq \Delta_2(M; B)$.
- Since (*M*, *Y*) ⊨ RT₂², there exists *H* ∈ *Y* such that *H* is an infinite homogeneous set for *f*.
- *H* is "low" in the sense that $\Delta_2(M; f \oplus X \oplus H) \subseteq \Delta_2(M; B)$.

Theorem

 $\begin{aligned} \mathsf{RCA}_0 + \mathsf{RT}_2^2 \text{ proves the following:} \\ (\dagger) \quad \forall X \forall Y \forall f : [\mathbb{N}]^2 \to 2 \\ [\neg \mathrm{I}\Sigma_2(X) \wedge f \oplus X \ll_{\Delta_2} Y \to \exists H \in \Delta_2(\mathbb{N}; Y)(\text{``H is an infinite} \\ \text{homogeneous set for } f^{"} \wedge \Delta_2(\mathbb{N}; f \oplus X \oplus H) \subseteq \Delta_2(\mathbb{N}; Y))]. \end{aligned}$

Π_1^1 -part of RCA₀ + RT₂²

Theorem

 $\begin{aligned} \mathsf{RCA}_0 + \mathsf{RT}_2^2 \text{ proves the following:} \\ (\dagger) \quad \forall X \forall Y \forall f : [\mathbb{N}]^2 \to 2 \\ [\neg \mathrm{I}\Sigma_2(X) \wedge f \oplus X \ll_{\Delta_2} Y \to \exists H \in \Delta_2(\mathbb{N}; Y)(\text{``H is an infinite} \\ \text{homogeneous set for } f'' \wedge \Delta_2(\mathbb{N}; f \oplus X \oplus H) \subseteq \Delta_2(\mathbb{N}; Y))]. \end{aligned}$

- (†) is a $\forall \Pi_5^0$ -statement.
- (†) is the basis theorem for RT²₂ by the "first-jump control" argument in the Cholak/Jockusch/Slaman paper.
- If BΣ₂⁰ proves (†) then any countable model (*M*; *A*) ⊨ BΣ₂⁰ can be extended to a model of RCA₀ + RT₂².

Corollary

- $RCA_0 + RT_2^2$ is Π_1^1 -conservative over $RCA_0 + B\Sigma_2^0$ if and only if $B\Sigma_2^0$ proves (†).
- If $RCA_0 + RT_2^2$ is $\forall \Pi_5^0$ -conservative over $RCA_0 + B\Sigma_2^0$ then it is Π_1^1 -conservative over $RCA_0 + B\Sigma_2^0$.

"Undefinability" is also available for the case $n \ge 2$.

- If $(M, X) \models \text{RCA}_0 + B\Sigma_n^0 + \Delta_n \text{WKL}$ and $X \subseteq \text{ARITH}(M)$, then $(M, X) \models \text{RCA}_0 + I\Sigma_n^0$.
 - Particularly, there is no $(M, X) \models \text{RCA}_0 + \text{RT}_2^2 + \neg \text{I}\Sigma_2^0$ with $X \subseteq \text{ARITH}(M)$.

The maximal Π_1^1 -conservative extension of $B\Sigma_n^0 + \neg I\Sigma_n^0$ is c.e.

- Let $\psi \equiv \forall X \exists Y \theta(X, Y)$ be a Π_2^1 -sentence. Then, RCA₀ + B Σ_n^0 + $\neg I\Sigma_n^0$ + ψ is Π_1^1 -conservative over RCA₀ + B Σ_n^0 + $\neg I\Sigma_n^0$ if and only if B Σ_n^0 + $\neg I\Sigma_n^0$ proves (‡) $\forall X \forall Y [\neg I\Sigma_n(X) \land X \ll_{\Delta_n} Y \rightarrow$ $\exists Z \in \Delta_n(\mathbb{N}; Y)(\theta(X, Z) \land \Delta_n(\mathbb{N}; X \oplus Z) \subseteq \Delta_n(\mathbb{N}; Y))].$
- WKL₀ is conservative over RCA₀^{*} w.r.t. formulas of the form $\forall X \exists ! Y \theta(X, Y)$ where $\theta \in \Sigma_0^1$.
- (and maybe more)...

Thank you!

- R. Kossak, On extensions of models of strong fragments of arithmetic, *Proc. Amer. Math. Soc.*, 108 (1990), 223–232.
- C. Smoryński, Back-and-forth inside a recursively saturated model of arithmetic, Logic Colloquium '80 (Prague, 1980), 273–278, Stud. Logic Foundations Math., 108, North-Holland, 1982.
- D. Belanger. Conservation theorems for the cohesiveness principle. Preprint available at http://www.math.nus. edu.sg/ imsdrb/papers/coh-2015-09-30.pdf, September 2015.
- P. A. Cholak, C. G. Jockusch and T. A. Slaman, On the strength of Ramsey's theorem for pairs. J. Symb. Logic 66 (2001), 1–55.
- C. T. Chong, T. A. Slaman and Y. Yang, Π¹₁-conservation of combinatorial principles weaker than Ramsey's theorem for pairs, *Adv. Math.*, 230 (2012),1060–1077.

This work is partially supported by JSPS KAKENHI (grant numbers 19K03601 and 15H03634), and JSPS Core-to-Core Program (A. Advanced Research Networks).