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Automorphisms of models of first-order arithmetic

Theorem (Smoryński)

Let M |= I∆0 be countable recursively saturated, let I ⊆e M be
closed under exp, and let d > I.
If ā, b̄ < d satisfy Th∆0(ā, x, d) = Th∆0(b̄ , x, d) for any x ∈ I, then
there exists an automorphism h : d → d with fixing I pointwise and
h(ā) = b̄.

Given M |= I∆0 and A ⊆ M, we write (M;A) |= IΣ0
n or IΣn(A)

(resp. BΣ0
n or BΣn(A)) if M satisfies Σ1-induction (resp. bounding)

with A as a unary predicate.

Theorem (Essentially Kossak)

If (M;A) |= BΣ0
1 + exp+¬IΣ0

1, then M has continuum many
automorphisms.
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Weak fragments of second-order arithmetic

In this talk, we care about the hierarchy of induction and bounding.

EFA: “discrete ordered semi-ring”+ “2x is total”+ Σ0-induction.

IΣ0
n: EFA+Σ0

n induction.

BΣ0
n: EFA+Σ0

n bounding:
∀u (∀x < u ∃y ψ(x, y)→ ∃v ∀x < u ∃y < v ψ(x, y))

Kirby-Paris hierarchy: BΣ0
1 < IΣ0

1 < BΣ0
2 < IΣ0

2 < BΣ0
3 < . . .

And, I would like to talk about models of. . .

RCA∗0: EFA+Σ0
0 induction+∆0

1 comprehension.

RCA0: RCA∗0+Σ0
1 induction.

WKL∗0: RCA∗0 + weak König’s lemma.

WKL0: RCA0 + weak König’s lemma.

RCA0 + COH + BΣ0
2, RCA0 + RT2

2,. . .
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Coded submodels

An L2-structure is a pair (M,X), where M is an L1-structure and
X ⊆ P(M).

In this talk, we mostly consider models (M,X) |= RCA∗0, and
always assume that both of M and X are countable.

Definition

Let (M,X) |= RCA∗0. A coded submodel (or c.c.ω-submodel) is a
setW = {Wk : k ∈ M} ∈ X, where x ∈ Wk ↔ (x, k) ∈ W.
Then, (M,W) is an (ω-)substructure of (M,X).

Note that a coded submodel is not equipped with its truth
definition.

However, (M,W) |= ψ can be always described by an
arithmetical formula within (M,X).
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Coded submodels

We will use the following theorem throughout this talk.

Theorem

Let (M,X) |= RCA∗0. Then the following are equivalent.
1 (M,X) |= WKL∗0.
2 For any A ∈ X, there exists a coded submodelW ∈ X such

that A ∈ W and (M,W) |= WKL∗0.

We often consider models (M,X) |= WKL∗0 + BΣ0
n + ¬IΣ0

n.
Since ¬IΣ0

n is a Σ1
1-statement, we may fix A0 ∈ X such that

(M;A0) |= ¬IΣn(A0).
Then, any coded submodel which contains A0 satisfies
BΣ0

n + ¬IΣ0
n.

Moreover, if n = 1, A0 ⊆ M can be taken as an unbounded set
which is described by an increasing enumeration
A0 = {di : i ∈ I} where I = cardM(A0) is a proper Σ0

1-definable
cut.
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Automorphism argument for WKL∗0

Theorem

Let (M,X) be a countable recursively saturated model of
WKL∗0 + ¬IΣ0

1, and letW = {Wk : k ∈ M} ∈ X be a coded
submodel of (M,X) satisfying WKL∗0 + ¬IΣ0

1.
Then, for any ā ∈ M and Ā ∈ W, there exists an isomorphism h
between (M,X) and (M,W) such that h(ā) = ā and h(Ā) = Ā .

((M,X), (M,W)) form a recursively saturated pair.

h : M → M is just an automorphism, and will not be identity.

Idea of the proof.
Build the isomorphism h by a B & F as follows:
take A0 = {di : i ∈ I} ∈ W where I = cardM(A0) is a proper cut and
I < b, and then construct h so that
for each r̄ , s̄ ∈ M, R̄ ∈ X, S̄ ∈ W, h(r̄) = s̄, h(R̄) = h(S̄) implies

(#) for each ∆0 formula δ, n ∈ ω, j ≤ expn(b), and i ∈ I,
(M,X) |= δ(di , j, r̄ , R̄)↔ δ(di , j, s̄, S̄).



Automorphism argument for WKL∗0

Theorem

Let (M,X) be a countable recursively saturated model of
WKL∗0 + ¬IΣ0

1, and letW = {Wk : k ∈ M} ∈ X be a coded
submodel of (M,X) satisfying WKL∗0 + ¬IΣ0

1.
Then, for any ā ∈ M and Ā ∈ W, there exists an isomorphism h
between (M,X) and (M,W) such that h(ā) = ā and h(Ā) = Ā .

Corollary

Let (M,X) be a model of WKL∗0 + ¬IΣ0
1, and letW ∈ X be code a

submodel of (M,X) satisfying WKL∗0 + ¬IΣ0
1.

Then, (M,W) is an elementary submodel of (M,X).

We will see some (weird) consequences of this theorem.
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Collapsing analytic hierarchy

Within WKL∗0 + ¬IΣ0
1, analytic hierarchy collapses.

Proposition

Let (M,X) |= WKL∗0 + ¬IΣ0
1, and let ā ∈ M, Ā ∈ X. For any

L2-formula ψ(x̄, X̄), the following are equivalent.

(M,X) |= ψ(ā, Ā).

For any coded submodelW = {Wk : k ∈ M} ∈ X with Ā ∈ W,
(M,W) |= ψ(ā, Ā).

There exists a coded submodelW = {Wk : k ∈ M} ∈ X with
Ā ∈ W such that (M,W) |= ψ(ā, Ā).

Corollary

Within WKL∗0 + ¬IΣ0
1, any L2-formula ψ(x̄, X̄) is equivalent to a

Π1
1-formula and a Σ1

1-formula.
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Undefinability of coded models

Over RCA∗0 + ¬IΣ0
1, low basis theorem fails badly. . .

Let (M,X) |= WKL∗0 + ¬IΣ0
1 and letW ∈ X be a coded

submodel satisfying WKL∗0 + IΣ0
1.

Assume thatW(⊆ M) is definable in (M,W) as
W = {a ∈ M : (M,W) |= θ(a)}.
Then, (M,X) |= ∃Z(Z = θ(N)) but
(M,W) |= ¬∃Z(Z = θ(N)), which is a contradiction.

Corollary

If (M,X) |= WKL∗0 and X ⊆ ARITH(M), then (M,X) |= WKL0.

Corollary

The following are equivalent over RCA∗0.
1 IΣ0

1.
2 For any infinite tree T ⊆ 2<N, there exists a Σn(T)-definable

path of T which satisfies BΣ0
1 (n ≥ 2).
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Maximal Π1
1-conservative extension

Theorem

(Simpson/Smith) WKL∗0 is Π1
1-conservative over RCA∗0.

Let T ⊇ RCA∗0 be a Π1
2-theory. If φ, ψ are Π1

2-sentences and
T + φ and T + ψ are both Π1

1-conservative over T, then
T + φ+ ψ is Π1

1-conservative over T.

Assume that a Π1
2-sentence φ is Π1

1-conservative over
RCA∗0 + ¬IΣ0

1.
Then WKL∗0 + ¬IΣ0

1 + φ is also Π1
1-conservative over

RCA∗0 + ¬IΣ0
1.

Within WKL∗0 + ¬IΣ0
1, φ is equivalent to a Π1

1-sentence φ̃.
Then RCA∗0 + ¬IΣ0

1 ⊢ φ̃, and thus WKL∗0 + ¬IΣ0
1 ⊢ φ.

Corollary

A Π1
2-sentence ψ is Π1

1-conservative over RCA∗0 + ¬IΣ0
1 if and only

if WKL∗0 + ¬IΣ0
1 proves ψ.
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Generalization to RCA∗0 + BΣ0
n + ¬IΣ0

n

Let (M,X) |= RCA∗0 + BΣ0
n.

Given A ,B ∈ X, we write A ≪∆n B if
there exists a ∆n(M;B)-definable coded submodel of WKL∗0
containing A (n−1), or equivalently all ∆n(M;A) sets.

Definition

∆nWKL: ∀X∃Y(X ≪∆n Y).

(M,X) |= BΣ0
n +∆nWKL⇐⇒ (M,∆n(M,X)) |= WKL∗0.

∆2WKL is equivalent to COH over RCA0 + BΣ0
2 (Belanger).

RCA∗0 + BΣ0
n +∆nWKL is Π1

1-conservative over RCA∗0 + BΣ0
n

(essentially Belanger).

Theorem

Let (M,X) |= RCA∗0 + BΣ0
n + ¬IΣ0

n be recursively saturated.
Let A ,B ∈ X such that (M;A) |= ¬IΣn(A) and A ≪∆n B.
Then, there exists Y ⊆ ∆n(M;B) such that A ∈ Y, (M,X) is
isomorphic to (M,Y) with fixing A and ∆n(M,Y) ⊆ ∆n(M;B).



Π1
1-part of RCA0 + RT2

2

Theorem (Cholak/Jockusch/Slaman)

RCA0 + RT2
2 + IΣ0

2 a Π1
1-conservative extension of RCA0 + IΣ0

2.

Indeed, any countable model of (M,X) |= RCA0 + IΣ0
2 has an

ω-extension Y ⊇ X such that (M,Y) |= RCA0 + RT2
2 + IΣ0

2.

Question (Cholak/Jockusch/Slaman)

Is RCA0 + RT2
2 a Π1

1-conservative extension of RCA0 + BΣ0
2?

To answer to this question, we need to know when
(M,X) |= RCA0 + BΣ0

2 + ¬IΣ0
2 can be extended to a model of

(M,Y) |= RCA0 + RT2
2(+¬IΣ0

2).
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Models of RCA0 + RT2
2 + ¬IΣ0

2

Let (M,X) |= RCA0 + RT2
2 + ¬IΣ0

2 be recursively saturated,
and let A ∈ X such that (M;A) |= ¬IΣ2(A).
Since RCA0 + RT2

2 ⊢ COH, we have (M,X) |= ∆2WKL.
Let f ∈ X be a coloring f : [M]2 → 2, and let B ∈ X such that
f ⊕ A ≪∆2 B.
Then, there exists Y ⊆ ∆2(M;B) such that f ⊕ A ∈ Y, (M,X)
is isomorphic to (M,Y) with fixing f ⊕ A and
∆2(M,Y) ⊆ ∆2(M;B).
Since (M,Y) |= RT2

2, there exists H ∈ Y such that H is an
infinite homogeneous set for f .
H is “low” in the sense that ∆2(M; f ⊕ X ⊕ H) ⊆ ∆2(M;B).

Theorem

RCA0 + RT2
2 proves the following:

(†) ∀X∀Y∀f : [N]2 → 2
[¬IΣ2(X) ∧ f ⊕ X ≪∆2 Y → ∃H ∈ ∆2(N;Y)(“H is an infinite
homogeneous set for f ” ∧∆2(N; f ⊕ X ⊕ H) ⊆ ∆2(N;Y))].



Π1
1-part of RCA0 + RT2

2

Theorem

RCA0 + RT2
2 proves the following:

(†) ∀X∀Y∀f : [N]2 → 2
[¬IΣ2(X) ∧ f ⊕ X≪∆2 Y → ∃H ∈ ∆2(N;Y)(“H is an infinite
homogeneous set for f ” ∧∆2(N; f ⊕ X ⊕ H) ⊆ ∆2(N;Y))].

(†) is a ∀Π0
5-statement.

(†) is the basis theorem for RT2
2 by the “first-jump control”

argument in the Cholak/Jockusch/Slaman paper.
If BΣ0

2 proves (†) then any countable model (M;A) |= BΣ0
2

can be extended to a model of RCA0 + RT2
2.

Corollary

RCA0 + RT2
2 is Π1

1-conservative over RCA0 + BΣ0
2 if and only

if BΣ0
2 proves (†).

If RCA0 +RT2
2 is ∀Π0

5-conservative over RCA0 +BΣ0
2 then it is

Π1
1-conservative over RCA0 + BΣ0

2.



Other consequences

“Undefinability” is also available for the case n ≥ 2.
If (M,X) |= RCA0 + BΣ0

n +∆nWKL and X ⊆ ARITH(M),
then (M,X) |= RCA0 + IΣ0

n.
Particularly, there is no (M,X) |= RCA0 + RT2

2 + ¬IΣ0
2 with

X ⊆ ARITH(M).

The maximal Π1
1-conservative extension of BΣ0

n + ¬IΣ0
n is c.e.

Let ψ ≡ ∀X∃Yθ(X ,Y) be a Π1
2-sentence. Then,

RCA0 + BΣ0
n + ¬IΣ0

n + ψ is Π1
1-conservative over

RCA0 + BΣ0
n + ¬IΣ0

n if and only if BΣ0
n + ¬IΣ0

n proves
(‡) ∀X∀Y [¬IΣn(X) ∧ X ≪∆n Y →

∃Z ∈ ∆n(N;Y)(θ(X ,Z) ∧∆n(N;X ⊕ Z) ⊆ ∆n(N;Y))].

WKL∗0 is conservative over RCA∗0 w.r.t. formulas of the form
∀X∃!Yθ(X ,Y) where θ ∈ Σ1

0.

(and maybe more). . .

Keita Yokoyama Automorphism argument and reverse mathematics 15 / 16



Thank you!
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