The fixed-point property for represented spaces

Mathieu Hoyrup

Loria - Inria, Nancy (France)

Fixed-point property

- Many mathematical fields have their fixed-point theorems: topology, order theory, convex analysis, etc.
- In computability theory: Kleene's Recursion Theorem, its extension by Ershov to numbered sets,
- In computable analysis: Kreitz, Weihrauch, 1985

Fixed-point property

- Many mathematical fields have their fixed-point theorems: topology, order theory, convex analysis, etc.
- In computability theory: Kleene's Recursion Theorem, its extension by Ershov to numbered sets,
- In computable analysis: Kreitz, Weihrauch, 1985

Computability theory	Computable analysis
Numbered sets	Represented spaces
Computable multi-valued	Continuous multi-valued
functions	functions

From numbered sets to represented spaces

Some results easily extend:

- Ershov: A total numbering satisfies the 2nd recursion theorem \iff it is precomplete,
- Weihrauch: Effective domains satisfy the 2nd recursion theorem.

From numbered sets to represented spaces

Some results become possible: continuity is smoother than computability.

Problems

- Give characterizations of classes of spaces with the FPP,
- Why does the FPP usually hold *uniformly*?
- Is the diagonal argument the only way to prove the FPP?

Base-complexity

Represented spaces

- Baire space: $\mathcal{N} = \mathbb{N}^{\mathbb{N}}$,
- Represented space: pair $\mathbf{X} = (X, \delta_X)$, where $\delta_X :\subseteq \mathcal{N} \to X$ is surjective,
- A multifunction $f : \mathbf{X} \Rightarrow \mathbf{Y}$ is computable if it has a computable realizer $F :\subseteq \mathcal{N} \to \mathcal{N}$:

name of
$$x \longrightarrow F$$
 name of $y \in f(x)$

• f is continuous if it has a continuous realizer.

UFPP

Classes of spaces

Base-complexity

FPP

UFPP

Classes of spaces Countably-based spaces Spaces of open sets

Base-complexity

The fixed-point property

Definition

A represented space **X** has the **fixed-point property (FPP)** if every continuous multifunction $h : \mathbf{X} \rightrightarrows \mathbf{X}$ has a fixed-point, i.e. some $x \in \mathbf{X}$ such that $x \in h(x)$.

Computable fixed-point free multifunction:

$$x \longrightarrow$$
 Algorithm $x' \neq x$

Base-complexity

Examples

- [0,1]
- $[0,1]_{<}$
- $(0,1]_{<}$
- $[0,1)_{<}$
- $\mathcal{P}(\omega)$
- $\sum_{\widetilde{\sim} n}^{0}(\mathcal{N})$
- $\Delta_{\widetilde{\sim}}^0(\mathcal{N})$

Base-complexity

Examples

- \mathbb{R} **NO**: h(x) = x + 1
- [0,1]
- $[0,1]_{<}$
- $(0,1]_{<}$
- $[0,1)_{<}$
- $\mathcal{P}(\omega)$
- $\sum_{\widetilde{\sim} n}^{0}(\mathcal{N})$
- $\Delta_n^0(\mathcal{N})$

Examples

- \mathbb{R} **NO**: h(x) = x + 1
- [0,1] **NO**: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$
- $(0,1]_{<}$
- $[0,1)_{<}$
- $\mathcal{P}(\omega)$
- $\sum_{\widetilde{\sim}}^{0} (\mathcal{N})$
- $\Delta_{\widetilde{\sim}}^0(\mathcal{N})$

Examples

- \mathbb{R} **NO**: h(x) = x + 1
- [0,1] **NO**: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ YES
- (0,1]<
- $[0,1)_{<}$
- $\mathcal{P}(\omega)$
- $\sum_{i=1}^{n} (\mathcal{N})$
- $\Delta_{\widetilde{\sim}}^0(\mathcal{N})$

Examples

- **NO**: h(x) = x + 1• R
- [0,1] **NO**: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ YES
- $(0,1]_{<}$ **NO**: h(x) = x/2
- $[0,1]_{<}$
- $\mathcal{P}(\omega)$
- $\sum_{n=1}^{\infty} (\mathcal{N})$
- $\Delta_n^0(\mathcal{N})$

Examples

- R **NO**: h(x) = x + 1
- [0,1] **NO**: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ YES
- $(0,1]_{<}$ **NO**: h(x) = x/2
- $[0,1]_{<}$ **NO**: h(x) = (x+1)/2
- $\mathcal{P}(\omega)$
- $\Sigma_n^0(\mathcal{N})$
- $\Delta_n^0(\mathcal{N})$

Examples

- R **NO**: h(x) = x + 1
- [0,1] **NO**: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ YES
- $(0,1]_{<}$ **NO**: h(x) = x/2
- $[0,1]_{<}$ **NO**: h(x) = (x+1)/2
- $\mathcal{P}(\omega)$ YES
- $\Sigma_n^0(\mathcal{N})$
- $\Delta_n^0(\mathcal{N})$

Examples

- R **NO**: h(x) = x + 1
- [0,1] **NO**: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ YES
- $(0,1]_{<}$ **NO**: h(x) = x/2
- $[0,1]_{<}$ **NO**: h(x) = (x+1)/2
- $\mathcal{P}(\omega)$ YES
- $\Sigma_n^0(\mathcal{N})$ YES
- $\Delta_n^0(\mathcal{N})$

FPP UFP

Classes of spa

Base-complexity

Examples

- \mathbb{R} **NO**: h(x) = x + 1
- [0,1] **NO**: $h(0) = 1, h(1) = 0, h(x) = \{0,1\}$
- $[0,1]_{<}$ YES
- $(0,1]_{<}$ **NO**: h(x) = x/2
- $[0,1]_{<}$ **NO**: h(x) = (x+1)/2
- $\mathcal{P}(\omega)$ **YES**
- $\sum_{i=1}^{n} (\mathcal{N})$ YES
- $\Delta_{\sim}^0(\mathcal{N})$ **NO**: $h(A) = A^c$

Diagonal argument

The spaces $[0,1]_{<}$, $\mathcal{P}(\omega)$ and $\sum_{n=1}^{\infty} \mathcal{N}(\mathcal{N})$ have the FPP.

Diagonal argument

If there is a continuous surjection $\phi : \mathcal{N} \to \mathscr{C}(\mathcal{N}, \mathbf{X})$, then \mathbf{X} has the FPP.

Diagonal argument

The spaces $[0,1]_{<}$, $\mathcal{P}(\omega)$ and $\sum_{n=1}^{\infty} \mathcal{N}(\mathcal{N})$ have the FPP.

Diagonal argument

If there is a continuous surjection $\phi : \mathcal{N} \to \mathscr{C}(\mathcal{N}, \mathbf{X})$, then \mathbf{X} has the FPP.

Proof.

- Given $h : \mathbf{X} \rightrightarrows \mathbf{X}$,
- Let $f \in \mathscr{C}(\mathcal{N}, \mathbf{X})$ be such that $f(p) \in h(\phi(p)(p))$,
- One has $f = \phi(p_0)$ for some p_0 ,
- $\phi(p_0)(p_0)$ is a fixed-point of h.

Diagonal argument

The spaces $[0,1]_{<}$, $\mathcal{P}(\omega)$ and $\sum_{n=0}^{\infty} (\mathcal{N})$ have the FPP.

Diagonal argument

If there is a continuous surjection $\phi : \mathcal{N} \to \mathscr{C}(\mathcal{N}, \mathbf{X})$, then \mathbf{X} has the FPP.

Proof.

- Given $h : \mathbf{X} \rightrightarrows \mathbf{X}$,
- Let $f \in \mathscr{C}(\mathcal{N}, \mathbf{X})$ be such that $f(p) \in h(\phi(p)(p))$,
- One has $f = \phi(p_0)$ for some p_0 ,
- $\phi(p_0)(p_0)$ is a fixed-point of h.

Key fact

Every continuous multifunction from ${\mathcal N}$ has a continuous single-valued selector.

Let τ be the final topology of the representation. Let \leq be the specialization preorder:

 $x \leq y \iff$ every neighborhood of x contains y.

Proposition

If \mathbf{X} has the fixed-point property, then \mathbf{X} has a least element.

Let τ be the final topology of the representation. Let \leq be the specialization preorder:

 $x \leq y \iff$ every neighborhood of x contains y.

Proposition

If \mathbf{X} has the fixed-point property, then \mathbf{X} has a least element.

Proof.

X has no least element \iff there exists a proper open cover $(U_i)_{i \in \mathbb{N}}$:

- $X = \bigcup_i U_i$,
- $X \neq U_i$ for each *i*.

Let τ be the final topology of the representation. Let \leq be the specialization preorder:

 $x \leq y \iff$ every neighborhood of x contains y.

Proposition

If \mathbf{X} has the fixed-point property, then \mathbf{X} has a least element.

Proof.

X has no least element \iff there exists a proper open cover $(U_i)_{i \in \mathbb{N}}$:

- $X = \bigcup_i U_i$,
- $X \neq U_i$ for each *i*.

We build a fixed-point free multifunction $h : \mathbf{X} \rightrightarrows \mathbf{X}$. Given x, find i such that $x \in U_i$, then output some $x' \notin U_i$.

Let τ be the final topology of the representation. Let \leq be the specialization preorder:

 $x \leq y \iff$ every neighborhood of x contains y.

Proposition

If \mathbf{X} has the fixed-point property, then \mathbf{X} has a least element.

Therefore, the final topology is:

- Compact,
- Not T_1 (unless **X** is a singleton).

FPP UFPP

Classes of

Base-complexity

Least element

- FPP? Least element?
- **R NO NO**
- [0,1] **NO NO**
- $[0,1]_{<}$ **YES YES**: 0
- $(0,1]_{<}$ NO NO
- $[0,1)_{<}$ **NO YES**: 0
- $\mathcal{P}(\omega)$ **YES YES**: \emptyset
- $\sum_{n=1}^{0} (\mathcal{N})$ YES YES: every element
- $\Delta_n^0(\mathcal{N})$ **NO YES**: every element

UFPP

Classes of spaces

Base-complexity

FPP

UFPP

Classes of spaces Countably-based spaces Spaces of open sets

Base-complexity

Base-complexity

Uniform fixed-point property

The spaces $\mathcal{P}(\omega)$, $[0,1]_{<}$, $\sum_{n=0}^{\infty} (\mathcal{N})$ have the fixed-point property.

Moreover, a fixed-point for $h : \mathbf{X} \rightrightarrows \mathbf{X}$ can be uniformly computed from h.

Uniform fixed-point property

- A uniform fixed-point property is defined in [Kreitz, Weihrauch, 85]: "satisfying the *t*-recursion theorem",
- Too weak: does not imply the fixed-point property.

Uniform fixed-point property

- A uniform fixed-point property is defined in [Kreitz, Weihrauch, 85]: "satisfying the *t*-recursion theorem",
- Too weak: does not imply the fixed-point property.

Definition (Attempt)

A represented space **X** has the **uniform fixed-point property** (UFPP) if given $H :\subseteq \mathcal{N} \to \mathcal{N}$, one can continuously find some $p \in \mathcal{N}$ such that

 $\delta_X(p) = \delta_X \circ H(p).$

Uniform fixed-point property

- A uniform fixed-point property is defined in [Kreitz, Weihrauch, 85]: "satisfying the *t*-recursion theorem",
- Too weak: does not imply the fixed-point property.

Definition

A represented space **X** has the **uniform fixed-point property** (UFPP) if given $H :\subseteq \mathcal{N} \to \mathcal{N}$, one can continuously find some $p \in \text{dom}(\delta_{\mathbf{X}})$ such that

 $x \in \operatorname{dom}(\delta_X \circ H) \implies \delta_X(p) = \delta_X \circ H(p).$

Uniform fixed-point property

- A uniform fixed-point property is defined in [Kreitz, Weihrauch, 85]: "satisfying the *t*-recursion theorem",
- Too weak: does not imply the fixed-point property.

Definition

A represented space **X** has the **uniform fixed-point property** (UFPP) if given $H :\subseteq \mathcal{N} \to \mathcal{N}$, one can continuously find some $p \in \text{dom}(\delta_{\mathbf{X}})$ such that

 $x \in \operatorname{dom}(\delta_X \circ H) \implies \delta_X(p) = \delta_X \circ H(p).$

[Kreitz, Weihrauch, 85] assumes H is total, and does not require $p \in dom(\delta_X)$.

Base-complexity

Uniform fixed-point property

Theorem

X has the uniform fixed-point property \iff Every partial continuous function $f :\subseteq \mathcal{N} \to \mathbf{X}$ has a total continuous extension $\tilde{f} : \mathcal{N} \to \mathbf{X}$.

Uniform fixed-point property

Theorem

X has the uniform fixed-point property \iff Every partial continuous function $f :\subseteq \mathcal{N} \to \mathbf{X}$ has a total continuous extension $\tilde{f} : \mathcal{N} \to \mathbf{X}$.

- This property is called **multi-retraceability** in [Brattka, Gherardi, 2021]
- It is equivalent to the effective discontinuity, defined in [Brattka, 2020], of the multifunction $h(x) = X \setminus \{x\}$.

Base-complexity

Uniform fixed-point property

Therefore, from the results in [Brattka, 2020]:

Corollary

Assuming the Axiom of Determinacy (AD),

 $FPP \iff UFPP.$

Base-complexity

Uniform fixed-point property

Therefore, from the results in [Brattka, 2020]:

Corollary

Assuming the Axiom of Determinacy (AD),

 $FPP \iff UFPP.$

Proof idea.

Game: Players I and II play $x_1, x_2 \in \mathbf{X}$. Player II wins if $x_2 \neq x_1$.

- A winning strategy for Player II is a fixed-point free continuous multifunction.
- A winning strategy for Player I witnesses the uniform fixed-point property.

Base-complexity

Uniform fixed-point property

Therefore, from the results in [Brattka, 2020]:

Corollary

Assuming the Axiom of Determinacy (AD),

 $FPP \iff UFPP.$

- Holds for most natural spaces without (AD),
- We will see classes of spaces for which (AD) can be dropped.

FPP UFPP Classes of spaces

Base-complexity

Uniform fixed-point property

Theorem

Assuming the Axiom of Choice,

FPP \iff UFPP.

Proof.

Let $X = \{0, 1\}, A \subseteq \mathcal{N}$ and $\delta = \mathbf{1}_A$. (X, δ) has the FPP $\iff A \not\leq_{\text{Wadge}} A^c$. Build A by transfinite induction (similar to the construction of a Bernstein set). FPP UFPP Classes of spaces

Base-complexity

Uniform fixed-point property

Theorem

Assuming the Axiom of Choice,

FPP \iff UFPP.

Proof.

Let $X = \{0, 1\}, A \subseteq \mathcal{N}$ and $\delta = \mathbf{1}_A$. (X, δ) has the FPP $\iff A \not\leq_{\text{Wadge}} A^c$. Build A by transfinite induction (similar to the construction of a Bernstein set).

Open problem

Build an *admissibly* represented space satisfying the FPP, but not the UFPP.

FPP UFPP Classe

Base-complexity

Diagonal argument

Reminder

The spaces $\mathcal{P}(\omega)$, $[0,1]_{<}$, $\sum_{n=0}^{\infty} (\mathcal{N})$ have the fixed-point property. Proved using the diagonal argument.

Question

Is the diagonal argument the only way to prove the FPP?

FPP UFPP Classes

Base-complexity

Diagonal argument

Reminder

The spaces $\mathcal{P}(\omega)$, $[0,1]_{<}$, $\sum_{n=0}^{\infty} (\mathcal{N})$ have the fixed-point property. Proved using the diagonal argument.

Question

Is the diagonal argument the only way to prove the FPP?

There is a continuous surjection $\phi : \mathcal{N} \to \mathscr{C}(\mathcal{N}, \mathbf{X})$ \Longrightarrow \mathbf{X} has the FPP. FPP UFPP Classes

Base-complexity

Diagonal argument

Reminder

The spaces $\mathcal{P}(\omega)$, $[0,1]_{<}$, $\sum_{n=0}^{0} (\mathcal{N})$ have the fixed-point property. Proved using the diagonal argument.

Question

Is the diagonal argument the only way to prove the FPP?

Assuming (AD),

There is a continuous surjection $\phi : \mathcal{N} \to \mathscr{C}(\mathcal{N}, \mathbf{X})$ \iff \mathbf{X} has the FPP. FPP UFPP Classes of spaces

Base-complexity

Complexity of equality

If $A \subseteq \mathbf{X}$ has the FPP/UFPP, then A is no more complex than equality on \mathbf{X} .

FPP UFPP Classes of spaces

Base-complexity

Complexity of equality

If $A \subseteq \mathbf{X}$ has the FPP/UFPP, then A is no more complex than equality on \mathbf{X} .

Definition (Descriptive complexity) In a represented space $\mathbf{X} = (X, \delta)$ with δ total, $A \in \Gamma(\mathbf{X}) \iff \delta^{-1}(A) \in \Gamma(\mathcal{N}),$ $A \subseteq \mathbf{X}$ is Γ -hard $\iff \delta^{-1}(A)$ is Γ -hard.

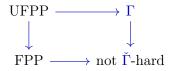
Complexity of equality

Let $\Gamma \in \{ \Sigma_{\alpha}^{0}, \widetilde{\mathbf{\Pi}}_{\alpha}^{0}, \Sigma_{\alpha}^{1}, \widetilde{\mathbf{\Pi}}_{\alpha}^{1} \}$ with α a countable ordinal.

Theorem

Assume that equality on **X** belongs to $\Gamma(\mathbf{X} \times \mathbf{X})$ and let $A \subseteq X$:

- If A has the UFPP then $A \in \Gamma(\mathbf{X})$,
- If A has the FPP then A is not $\check{\Gamma}$ -hard.



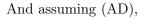
Complexity of equality

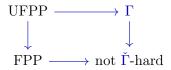
Let $\Gamma \in \{ \Sigma_{\alpha}^{0}, \overline{\mathbf{\mu}}_{\alpha}^{0}, \Sigma_{\alpha}^{1}, \overline{\mathbf{\mu}}_{\alpha}^{1} \}$ with α a countable ordinal.

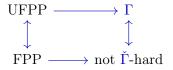
Theorem

Assume that equality on **X** belongs to $\Gamma(\mathbf{X} \times \mathbf{X})$ and let $A \subseteq X$:

- If A has the UFPP then $A \in \Gamma(\mathbf{X})$,
- If A has the FPP then A is not $\check{\Gamma}$ -hard.





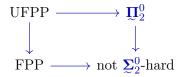


FPP UFPP Classes of spaces

Base-complexity

Example

In $\mathcal{P}(\omega)$ equality belongs to Π_2^0 , so for $A \subseteq \mathcal{P}(\omega)$,



Remark

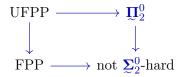
The $\underline{\Pi}_2^0$ -subspaces of $\mathcal{P}(\omega)$ are the quasiPolish spaces [de **Brecht 2013**].

FPP UFPP Classes of spa

Base-complexity

Example

In $\mathcal{P}(\omega)$ equality belongs to Π_2^0 , so for $A \subseteq \mathcal{P}(\omega)$,



Remark

The $\underline{\Pi}_2^0$ -subspaces of $\mathcal{P}(\omega)$ are the quasiPolish spaces [de **Brecht 2013**].

In $\mathcal{P}(\omega)$, we will later prove UFPP \longleftrightarrow FPP, without assuming (AD).

FPP

UFPP

Classes of spaces

Base-complexity

Subspace

Let \mathbf{X} have the UFPP.

Proposition

A subspace $\mathbf{Y} \subseteq \mathbf{X}$ has the UFPP $\iff \mathbf{Y}$ is a multi-valued retract of \mathbf{X} .

There exist $r : \mathbf{X} \rightrightarrows \mathbf{Y}$ and $s : \mathbf{Y} \to \mathbf{X}$ such that $r \circ s = \mathrm{id}_{\mathbf{Y}}$.

Example

A countably-based T_0 -space has the UFPP \iff it is a multi-valued retract of $\mathcal{P}(\omega)$.

FPP

UFPP

Classes of spaces

Base-complexity

FPP

UFPP

Classes of spaces Countably-based spaces Spaces of open sets

Base-complexity

Countably-based T_0 -spaces

Let **X** be a countably-based T_0 -space with the standard representation.

Theorem

The following statements are equivalent:

- 1. X has the fixed-point property,
- 2. X has the uniform fixed-point property,
- 3. **X** is a multi-valued retract of $\mathcal{P}(\omega)$,
- 4. **X** is a pointed ω -continuous dcpo with the Scott topology.

We do not assume (AD).

Let's show why FPP $\implies \omega$ -continuous dcpo.

Proof ideas

Let us illustrate why, for subsets of $(\mathcal{P}(\omega), \subseteq)$:

- Not a dcpo \implies fixed-point free multifunction,
- Not ω -continuous \implies fixed-point free multifunction.

Proof ideas: dcpo

The set $\mathbf{X} = \mathcal{P}(\omega) \setminus \{\omega\}$ admits a fixed-point free continuous function $h : \mathbf{X} \to \mathbf{X}$:

 $h(A) = \{0, \ldots, n\}$, where $n \notin A$ is minimal.

Proof ideas: dcpo

The set $\mathbf{X} = \mathcal{P}(\omega) \setminus \{\omega\}$ admits a fixed-point free continuous function $h : \mathbf{X} \to \mathbf{X}$:

 $h(A) = \{0, \dots, n\}$, where $n \notin A$ is minimal.

What's going on?

We are exploiting that \mathbf{X} is not a dcpo: the set

$$D = \{\{0, \dots, n\} : n \in \omega\}$$

is directed but has no sup.

Proof ideas: ω -continuity

The set $\mathbf{X} = \{\emptyset\} \cup \{A \subseteq \omega : A \text{ is infinite}\}$ has a fixed-point free continuous multifunction:

- Given $A \in \mathbf{X}$, we start producing ω ,
- If we detect that A ≠ Ø, then we pause and find some n ∈ A that we do not have enumerated yet,
- We then produce $\omega \setminus \{n\}$.

Proof ideas: ω -continuity

The set $\mathbf{X} = \{\emptyset\} \cup \{A \subseteq \omega : A \text{ is infinite}\}$ has a fixed-point free continuous multifunction:

- Given $A \in \mathbf{X}$, we start producing ω ,
- If we detect that A ≠ Ø, then we pause and find some n ∈ A that we do not have enumerated yet,
- We then produce $\omega \setminus \{n\}$.

What's going on?

- Say that $A \ll_t B$ if $B \in int(\uparrow A)$.
- ω -continuity means that \ll_t is rich: $B = \sup\{A : A \ll_t B\}$.
- **X** is not ω -continuous: if $A \neq \emptyset$, then $A \not\ll_t \omega$.

Countably-based spaces

- Multifunctions are much more flexible than functions,
- The *single-valued* FPP is much harder to understand, even for finite spaces.

For finite T_0 -spaces,

- FPP \iff It has a least element,
- Single-valued FPP \iff Single-valued FPP for finite posets, which is an open problem.

Spaces of open sets

Let ${\bf X}$ be admissibly represented. $\mathcal{O}({\bf X})$ has an admissible representation.

Theorem

The following statements are equivalent:

- X is countably-based,
- $\mathcal{O}(\mathbf{X})$ has the fixed-point property,
- $\mathcal{O}(\mathbf{X})$ has the uniform fixed-point property.

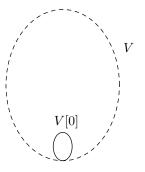
Knaster-Tarski or Kleene's fixed-point theorems imply that continuous functions $\mathcal{O}(\mathbf{X}) \to \mathcal{O}(\mathbf{X})$ always have fixed-points.

- In a countably-based space, enumerating an open set V means producing a growing sequence of *open* sets V[s] such that $V = \bigcup_{s} V[s]$,
- When the space is not countably-based, the sets V[s] are not always open.

For simplicity, let's work in a space where each V[s] has empty interior.

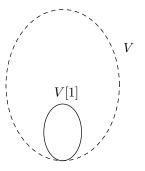
Opponent gives some $U \in \mathcal{O}(\mathbf{X})$, we produce some $V \neq U$.

• Start enumerating some $V \neq \emptyset$,



Opponent gives some $U \in \mathcal{O}(\mathbf{X})$, we produce some $V \neq U$.

• Start enumerating some $V \neq \emptyset$,

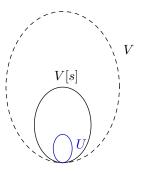


FPP UFPP Classes of spaces

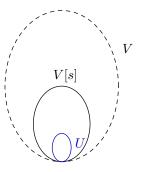
Base-complexity

Spaces of open sets: proof idea

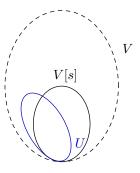
- Start enumerating some $V \neq \emptyset$,
- If we detect that $U \neq \emptyset$, then we pause,



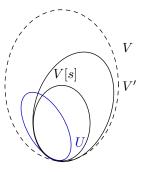
- Start enumerating some $V \neq \emptyset$,
- If we detect that $U \neq \emptyset$, then we pause,
- V[s] has empty interior, so $U \nsubseteq V[s]$,



- Start enumerating some $V \neq \emptyset$,
- If we detect that $U \neq \emptyset$, then we pause,
- V[s] has empty interior, so $U \nsubseteq V[s]$,



- Start enumerating some $V \neq \emptyset$,
- If we detect that $U \neq \emptyset$, then we pause,
- V[s] has empty interior, so $U \nsubseteq V[s]$,
- Produce some $V' \supseteq V[s]$ such that $U \nsubseteq V'$.



FPP

UFPP

Classes of spaces

Base-complexity

FPP

UFPP

Classes of spaces Countably-based spaces Spaces of open sets

Base-complexity

Base-complexity

Definition ([de Brecht, Schröder, Selivanov, 2016])

A topological space \mathbf{X} is \mathbf{Y} -based if there is a continuous indexing $\mathbf{Y} \to \mathcal{O}(\mathbf{X})$ of a basis.

A hierarchy can be obtained by using the Kleene-Kreisel spaces $\mathbf{Y} = \mathbb{N}\langle \alpha \rangle$:

- $\mathbb{N}\langle 0 \rangle = \mathbb{N},$
- $\mathbb{N}\langle 1 \rangle = \mathbb{N}^{\mathbb{N}} = \mathcal{N},$
- $\mathbb{N}\langle 2 \rangle = \mathbb{N}^{\mathbb{N}^{\mathbb{N}}},$
- $\mathbb{N}\langle n+1\rangle = \mathscr{C}(\mathbb{N}\langle n\rangle, \mathbb{N}),$
- Also $\mathbb{N}\langle \alpha \rangle$ for countable ordinal α .

Base-complexity

Examples

- Countably-based = $\mathbb{N}\langle 0 \rangle$ -based,
- $\mathcal{O}(\mathcal{N})$ is $\mathbb{N}\langle 1 \rangle$ -based but not $\mathbb{N}\langle 0 \rangle$ -based,
- $\mathbb{N}\langle \alpha \rangle$ is $\mathbb{N}\langle \alpha + 1 \rangle$ -based.

Questions

Is the base-complexity hierarchy proper? What is the exact base-complexity of $\mathbb{N}\langle \alpha \rangle$? Base-complexity

Examples

- Countably-based = $\mathbb{N}\langle 0 \rangle$ -based,
- $\mathcal{O}(\mathcal{N})$ is $\mathbb{N}\langle 1 \rangle$ -based but not $\mathbb{N}\langle 0 \rangle$ -based,
- $\mathbb{N}\langle \alpha \rangle$ is $\mathbb{N}\langle \alpha + 1 \rangle$ -based.

Questions

Is the base-complexity hierarchy proper? What is the exact base-complexity of $\mathbb{N}\langle \alpha \rangle$?

Theorem

For $\alpha \geq 2$, $\mathbb{N}\langle \alpha \rangle$ is not $\mathbb{N}\langle \alpha \rangle$ -based. The hierarchy is proper.

Base-complexity

Theorem (Attempt)

If $h : \mathbf{Y} \rightrightarrows \mathbf{Y}$ has no fixed-point, then $\mathscr{C}(\mathbf{X}, \mathbf{Y})$ is not a continuous image of \mathbf{X} .

The diagonal argument does not work: it produces a *multi-valued* function $f : \mathbf{X} \rightrightarrows \mathbf{Y}$.

Classes of spaces

Base-complexity

Base-complexity

If there exists $P \subseteq \mathbf{X}$ such that:

• **X** is a continuous image of P,

Classes of spaces

Base-complexity

Base-complexity

If there exists $P \subseteq \mathbf{X}$ such that:

- **X** is a continuous image of P,
- Every $f: P \to \mathbf{Y}$ has an extension $\overline{f}: \mathbf{X} \to \mathbf{Y}$,

Base-complexity

If there exists $P \subseteq \mathbf{X}$ such that:

- **X** is a continuous image of P,
- Every $f: P \to \mathbf{Y}$ has an extension $\overline{f}: \mathbf{X} \to \mathbf{Y}$,
- And P embeds in \mathcal{N} ,

Base-complexity

If there exists $P \subseteq \mathbf{X}$ such that:

- **X** is a continuous image of P,
- Every $f: P \to \mathbf{Y}$ has an extension $\overline{f}: \mathbf{X} \to \mathbf{Y}$,
- And P embeds in \mathcal{N} ,

then $\mathscr{C}(\mathbf{X}, \mathbf{Y})$ is not a continuous image of \mathbf{X} .

$$\begin{array}{ccc} \mathbf{X} & \stackrel{\mathbf{no}}{\longrightarrow} \mathscr{C}(\mathbf{X}, \mathbf{Y}) \\ \uparrow & & \downarrow \\ P & \stackrel{\mathbf{no}}{\longrightarrow} \mathscr{C}(P, \mathbf{Y}) \end{array}$$

Classes of spaces

Base-complexity

Base-complexity

Theorem For $\alpha \geq 2$, $\mathbb{N}\langle \alpha \rangle$ is not $\mathbb{N}\langle \alpha \rangle$ -based.

Proof.

- $\mathbb{N}\langle \alpha \rangle$ contains such a P,
- $\mathcal{O}(\mathbb{N}\langle\alpha\rangle)$ has a fixed-point free multifunction, because $\mathbb{N}\langle\alpha\rangle$ is not countably-based.

Classes of spaces

Base-complexity

Base-complexity

Theorem For $\alpha \geq 2$, $\mathbb{N}\langle \alpha \rangle$ is not $\mathbb{N}\langle \alpha \rangle$ -based.

Proof.

- $\mathbb{N}\langle \alpha \rangle$ contains such a P,
- $\mathcal{O}(\mathbb{N}\langle\alpha\rangle)$ has a fixed-point free multifunction, because $\mathbb{N}\langle\alpha\rangle$ is not countably-based.

Theorem

For $n \geq 2$, there is no computable $\sum_{n=1}^{1} \mathbb{E}^{1}$ -indexing of the effective open sets of $\mathbb{N}\langle n \rangle$.

FPP

 \mathbf{UFPP}

Question

An analogy

- The \mathbb{N} -based spaces are the topological subspaces of $\mathcal{O}(\mathbb{N})$.
- The N-based spaces are the topological subspaces of O(N).
 [de Brecht, Schröder, Selivanov, 2016]
- For ℕ-based spaces:

 $\begin{array}{rcl} \mathrm{FPP} & \Longleftrightarrow & \mathrm{UFPP} & \Longleftrightarrow & \mathrm{retract} & \mathrm{of} & \mathcal{O}(\mathbb{N}) \\ & & \Leftrightarrow & \mathrm{pointed} & \omega \mathrm{-continuous} & \mathrm{dcpo} \end{array}$

• For *N*-based spaces:

 $\begin{array}{rcl} \text{FPP} & \longleftarrow & \text{retract of } \mathcal{O}(\mathcal{N}) \\ & & \longleftrightarrow & ??? \end{array}$

FPP UFI

JFPP

Classes of spaces

Base-complexity

References

- Brattka and Gherardi, 2021. Completion of Choice. Ann. Pure Appl. Log. 172(3): 102914
- Brattka, 2020. The Discontinuity Problem. arXiv:2012.02143
- de Brecht, Schröder, Selivanov, 2016. Base-complexity classification of qcb₀-spaces. Computability. 5(1):75-102
- Hoyrup, 2020. The fixed-point property for represented spaces. hal.inria.fr/hal-03117745
- Kreitz, Weihrauch, 1985. Theory of Representations. Theor. Comput. Sci. 38: 35-53