### Rival-Sands principles in the Weihrauch degrees

Giovanni Soldà University of Leeds mmgs@leeds.ac.uk

CTA Seminars January 26, 2021

Joint work with Marta Fiori Carones and Paul Shafer

Giovanni Soldà - Leeds

### Rival-Sands theorem for graphs

Ivan Rival and Bill Sands. "On the Adjacency of Vertices to the Vertices of an Infinite Subgraph". In: *Journal of the London Mathematical Society* 2 (1980), pp. 393–400

### Theorem (Rival-Sands)

RSg: Let G = (V, E) be an infinite countable graph. There is an infinite set  $H \subseteq V$  such that

- for every  $v \in V$ , there are 0, 1 or infinitely many  $h \in H$  such that  $\{v, h\} \in E$ .
- for every h ∈ H, there are either 0 or infinitely many h' ∈ H such that {h, h'} ∈ E.

### Rival-Sands theorem for graphs

Ivan Rival and Bill Sands. "On the Adjacency of Vertices to the Vertices of an Infinite Subgraph". In: *Journal of the London Mathematical Society* 2 (1980), pp. 393–400

#### Theorem (Rival-Sands)

RSg: Let G = (V, E) be an infinite countable graph. There is an infinite set  $H \subseteq V$  such that

- for every  $v \in V$ , there are 0, 1 or infinitely many  $h \in H$  such that  $\{v, h\} \in E$ .
- for every h ∈ H, there are either 0 or infinitely many h' ∈ H such that {h, h'} ∈ E.

This can be seen as an "inside-outside" Ramsey theorem.

### Rival-Sands theorem for graphs

Ivan Rival and Bill Sands. "On the Adjacency of Vertices to the Vertices of an Infinite Subgraph". In: *Journal of the London Mathematical Society* 2 (1980), pp. 393–400

#### Theorem (Rival-Sands)

RSg: Let G = (V, E) be an infinite countable graph. There is an infinite set  $H \subseteq V$  such that

- for every  $v \in V$ , there are 0, 1 or infinitely many  $h \in H$  such that  $\{v, h\} \in E$ .
- for every h ∈ H, there are either 0 or infinitely many h' ∈ H such that {h, h'} ∈ E.

This can be seen as an "inside-outside" Ramsey theorem.

Theorem (FC-Sh-So)

 $\mathsf{RCA}_0 \vdash \mathsf{ACA}_0 \leftrightarrow \mathsf{RSg}$ 

RSg: Let G = (V, E) be an infinite countable graph. There is an infinite set  $H \subseteq V$  such that

- for every  $v \in V$ , there are 0, 1 or infinitely many  $h \in H$  such that  $\{v, h\} \in E$ .
- for every  $h \in H$ , there are either 0 or infinitely many  $h' \in H$  such that  $\{h', h\} \in E$ .

What happens if we forget about the "outside"?

RSg: Let G = (V, E) be an infinite countable graph. There is an infinite set  $H \subseteq V$  such that

- for every  $v \in V$ , there are 0, 1 or infinitely many  $h \in H$  such that  $\{v, h\} \in E$ .
- for every  $h \in H$ , there are either 0 or infinitely many  $h' \in H$  such that  $\{h', h\} \in E$ .

What happens if we forget about the "outside"?

• wRSg: for every infinite graph G = (V, E), there is an infinite set  $H \subseteq V$  such that for every  $h \in H$ , there are 0, 1, or infinitely many  $h' \in H$  such that  $\{h, h'\} \in E$ .

RSg: Let G=(V,E) be an infinite countable graph. There is an infinite set  $H\subseteq V$  such that

- for every  $v \in V$ , there are 0, 1 or infinitely many  $h \in H$  such that  $\{v, h\} \in E$ .
- for every  $h \in H$ , there are either 0 or infinitely many  $h' \in H$  such that  $\{h', h\} \in E$ .

#### What happens if we forget about the "outside"?

- wRSg: for every infinite graph G = (V, E), there is an infinite set  $H \subseteq V$  such that for every  $h \in H$ , there are 0, 1, or infinitely many  $h' \in H$  such that  $\{h, h'\} \in E$ .
- wRSgr: for every infinite graph G = (V, E), there is an infinite set  $H \subseteq V$  such that for every  $h \in H$ , there are 0 or infinitely many  $h' \in H$  such that  $\{h, h'\} \in E$ .

RSg: Let G=(V,E) be an infinite countable graph. There is an infinite set  $H\subseteq V$  such that

- for every  $v \in V$ , there are 0, 1 or infinitely many  $h \in H$  such that  $\{v, h\} \in E$ .
- for every  $h \in H$ , there are either 0 or infinitely many  $h' \in H$  such that  $\{h', h\} \in E$ .

What happens if we forget about the "outside"?

- wRSg: for every infinite graph G = (V, E), there is an infinite set  $H \subseteq V$  such that for every  $h \in H$ , there are 0, 1, or infinitely many  $h' \in H$  such that  $\{h, h'\} \in E$ .
- wRSgr: for every infinite graph G = (V, E), there is an infinite set  $H \subseteq V$  such that for every  $h \in H$ , there are 0 or infinitely many  $h' \in H$  such that  $\{h, h'\} \in E$ .

Theorem (Fiori Carones-Hirst-Lempp-Shafer-Soldà)  $\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \leftrightarrow \mathsf{wRSgr} \leftrightarrow \mathsf{wRSg}$ 

### Weihrauch reducibility et similia

We see every principle P as a **partial multifunction**  $P :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ , and we describe it in terms of its valid **inputs** and of the valid **outputs** to those inputs.

Weihrauch reducibility: we say that  $P \leq_W Q$  if there are Turing functionals  $\Phi$ ,  $\Psi$  such that for every  $x \in \text{dom}(P)$ , for every  $y \in Q(\Phi(x))$  it holds that  $\Psi(x, y) \in P(x)$ .

$$x \in \operatorname{dom}(\mathsf{P}) \xrightarrow{\qquad \qquad } \Phi \longrightarrow \mathsf{Q} \xrightarrow{y} \Psi \xrightarrow{\qquad \qquad } \Psi(x,y) \in \mathsf{P}(x)$$

### Weihrauch reducibility et similia

We see every principle P as a **partial multifunction**  $P :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ , and we describe it in terms of its valid **inputs** and of the valid **outputs** to those inputs.

Weihrauch reducibility: we say that  $P \leq_W Q$  if there are Turing functionals  $\Phi$ ,  $\Psi$  such that for every  $x \in \text{dom}(P)$ , for every  $y \in Q(\Phi(x))$  it holds that  $\Psi(x, y) \in P(x)$ .

$$x \in \operatorname{dom}(\mathsf{P}) \xrightarrow{\qquad} \Phi \longrightarrow \mathsf{Q} \xrightarrow{y} \Psi \xrightarrow{\qquad} \Psi(x,y) \in \mathsf{P}(x)$$

A related (weaker) concept is **computable reducibility**:  $P \leq_c Q$  if for every  $x \in dom(P)$  there is a  $\tilde{x} \leq_T x$  such that for every  $\tilde{y} \in Q(\tilde{x})$  there is  $y \leq_T x \oplus \tilde{y}$  such that  $y \in P(x)$ .

$$x \in \operatorname{dom}(\mathsf{P}) \longrightarrow \Phi \longrightarrow \mathsf{Q} \xrightarrow{y} \Psi \longrightarrow \Psi(y) \in \mathsf{P}(x)$$

Another related (stronger) concept is **strong Weihrauch reducibility**:  $P \leq_{sW} Q$  if there are Turing functionals  $\Phi$ ,  $\Psi$  such that for every  $x \in dom(P)$  and for every  $y \in Q(\Phi(x))$ , it holds that  $\Psi(y) \in P(x)$ .

$$x \in \operatorname{dom}(\mathsf{P}) \longrightarrow \Phi \longrightarrow \mathsf{Q} \xrightarrow{\mathcal{Y}} \Psi \longrightarrow \Psi(y) \in \mathsf{P}(x)$$

• P' is the **jump** of P.

$$x \in \operatorname{dom}(\mathsf{P}) \longrightarrow \Phi \longrightarrow \mathsf{Q} \xrightarrow{\mathcal{Y}} \Psi \longrightarrow \Psi(y) \in \mathsf{P}(x)$$

- P' is the **jump** of P.
- $\widehat{\mathsf{P}}$  is the **parallelization** of  $\mathsf{P}$ .

$$x \in \operatorname{dom}(\mathsf{P}) \longrightarrow \Phi \longrightarrow \mathsf{Q} \xrightarrow{\mathcal{Y}} \Psi \longrightarrow \Psi(y) \in \mathsf{P}(x)$$

- P' is the **jump** of P.
- $\widehat{\mathsf{P}}$  is the **parallelization** of  $\mathsf{P}$ .
- P \* Q is the **composition** of P after Q.

$$x \in \operatorname{dom}(\mathsf{P}) \longrightarrow \Phi \longrightarrow \mathsf{Q} \xrightarrow{\mathcal{Y}} \Psi \longrightarrow \Psi(y) \in \mathsf{P}(x)$$

- P' is the **jump** of P.
- $\widehat{\mathsf{P}}$  is the **parallelization** of  $\mathsf{P}$ .
- P \* Q is the **composition** of P after Q.
- If id  $\times P \leq_{sW} P$ , then P is a **cylinder** and  $Q \leq_{W} P$  implies  $Q \leq_{sW} P$ .

Another related (stronger) concept is **strong Weihrauch reducibility**:  $P \leq_{sW} Q$  if there are Turing functionals  $\Phi$ ,  $\Psi$  such that for every  $x \in dom(P)$  and for every  $y \in Q(\Phi(x))$ , it holds that  $\Psi(y) \in P(x)$ .

$$x \in \operatorname{dom}(\mathsf{P}) \longrightarrow \Phi \longrightarrow \mathsf{Q} \xrightarrow{\mathcal{Y}} \Psi \longrightarrow \Psi(y) \in \mathsf{P}(x)$$

- P' is the **jump** of P.
- $\widehat{\mathsf{P}}$  is the **parallelization** of  $\mathsf{P}$ .
- P \* Q is the **composition** of P after Q.
- If id  $\times P \leq_{sW} P$ , then P is a **cylinder** and  $Q \leq_{W} P$  implies  $Q \leq_{sW} P$ .

Almost every principle that we are going to deal with today is a cylinder.

```
Theorem (FC-Sh-So)
```

 $\mathsf{RSg} \equiv_{\mathrm{sW}} \mathsf{WKL}''$ 

```
Theorem (FC-Sh-So)
RSg \equiv_{sW} WKL"
```

This has many consequences:

• RSg has universal instances.

```
Theorem (FC-Sh-So)
RSg \equiv_{sW} WKL"
```

This has many consequences:

• RSg has universal instances.

Recall: for a principle P, a universal instance is a computable input  $x^*$  such that for every  $y^* \in P(x^*)$  and any other computable instance x of P, there is  $y \in P(x)$  with  $y \leq_T y^*$ .

• A Turing degree a computes a RSg-solution to G if and only if a is PA relative to G''.

```
Theorem (FC-Sh-So)
RSg \equiv_{sW} WKL"
```

This has many consequences:

• RSg has universal instances.

- A Turing degree a computes a RSg-solution to G if and only if a is PA relative to G''.
- Since WKL"  $\equiv_W RT_2^2$ , as proved by Brattka and Rakotoniaina, "On the Uniform Computational Content of Ramsey's Theorem", RSg  $\equiv_W \widehat{RT_2^2}$ .

Theorem (FC-Sh-So) RSg  $\equiv_{sW}$  WKL"

This has many consequences:

• RSg has universal instances.

- A Turing degree a computes a RSg-solution to G if and only if a is PA relative to G''.
- Since WKL"  $\equiv_W RT_2^2$ , as proved by Brattka and Rakotoniaina, "On the Uniform Computational Content of Ramsey's Theorem", RSg  $\equiv_W \widehat{RT}_2^2$ .
- $\mathsf{RSg} \equiv_{\mathrm{sW}} \widehat{\mathsf{RSg}}$ .

Theorem (FC-Sh-So) RSg  $\equiv_{sW}$  WKL"

This has many consequences:

• RSg has universal instances.

- A Turing degree a computes a RSg-solution to G if and only if a is PA relative to G''.
- Since WKL"  $\equiv_W RT_2^2$ , as proved by Brattka and Rakotoniaina, "On the Uniform Computational Content of Ramsey's Theorem", RSg  $\equiv_W \widehat{RT_2^2}$ .
- $\mathsf{RSg} \equiv_{\mathrm{sW}} \widehat{\mathsf{RSg}}$ .
- RSg is effectively  $\mathbf{\Sigma}_4^0$ -measurable but not effectively  $\mathbf{\Sigma}_3^0$ -measurable.

- wRSg: for every infinite graph G = (V, E), there is an infinite set H ⊆ V such that for every h ∈ H, there are 0, 1, or infinitely many h' ∈ H such that {h, h'} ∈ E.
- wRSgr: for every infinite graph G = (V, E), there is an infinite set H ⊆ V such that for every h ∈ H, there are 0 or infinitely many h' ∈ H such that {h, h'} ∈ E.

Input: an infinite graph G = (V, E)wRSg Output: an infinite  $H \subseteq V$  such that for every  $h \in H$  there are 0, 1 or infinitely many  $h' \in H$  with  $\{h, h'\} \in E$ Input: an infinite graph G = (V, E)wRSgr Output: an infinite  $H \subseteq V$  such that for every  $h \in H$  there are either 0 or infinitely many  $h' \in H$  with  $\{h, h'\} \in E$ 

Input: an infinite graph G = (V, E)

wRSg Output: an infinite  $H \subseteq V$  such that for every  $h \in H$  there are 0, 1 or infinitely many  $h' \in H$  with  $\{h, h'\} \in E$ 

Input: an infinite graph G = (V, E)

wRSgr Output: an infinite  $H \subseteq V$  such that for every  $h \in H$  there are either 0 or infinitely many  $h' \in H$  with  $\{h, h'\} \in E$ 

First of all, we could ask: what is the relationship between the two principles?

Lemma (FC-Sh-So)

- wRSg  $\leq_{\mathrm{sW}}$  wRSgr
- wRSg  $\equiv_{c}$  wRSgr

Input: an infinite graph G = (V, E)

wRSg Output: an infinite  $H \subseteq V$  such that for every  $h \in H$  there are 0, 1 or infinitely many  $h' \in H$  with  $\{h, h'\} \in E$ 

Input: an infinite graph G = (V, E)

wRSgr Output: an infinite  $H \subseteq V$  such that for every  $h \in H$  there are either 0 or infinitely many  $h' \in H$  with  $\{h, h'\} \in E$ 

First of all, we could ask: what is the relationship between the two principles?

Lemma (FC-Sh-So)

- wRSg  $\leq_{\mathrm{sW}}$  wRSgr
- wRSg  $\equiv_{c}$  wRSgr

#### Question

Does wRSgr  $\leq_W$  wRSg hold?

## wRSgr and wRSg in the Weihrauch degrees (spoiler alert)

- Astor et al., "The uniform content of partial and linear orders"
- Hirschfeldt and Shore, "Combinatorial principles weaker than Ramsey's theorem for pairs"
- Hirschfeldt, Jockusch, et al., "The Strength of Some Combinatorial Principles Related to Ramsey's Theorem for Pairs"
- Patey, "Partial Orders and Immunity in Reverse Mathematics"



In Fiori-Carones, Shafer, and Soldà, An inside/outside Ramsey theorem and recursion theory, only results about wRSgr and wRSg (and maybe  $RT_{\mathbb{N}}^{1} \not\leq_{W} ADS$ ).

### Computability theoretic considerations

Lemma (FC-Sh-So)

If P is a problem such that  $P <_{\omega} RT_2^2$ , then wRSg  $\leq_c P$ .

Recall:  $P \leq_{\omega} Q$  if every  $\omega$ -model of RCA<sub>0</sub> + Q is a model of P.

### Computability theoretic considerations

#### Lemma (FC-Sh-So)

If P is a problem such that  $P <_{\omega} RT_2^2$ , then wRSg  $\leq_c P$ .

Recall:  $P \leq_{\omega} Q$  if every  $\omega$ -model of RCA<sub>0</sub> + Q is a model of P.

#### Theorem (FC-Sh-So)

For every infinite graph G, there is a wRSgr-solution H to G such that  $H \leq_{\mathrm{T}} G'$ .

Sketch of the proof: let  $F := \{v \in V : v \text{ has finitely many neighbors}\}.$ 

- if F is finite, then  $V \setminus F \leq_{\mathrm{T}} G$  is a solution.
- if F is infinite: since F is  $\Sigma_2^{0,G}$ , there is an infinite  $\Delta_2^{0,G}$   $F_0 \subseteq F$ . It is easy to computably find an infinite independent set  $H \subseteq F_0$ .

## Computability theoretic considerations

#### Lemma (FC-Sh-So)

If P is a problem such that  $P <_{\omega} RT_2^2$ , then wRSg  $\leq_c P$ .

Recall:  $P \leq_{\omega} Q$  if every  $\omega$ -model of RCA<sub>0</sub> + Q is a model of P.

#### Theorem (FC-Sh-So)

For every infinite graph G, there is a wRSgr-solution H to G such that  $H \leq_{\mathrm{T}} G'$ .

Sketch of the proof: let  $F := \{v \in V : v \text{ has finitely many neighbors}\}.$ 

- if F is finite, then  $V \setminus F \leq_{\mathrm{T}} G$  is a solution.
- if F is infinite: since F is Σ<sub>2</sub><sup>0,G</sup>, there is an infinite Δ<sub>2</sub><sup>0,G</sup> F<sub>0</sub> ⊆ F. It is easy to computably find an infinite independent set H ⊆ F<sub>0</sub>.

### Corollary (FC-Sh-So)

 $\mathsf{RT}_2^2 \not\leq_c \mathsf{wRSgr}$ 

Theorem (FC-Sh-So)

 $\mathsf{COH} \leq_{\mathrm{sW}} \mathsf{wRSg}$ 

### Theorem (FC-Sh-So)

 $\mathsf{COH} \leq_{\mathrm{sW}} \mathsf{wRSg}$ 

Sketch of the proof: we actually prove that CADS  $\leq_{\mathrm{W}} \mathsf{wRSg}.$ 

 $\begin{array}{ll} \mbox{Input: an infinite linear order } (L, <_L) \\ \mbox{CADS} & \mbox{Output: an infinite } H \subseteq L \mbox{ such that for every } h \in H, \mbox{ either } \\ \{h' \in H : h' <_L h\} \mbox{ or } \{h' \in H : h' >_L h\} \mbox{ is finite } \end{array}$ 

### Theorem (FC-Sh-So)

 $\mathsf{COH} \leq_{\mathrm{sW}} \mathsf{wRSg}$ 

Sketch of the proof: we actually prove that CADS  $\leq_{\mathrm{W}} \mathsf{wRSg}.$ 

CADS Input: an infinite linear order  $(L, <_L)$ Output: an infinite  $H \subseteq L$  such that for every  $h \in H$ , either  $\{h' \in H : h' <_L h\}$  or  $\{h' \in H : h' >_L h\}$  is finite

Given  $(L, <_L)$ , let  $G_L := (L, \{\{m, n\} \in [L]^2 : m < n \leftrightarrow m <_L n\})$ . Let H be a wRSg-solution to  $G_L$ .

### Theorem (FC-Sh-So)

 $\mathsf{COH} \leq_{\mathrm{sW}} \mathsf{wRSg}$ 

Sketch of the proof: we actually prove that CADS  $\leq_W$  wRSg.

CADS Input: an infinite linear order  $(L, <_L)$ Output: an infinite  $H \subseteq L$  such that for every  $h \in H$ , either  $\{h' \in H : h' <_L h\}$  or  $\{h' \in H : h' >_L h\}$  is finite

Given  $(L, <_L)$ , let  $G_L := (L, \{\{m, n\} \in [L]^2 : m < n \leftrightarrow m <_L n\})$ . Let H be a wRSg-solution to  $G_L$ .

The functional  $\Psi(H, (L, <_L))$ :

**1** starts enumerating H,

### Theorem (FC-Sh-So)

 $\mathsf{COH} \leq_{\mathrm{sW}} \mathsf{wRSg}$ 

Sketch of the proof: we actually prove that CADS  $\leq_{\mathrm{W}}$  wRSg.

CADS Input: an infinite linear order  $(L, <_L)$ Output: an infinite  $H \subseteq L$  such that for every  $h \in H$ , either  $\{h' \in H : h' <_L h\}$  or  $\{h' \in H : h' >_L h\}$  is finite

Given  $(L, <_L)$ , let  $G_L := (L, \{\{m, n\} \in [L]^2 : m < n \leftrightarrow m <_L n\})$ . Let H be a wRSg-solution to  $G_L$ .

The functional  $\Psi(H, (L, <_L))$ :

**(**) starts enumerating H, until an  $h_0$  with 2 neighbors is found. Then

**2** starts enumerating neighbors of  $h_0$ ,

### Theorem (FC-Sh-So)

 $\mathsf{COH} \leq_{\mathrm{sW}} \mathsf{wRSg}$ 

Sketch of the proof: we actually prove that CADS  $\leq_{\mathrm{W}}$  wRSg.

CADS Input: an infinite linear order  $(L, <_L)$ CADS Output: an infinite  $H \subseteq L$  such that for every  $h \in H$ , either  $\{h' \in H : h' <_L h\}$  or  $\{h' \in H : h' >_L h\}$  is finite

Given  $(L, <_L)$ , let  $G_L := (L, \{\{m, n\} \in [L]^2 : m < n \leftrightarrow m <_L n\})$ . Let H be a wRSg-solution to  $G_L$ .

The functional  $\Psi(H, (L, <_L))$ :

- **(**) starts enumerating H, until an  $h_0$  with 2 neighbors is found. Then
- **②** starts enumerating neighbors of  $h_0$ , until  $h_1 \neq h_0$  with at least 2 neighbors is found. Then
- $\bigcirc$  <<sub>L</sub>-increasingly enumerate points with at least two neighbors.

The functional  $\Psi(H, (L, <_L))$ :

- 1 starts enumerating H, until an  $h_0$  with 2 neighbors is found. Then
- 2 starts enumerating neighbors of  $h_0$ , until  $h_1 \neq h_0$  with at least 2 neighbors is found. Then
  - $<_L$ -increasingly enumerate points with at least two neighbors.
- Why the construction works:
  - **(**) if no  $h \in H$  has 2 neighbors (in H), then  $(H, <_L)$  is of type  $\omega^*$ .

The functional  $\Psi(H, (L, <_L))$ :

- 1 starts enumerating H, until an  $h_0$  with 2 neighbors is found. Then
- 2 starts enumerating neighbors of  $h_0$ , until  $h_1 
  eq h_0$  with at least 2 neighbors is found. Then
  - $<_L$ -increasingly enumerate points with at least two neighbors.
- Why the construction works:
  - if no  $h \in H$  has 2 neighbors (in H), then  $(H, <_L)$  is of type  $\omega^*$ .
  - **2** if there is exactly one point  $h_0$  with 2 (and so infinitely many) neighbors in H, then these points form a chain of type  $\omega^*$  (actually, a sequence of that type). So  $\Psi(H, (L, <_L))$  is a chain of type  $1 + \omega^*$ .

The functional  $\Psi(H, (L, <_L))$ :

- $\blacksquare$  starts enumerating H, until an  $h_0$  with 2 neighbors is found. Then
- 2 starts enumerating neighbors of  $h_0$ , until  $h_1 
  eq h_0$  with at least 2 neighbors is found. Then
  - $<_L\mbox{-increasingly enumerate points with at least two neighbors.}$

#### Why the construction works:

- if no  $h \in H$  has 2 neighbors (in H), then  $(H, <_L)$  is of type  $\omega^*$ .
- (a) if there is exactly one point  $h_0$  with 2 (and so infinitely many) neighbors in H, then these points form a chain of type  $\omega^*$  (actually, a sequence of that type). So  $\Psi(H, (L, <_L))$  is a chain of type  $1 + \omega^*$ .
- if there are  $h_0 \neq h_1$  with at least 2 neighbors in H, then the set  $\{h \in H : h \text{ has infinitely many neighbors in } H\}$  is infinite and has no  $<_L$ -maximum. So  $\Psi(H, (L, <_L))$  is a chain of type  $\omega + k$ .

The functional  $\Psi(H, (L, <_L))$ :

- $\blacksquare$  starts enumerating H, until an  $h_0$  with 2 neighbors is found. Then
- 2 starts enumerating neighbors of  $h_0$ , until  $h_1 
  eq h_0$  with at least 2 neighbors is found. Then
  - $<_L$ -increasingly enumerate points with at least two neighbors.

#### Why the construction works:

- if no  $h \in H$  has 2 neighbors (in H), then  $(H, <_L)$  is of type  $\omega^*$ .
- if there is exactly one point  $h_0$  with 2 (and so infinitely many) neighbors in H, then these points form a chain of type  $\omega^*$  (actually, a sequence of that type). So  $\Psi(H, (L, <_L))$  is a chain of type  $1 + \omega^*$ .
- if there are  $h_0 \neq h_1$  with at least 2 neighbors in H, then the set  $\{h \in H : h \text{ has infinitely many neighbors in } H\}$  is infinite and has no  $<_L$ -maximum. So  $\Psi(H, (L, <_L))$  is a chain of type  $\omega + k$ .

Finally, COH  $\equiv_{\rm sW}$  CADS was proved by Hirschfeldt and Shore, "Combinatorial principles weaker than Ramsey's theorem for pairs".

 $\mathsf{RT}^1_{\mathbb{N}}$  Input:  $f: \mathbb{N} \to \mathbb{N}$  with bounded range

Output: an infinite  $H \subseteq \mathbb{N}$  such that |f[H]| = 1

- $\mathsf{RT}^1_{\mathbb{N}}$  Input:  $f: \mathbb{N} \to \mathbb{N}$  with bounded range
- Output: an infinite  $H \subseteq \mathbb{N}$  such that |f[H]| = 1
- $cRT^1_{\mathbb{N}}$  Input:  $f: \mathbb{N} \to \mathbb{N}$  with bounded range
- Output:  $i \in \mathbb{N}$  such that  $f^{-1}(i)$  is infinite

 $\mathsf{RT}^1_{\mathbb{N}}$  Input:  $f: \mathbb{N} \to \mathbb{N}$  with bounded range

Output: an infinite  $H \subseteq \mathbb{N}$  such that |f[H]| = 1

- $cRT^1_{\mathbb{N}}$  Input:  $f: \mathbb{N} \to \mathbb{N}$  with bounded range
  - Output:  $i \in \mathbb{N}$  such that  $f^{-1}(i)$  is infinite

### Lemma (FC-Sh-So)

 $\mathsf{RT}^1_{\mathbb{N}} \leq_{\mathrm{sW}} \mathsf{wRSg}$ 

Sketch of proof: Since  $\mathsf{cRT}^1_{\mathbb{N}} \equiv_{\mathrm{W}} \mathsf{RT}^1_{\mathbb{N}}$  and wRSg is a cylinder, it suffices to prove that  $\mathsf{cRT}^1_{\mathbb{N}} \leq_{\mathrm{W}} \mathsf{wRSg}.$ 

Let  $G_f = (\mathbb{N}, \{\{m, n\} \in [\mathbb{N}]^2 : f(m) = f(n)\})$ , and let H be a wRSg-solution to  $G_f$ .

Let m be such that it has at least two neighbors in H. Output f(m).

 $\mathsf{RT}^1_{\mathbb{N}}$  Input:  $f: \mathbb{N} \to \mathbb{N}$  with bounded range

Output: an infinite  $H \subseteq \mathbb{N}$  such that |f[H]| = 1

- $cRT^1_{\mathbb{N}}$  Input:  $f: \mathbb{N} \to \mathbb{N}$  with bounded range
  - Output:  $i \in \mathbb{N}$  such that  $f^{-1}(i)$  is infinite

### Lemma (FC-Sh-So)

 $\mathsf{RT}^1_{\mathbb{N}} \leq_{\mathrm{sW}} \mathsf{wRSg}$ 

Sketch of proof: Since  $\mathsf{cRT}^1_{\mathbb{N}} \equiv_{\mathrm{W}} \mathsf{RT}^1_{\mathbb{N}}$  and wRSg is a cylinder, it suffices to prove that  $\mathsf{cRT}^1_{\mathbb{N}} \leq_{\mathrm{W}} \mathsf{wRSg}.$ 

Let  $G_f = (\mathbb{N}, \{\{m, n\} \in [\mathbb{N}]^2 : f(m) = f(n)\})$ , and let H be a wRSg-solution to  $G_f$ .

Let m be such that it has at least two neighbors in H. Output f(m).

### Corollary (FC-Sh-So)

wRSg and wRSgr are not parallelizable and are not effectively  $\Sigma_2^0$ -measurable.

```
Lemma (FC-Sh-So)
RT_3^1 \leq_{sW} ADS
```

Lemma (FC-Sh-So)  $RT_3^1 \leq_{sW} ADS$ 

Sketch of proof: we show  $cRT_3^1 \leq_W ADS$ . Let  $\Phi$  be as follows:



ascending color red, descending color undefined.

Lemma (FC-Sh-So)  $RT_3^1 \leq_{sW} ADS$ 

Sketch of proof: we show  $cRT_3^1 \leq_W ADS$ . Let  $\Phi$  be as follows:



ascending color red, descending color blue.

Lemma (FC-Sh-So)  $RT_3^1 \leq_{sW} ADS$ 

Sketch of proof: we show  $cRT_3^1 \leq_W ADS$ . Let  $\Phi$  be as follows:



ascending color green, descending color blue.

Lemma (FC-Sh-So)  $RT_3^1 \leq_{sW} ADS$ 

Sketch of proof: we show  $cRT_3^1 \leq_W ADS$ . Let  $\Phi$  be as follows:



ascending color green, descending color blue.

Lemma (FC-Sh-So)  $RT_3^1 \leq_{sW} ADS$ 

Sketch of proof: we show  $cRT_3^1 \leq_W ADS$ . Let  $\Phi$  be as follows:



ascending color green, descending color blue.

Lemma (FC-Sh-So)  $RT_3^1 \leq_{sW} ADS$ 

Sketch of proof: we show  $cRT_3^1 \leq_W ADS$ . Let  $\Phi$  be as follows:



ascending color green, descending color red. Let H be an ADS-solution to  $\Phi(c)$ , and let  $h_0 \in H$ . Set  $\Psi(c, H) = c(h_0)$ .

Lemma (FC-Sh-So)  $RT_3^1 \leq_{sW} ADS$ 

Sketch of proof: we show  $cRT_3^1 \leq_W ADS$ . Let  $\Phi$  be as follows:



ascending color green, descending color red. Let H be an ADS-solution to  $\Phi(c)$ , and let  $h_0 \in H$ . Set  $\Psi(c, H) = c(h_0)$ .

Theorem (FC-Sh-So)  $RT_5^1 \not\leq_W ADS$ 

Lemma (FC-Sh-So)

 $\mathsf{RT}_3^1 \leq_{\mathrm{sW}} \mathsf{ADS}$ 

Theorem (FC-Sh-So)

 $\mathsf{RT}_5^1 \not\leq_W \mathsf{ADS}$ 

Question

Does  $RT_4^1 \leq_W ADS$  hold?

### What wRSgr cannot do: SADC and DNR

Lemma (FC-Sh-So)

If G = (V, E) is such that it has no wRSgr-solution  $H \leq_{\mathrm{T}} G$ , then

**1** *G* contains an infinite independent set.

### What wRSgr cannot do: SADC and DNR

### Lemma (FC-Sh-So)

If G = (V, E) is such that it has no wRSgr-solution  $H \leq_{\mathrm{T}} G$ , then

- **1** *G* contains an infinite independent set.
- **②** For every finite independent J and cofinite  $\tilde{G} \subseteq G$ , there is  $H \subseteq \tilde{G}$  such that  $J \cup H$  is a wRSgr-solution to G.

## What wRSgr cannot do: SADC and DNR

Lemma (FC-Sh-So)

If G=(V,E) is such that it has no wRSgr-solution  $H\leq_{\mathrm{T}} G$  , then

- **1** *G* contains an infinite independent set.
- **②** For every finite independent J and cofinite  $\tilde{G} \subseteq G$ , there is  $H \subseteq \tilde{G}$  such that  $J \cup H$  is a wRSgr-solution to G.

### Theorem (FC-Sh-So)

- SADC ≰<sub>W</sub> wRSgr
- DNR  $\not\leq_{\mathrm{W}} \mathsf{wRSgr}$
- SADCInput: a stable infinite linear order  $(L, <_L)$ <br/>Output: an infinite  $H \subseteq L$  such that  $(H, <_L)$  has type  $\omega$  or  $\omega^*$ DNRInput:  $f : \mathbb{N} \to \mathbb{N}$ <br/>Output: a function  $\sigma : \mathbb{N} \to \mathbb{N}$  that is DNR with respect to f
  - ' Output: a function  $p:\mathbb{N}\to\mathbb{N}$  that is DNR with respect to f

Suppose for a contradiction that SADC  $\leq_W$  wRSgr, with  $\Phi$  and  $\Psi$  as witnesses, and let  $(L, <_L)$  be a stable linear order without computable (and hence c.e.) ascending or descending chains.

Suppose for a contradiction that SADC  $\leq_W$  wRSgr, with  $\Phi$  and  $\Psi$  as witnesses, and let  $(L, <_L)$  be a stable linear order without computable (and hence c.e.) ascending or descending chains.

If G=(V,E) is such that it has no wRSgr-solution  $H\leq_{\mathrm{T}}G,$  then

G contains an infinite independent set.

(2) For every finite independent J and cofinite  $\tilde{G} \subseteq G$ , there is  $H \subseteq \tilde{G}$  such that  $J \cup H$  is a wRSgr-solution to G.

 $\Phi((L, <_L)) = (V, E)$  is an infinite graph. By 1 let C be an infinite independent set. Select an  $x \in \Psi(C, (L, <_L))$ , then there is a finite  $D \subseteq C$  such that  $x \in \Psi(D, (L, <_L))$ .

Suppose for a contradiction that SADC  $\leq_W$  wRSgr, with  $\Phi$  and  $\Psi$  as witnesses, and let  $(L, <_L)$  be a stable linear order without computable (and hence c.e.) ascending or descending chains.

If G=(V,E) is such that it has no wRSgr-solution  $H\leq_{\mathrm{T}}G,$  then

G contains an infinite independent set.

(2) For every finite independent J and cofinite  $\tilde{G} \subseteq G$ , there is  $H \subseteq \tilde{G}$  such that  $J \cup H$  is a wRSgr-solution to G.

 $\Phi((L, <_L)) = (V, E)$  is an infinite graph. By 1 let C be an infinite independent set. Select an  $x \in \Psi(C, (L, <_L))$ , then there is a finite  $D \subseteq C$  such that  $x \in \Psi(D, (L, <_L))$ . We then define

 $R := \{ y \in L : \exists F \subset_{\mathsf{fin}} V(F \text{ is independent and } \{x, y\} \subseteq \Psi(F, (L, <_L)) \}.$ 

Suppose for a contradiction that SADC  $\leq_W$  wRSgr, with  $\Phi$  and  $\Psi$  as witnesses, and let  $(L, <_L)$  be a stable linear order without computable (and hence c.e.) ascending or descending chains.

If G=(V,E) is such that it has no wRSgr-solution  $H\leq_{\mathrm{T}}G,$  then

G contains an infinite independent set.

(2) For every finite independent J and cofinite  $\tilde{G} \subseteq G$ , there is  $H \subseteq \tilde{G}$  such that  $J \cup H$  is a wRSgr-solution to G.

 $\Phi((L, <_L)) = (V, E)$  is an infinite graph. By 1 let C be an infinite independent set. Select an  $x \in \Psi(C, (L, <_L))$ , then there is a finite  $D \subseteq C$  such that  $x \in \Psi(D, (L, <_L))$ . We then define

 $R := \{ y \in L : \exists F \subset_{\mathsf{fin}} V(F \text{ is independent and } \{x, y\} \subseteq \Psi(F, (L, <_L)) \}.$ 

Since R is c.e., there is a  $y \in R$  such that  $[x, y]_L$  is infinite.

Suppose for a contradiction that SADC  $\leq_W$  wRSgr, with  $\Phi$  and  $\Psi$  as witnesses, and let  $(L, <_L)$  be a stable linear order without computable (and hence c.e.) ascending or descending chains.

If G=(V,E) is such that it has no wRSgr-solution  $H\leq_{\mathrm{T}}G,$  then

G contains an infinite independent set.

(2) For every finite independent J and cofinite  $\tilde{G} \subseteq G$ , there is  $H \subseteq \tilde{G}$  such that  $J \cup H$  is a wRSgr-solution to G.

 $\Phi((L, <_L)) = (V, E)$  is an infinite graph. By 1 let C be an infinite independent set. Select an  $x \in \Psi(C, (L, <_L))$ , then there is a finite  $D \subseteq C$  such that  $x \in \Psi(D, (L, <_L))$ . We then define

 $R := \{ y \in L : \exists F \subset_{\mathsf{fin}} V(F \text{ is independent and } \{x, y\} \subseteq \Psi(F, (L, <_L)) \}.$ 

Since R is c.e., there is a  $y \in R$  such that  $[x, y]_L$  is infinite. Let F be such that  $\{x, y\} \subseteq \Psi(F, (L, <_L))$ , by 2 we can extend it to a solution. Contradiction.

Suppose for a contradiction that SADC  $\leq_W$  wRSgr, with  $\Phi$  and  $\Psi$  as witnesses, and let  $(L, <_L)$  be a stable linear order without computable (and hence c.e.) ascending or descending chains.

If G=(V,E) is such that it has no wRSgr-solution  $H\leq_{\mathrm{T}}G,$  then

G contains an infinite independent set.

(2) For every finite independent J and cofinite  $\tilde{G} \subseteq G$ , there is  $H \subseteq \tilde{G}$  such that  $J \cup H$  is a wRSgr-solution to G.

 $\Phi((L, <_L)) = (V, E)$  is an infinite graph. By 1 let C be an infinite independent set. Select an  $x \in \Psi(C, (L, <_L))$ , then there is a finite  $D \subseteq C$  such that  $x \in \Psi(D, (L, <_L))$ . We then define

 $R := \{ y \in L : \exists F \subset_{\mathsf{fin}} V(F \text{ is independent and } \{x, y\} \subseteq \Psi(F, (L, <_L)) \}.$ 

Since R is c.e., there is a  $y \in R$  such that  $[x, y]_L$  is infinite. Let F be such that  $\{x, y\} \subseteq \Psi(F, (L, <_L))$ , by 2 we can extend it to a solution. Contradiction.

DNR  $\not\leq_W$  wRSgr is proved similarly.

Giovanni Soldà - Leeds

```
LPO Input: a function f : \mathbb{N} \to \mathbb{N}
```

Output: 0 if f(n) = 0 for some  $n \in \mathbb{N}$ , 1 otherwise

Lemma (FC-Sh-So)

- $\ \ \, \textbf{SRT}_2^2 \leq_W \mathsf{LPO} * \mathsf{wRSgr}$
- $\textbf{@} \ \mathsf{SRT}_2^2 \leq_W (\mathsf{LPO} \times \mathsf{LPO}) * \mathsf{wRSg}$

I PO Input: a function  $f : \mathbb{N} \to \mathbb{N}$ 

Output: 0 if f(n) = 0 for some  $n \in \mathbb{N}$ , 1 otherwise

Lemma (FC-Sh-So)

**1** $SRT_2^2 \leq_W LPO * wRSgr$ 

 $\textbf{@} \ \mathsf{SRT}_2^2 \leq_W (\mathsf{LPO} \times \mathsf{LPO}) * \mathsf{wRSg}$ 

Sketch of the proof of 1: given a stable  $f : [\mathbb{N}]^2 \to 2$ , let  $G_f = (\mathbb{N}, \{\{n, s\} \in [\mathbb{N}]^2 : f(n, s) = 1\})$ . Let H be a wRSgr-solution to  $G_f$ . We can use LPO to determine which case holds:

I PO Input: a function  $f : \mathbb{N} \to \mathbb{N}$ 

Output: 0 if f(n) = 0 for some  $n \in \mathbb{N}$ , 1 otherwise

Lemma (FC-Sh-So)

- **1** $SRT_2^2 \leq_W LPO * wRSgr$
- $\textbf{@} \ \mathsf{SRT}_2^2 \leq_W (\mathsf{LPO} \times \mathsf{LPO}) * \mathsf{wRSg}$

Sketch of the proof of 1: given a stable  $f : [\mathbb{N}]^2 \to 2$ , let  $G_f = (\mathbb{N}, \{\{n, s\} \in [\mathbb{N}]^2 : f(n, s) = 1\})$ . Let H be a wRSgr-solution to  $G_f$ . We can use LPO to determine which case holds:

• *H* is an independent set. Then *H* is an *f*-homogeneous set of color 0.

I PO Input: a function  $f : \mathbb{N} \to \mathbb{N}$ 

Output: 0 if f(n) = 0 for some  $n \in \mathbb{N}$ , 1 otherwise

Lemma (FC-Sh-So)

 $\ \ \, \textbf{SRT}_2^2 \leq_W \mathsf{LPO} * \mathsf{wRSgr}$ 

 $\textbf{O} \quad \mathsf{SRT}_2^2 \leq_W (\mathsf{LPO} \times \mathsf{LPO}) * \mathsf{wRSg}$ 

Sketch of the proof of 1: given a stable  $f : [\mathbb{N}]^2 \to 2$ , let  $G_f = (\mathbb{N}, \{\{n, s\} \in [\mathbb{N}]^2 : f(n, s) = 1\})$ . Let H be a wRSgr-solution to  $G_f$ . We can use LPO to determine which case holds:

• *H* is an independent set. Then *H* is an *f*-homogeneous set of color 0.

16 / 17

 There are adjacent h, h' ∈ H. Then H can be refined to an infinite homogeneous set of color 1.

### References

Eric P. Astor et al. "The uniform content of partial and linear orders". In: Annals of Pure and Applied Logic 168.6 (2017), pp. 1153-1171. ISSN: 0168-0072. DOI: https://doi.org/10.1016/j.apal.2016.11.010. URL: http://www.sciencedirect.com/science/article/pii/S016800721630166X.



Marta Fiori-Carones, Paul Shafer, and Giovanni Soldà. An inside/outside Ramsey theorem and recursion theory. 2020. arXiv: 2006.16969 [math.LO].

Denis R. Hirschfeldt, C. Jockusch, et al. "The Strength of Some Combinatorial Principles Related to Ramsey's Theorem for Pairs". In: *arXiv: Logic* (2014).

Denis R. Hirschfeldt and Richard A. Shore. "Combinatorial principles weaker than Ramsey's theorem for pairs". In: J. Symbolic Logic 72.1 (2007), pp. 171–206. ISSN: 0022-4812. DOI: 10.2178/jsl/1174668391. URL: http://dx.doi.org/10.2178/jsl/1174668391.

Ludovic Patey. "Partial Orders and Immunity in Reverse Mathematics". In: June 2016, pp. 353–363. ISBN: 978-3-319-40188-1. DOI: 10.1007/978-3-319-40189-8\_36.

Ivan Rival and Bill Sands. "On the Adjacency of Vertices to the Vertices of an Infinite Subgraph". In: Journal of the London Mathematical Society 2 (1980), pp. 393–400.