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Rival-Sands theorem for graphs

Ivan Rival and Bill Sands. “On the Adjacency of Vertices to the Vertices of an Infinite

Subgraph”. In: Journal of the London Mathematical Society 2 (1980), pp. 393–400

Theorem (Rival-Sands)

RSg: Let G = (V,E) be an infinite countable graph. There is an infinite
set H ⊆ V such that

for every v ∈ V , there are 0, 1 or infinitely many h ∈ H such that
{v, h} ∈ E.

for every h ∈ H, there are either 0 or infinitely many h′ ∈ H such
that {h, h′} ∈ E.

This can be seen as an “inside-outside” Ramsey theorem.

Theorem (FC-Sh-So)

RCA0 ` ACA0 ↔ RSg
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Giovanni Soldà – Leeds Rival-Sands and Weihrauch January 26, 2021 2 / 17



Rival-Sands and RT2
2

RSg: Let G = (V,E) be an infinite countable graph. There is an infinite set H ⊆ V such that

for every v ∈ V , there are 0, 1 or infinitely many h ∈ H such that {v, h} ∈ E.

for every h ∈ H, there are either 0 or infinitely many h′ ∈ H such that {h′, h} ∈ E.

What happens if we forget about the “outside”?

wRSg: for every infinite graph G = (V,E), there is an infinite set
H ⊆ V such that for every h ∈ H, there are 0, 1, or infinitely many
h′ ∈ H such that {h, h′} ∈ E.

wRSgr: for every infinite graph G = (V,E), there is an infinite set
H ⊆ V such that for every h ∈ H, there are 0 or infinitely many
h′ ∈ H such that {h, h′} ∈ E.

Theorem (Fiori Carones-Hirst-Lempp-Shafer-Soldà)

RCA0 ` RT2
2 ↔ wRSgr↔ wRSg
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Weihrauch reducibility et similia

We see every principle P as a partial multifunction P :⊆ NN → NN, and
we describe it in terms of its valid inputs and of the valid outputs to
those inputs.
Weihrauch reducibility: we say that P ≤W Q if there are Turing
functionals Φ, Ψ such that for every x ∈ dom(P), for every y ∈ Q(Φ(x)) it
holds that Ψ(x, y) ∈ P(x).

x ∈ dom(P) Φ Q Ψ Ψ(x, y) ∈ P(x)
y

A related (weaker) concept is computable reducibility: P ≤c Q if for
every x ∈ dom(P) there is a x̃ ≤T x such that for every ỹ ∈ Q(x̃) there is
y ≤T x⊕ ỹ such that y ∈ P(x).

x ∈ dom(P) ≤T Q ≤T y ∈ P(x)x̃ ỹ
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Weihrauch reducibility et similia (cont’d)

Another related (stronger) concept is strong Weihrauch reducibility:
P ≤sW Q if there are Turing functionals Φ, Ψ such that for every
x ∈ dom(P) and for every y ∈ Q(Φ(x)), it holds that Ψ(y) ∈ P(x).

x ∈ dom(P) Φ Q Ψ Ψ(y) ∈ P(x)
y

P′ is the jump of P.

P̂ is the parallelization of P.

P ∗ Q is the composition of P after Q.

If id× P ≤sW P, then P is a cylinder and Q ≤W P implies Q ≤sW P.

Almost every principle that we are going to deal with today is a cylinder.
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RSg in the Weihrauch degrees

Theorem (FC-Sh-So)

RSg ≡sW WKL′′

This has many consequences:

RSg has universal instances.
Recall: for a principle P, a universal instance is a computable input x∗ such that for every y∗ ∈ P(x∗) and any other

computable instance x of P, there is y ∈ P(x) with y ≤T y∗.

A Turing degree a computes a RSg-solution to G if and only if a is
PA relative to G′′.

Since WKL′′ ≡W R̂T2
2, as proved by Brattka and Rakotoniaina, “On

the Uniform Computational Content of Ramsey’s Theorem”,

RSg ≡W R̂T2
2.

RSg ≡sW R̂Sg.

RSg is effectively Σ0
4-measurable but not effectively Σ0

3-measurable.
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Uniform strength of wRSg and wRSgr

wRSg: for every infinite graph G = (V,E), there is an infinite set H ⊆ V such that
for every h ∈ H, there are 0, 1, or infinitely many h′ ∈ H such that {h, h′} ∈ E.

wRSgr: for every infinite graph G = (V,E), there is an infinite set H ⊆ V such
that for every h ∈ H, there are 0 or infinitely many h′ ∈ H such that {h, h′} ∈ E.

Question
Does wRSgr ≤W wRSg hold?
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wRSgr and wRSg in the Weihrauch degrees (spoiler alert)

Astor et al., “The uniform content of
partial and linear orders”

Hirschfeldt and Shore, “Combinatorial
principles weaker than Ramsey’s
theorem for pairs”

Hirschfeldt, Jockusch, et al., “The
Strength of Some Combinatorial
Principles Related to Ramsey’s
Theorem for Pairs”

Patey, “Partial Orders and Immunity
in Reverse Mathematics”

RT2
2

SRT2
2

SADC

DNR

ADS

wRSgr

wRSg

COH

RT1
N

In Fiori-Carones, Shafer, and Soldà, An inside/outside Ramsey theorem
and recursion theory, only results about wRSgr and wRSg (and maybe
RT1

N 6≤W ADS).
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Computability theoretic considerations

Lemma (FC-Sh-So)

If P is a problem such that P <ω RT2
2, then wRSg 6≤c P.

Recall: P ≤ω Q if every ω-model of RCA0 + Q is a model of P.

Theorem (FC-Sh-So)

For every infinite graph G, there is a wRSgr-solution H to G such that
H ≤T G′.

Sketch of the proof: let F := {v ∈ V : v has finitely many neighbors}.
if F is finite, then V \ F ≤T G is a solution.

if F is infinite: since F is Σ0,G
2 , there is an infinite ∆0,G

2 F0 ⊆ F . It is easy to
computably find an infinite independent set H ⊆ F0.

Corollary (FC-Sh-So)

RT2
2 6≤c wRSgr
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What wRSg can do: COH and RT1
N

Theorem (FC-Sh-So)

COH ≤sW wRSg

Sketch of the proof: we actually prove that CADS ≤W wRSg.

CADS
Input: an infinite linear order (L,<L)
Output: an infinite H ⊆ L such that for every h ∈ H, either
{h′ ∈ H : h′ <L h} or {h′ ∈ H : h′ >L h} is finite

Given (L,<L), let GL := (L, {{m,n} ∈ [L]2 : m < n↔ m <L n}). Let
H be a wRSg-solution to GL.

The functional Ψ(H, (L,<L)):

1 starts enumerating H, until an h0 with 2 neighbors is found. Then

2 starts enumerating neighbors of h0, until h1 6= h0 with at least 2
neighbors is found. Then

3 <L-increasingly enumerate points with at least two neighbors.
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2 starts enumerating neighbors of h0, until h1 6= h0 with at least 2
neighbors is found. Then

3 <L-increasingly enumerate points with at least two neighbors.
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What wRSg can do: COH and RT1
N (cont’d)

The functional Ψ(H, (L,<L)):

1 starts enumerating H, until an h0 with 2 neighbors is found. Then

2 starts enumerating neighbors of h0, until h1 6= h0 with at least 2 neighbors is found. Then

3 <L-increasingly enumerate points with at least two neighbors.

Why the construction works:

1 if no h ∈ H has 2 neighbors (in H), then (H,<L) is of type ω∗.

2 if there is exactly one point h0 with 2 (and so infinitely many)
neighbors in H, then these points form a chain of type ω∗ (actually, a
sequence of that type). So Ψ(H, (L,<L)) is a chain of type 1 + ω∗.

3 if there are h0 6= h1 with at least 2 neighbors in H, then the set
{h ∈ H : h has infinitely many neighbors in H} is infinite and has no
<L-maximum. So Ψ(H, (L,<L)) is a chain of type ω + k.

Finally, COH ≡sW CADS was proved by Hirschfeldt and Shore,
“Combinatorial principles weaker than Ramsey’s theorem for pairs”.
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Giovanni Soldà – Leeds Rival-Sands and Weihrauch January 26, 2021 11 / 17



What wRSg can do: COH and RT1
N (cont’d)

The functional Ψ(H, (L,<L)):

1 starts enumerating H, until an h0 with 2 neighbors is found. Then

2 starts enumerating neighbors of h0, until h1 6= h0 with at least 2 neighbors is found. Then

3 <L-increasingly enumerate points with at least two neighbors.

Why the construction works:

1 if no h ∈ H has 2 neighbors (in H), then (H,<L) is of type ω∗.

2 if there is exactly one point h0 with 2 (and so infinitely many)
neighbors in H, then these points form a chain of type ω∗ (actually, a
sequence of that type). So Ψ(H, (L,<L)) is a chain of type 1 + ω∗.

3 if there are h0 6= h1 with at least 2 neighbors in H, then the set
{h ∈ H : h has infinitely many neighbors in H} is infinite and has no
<L-maximum. So Ψ(H, (L,<L)) is a chain of type ω + k.

Finally, COH ≡sW CADS was proved by Hirschfeldt and Shore,
“Combinatorial principles weaker than Ramsey’s theorem for pairs”.
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What wRSg can do: COH and RT1
N (cont’d)

RT1
N

Input: f : N→ N with bounded range
Output: an infinite H ⊆ N such that |f [H]| = 1

cRT1
N

Input: f : N→ N with bounded range
Output: i ∈ N such that f−1(i) is infinite

Lemma (FC-Sh-So)

RT1
N ≤sW wRSg

Sketch of proof: Since cRT1
N ≡W RT1

N and wRSg is a cylinder, it suffices to prove that
cRT1

N ≤W wRSg.

Let Gf = (N, {{m,n} ∈ [N]2 : f(m) = f(n)}), and let H be a wRSg-solution to Gf .

Let m be such that it has at least two neighbors in H. Output f(m).

Corollary (FC-Sh-So)

wRSg and wRSgr are not parallelizable and are not effectively
Σ0

2-measurable.
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A small digression: RT1
k vs ADS

Lemma (FC-Sh-So)

RT1
3 ≤sW ADS

Theorem (FC-Sh-So)

RT1
5 6≤W ADS

Question

Does RT1
4 ≤W ADS hold?
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Giovanni Soldà – Leeds Rival-Sands and Weihrauch January 26, 2021 13 / 17



A small digression: RT1
k vs ADS

Lemma (FC-Sh-So)

RT1
3 ≤sW ADS

Sketch of proof: we show cRT1
3 ≤W ADS. Let Φ be as follows:

c

Φ(c)

0 1 2

0 12

A M D

ascending color green, descending color blue.

Theorem (FC-Sh-So)

RT1
5 6≤W ADS

Question

Does RT1
4 ≤W ADS hold?
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What wRSgr cannot do: SADC and DNR

Lemma (FC-Sh-So)

If G = (V,E) is such that it has no wRSgr-solution H ≤T G, then

1 G contains an infinite independent set.

2 For every finite independent J and cofinite G̃ ⊆ G, there is H ⊆ G̃
such that J ∪H is a wRSgr-solution to G.

Theorem (FC-Sh-So)

SADC 6≤W wRSgr

DNR 6≤W wRSgr

SADC
Input: a stable infinite linear order (L,<L)
Output: an infinite H ⊆ L such that (H,<L) has type ω or ω∗

DNR
Input: f : N→ N
Output: a function p : N→ N that is DNR with respect to f

Giovanni Soldà – Leeds Rival-Sands and Weihrauch January 26, 2021 14 / 17



What wRSgr cannot do: SADC and DNR

Lemma (FC-Sh-So)

If G = (V,E) is such that it has no wRSgr-solution H ≤T G, then

1 G contains an infinite independent set.

2 For every finite independent J and cofinite G̃ ⊆ G, there is H ⊆ G̃
such that J ∪H is a wRSgr-solution to G.

Theorem (FC-Sh-So)

SADC 6≤W wRSgr

DNR 6≤W wRSgr

SADC
Input: a stable infinite linear order (L,<L)
Output: an infinite H ⊆ L such that (H,<L) has type ω or ω∗

DNR
Input: f : N→ N
Output: a function p : N→ N that is DNR with respect to f
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What wRSgr cannot do: SADC and DNR (cont’d)

Suppose for a contradiction that SADC ≤W wRSgr, with Φ and Ψ as
witnesses, and let (L,<L) be a stable linear order without computable
(and hence c.e.) ascending or descending chains.

If G = (V,E) is such that it has no wRSgr-solution H ≤T G, then

1 G contains an infinite independent set.

2 For every finite independent J and cofinite G̃ ⊆ G, there is H ⊆ G̃ such that J ∪H is a wRSgr-solution to G.

Φ((L,<L)) = (V,E) is an infinite graph. By 1 let C be an infinite
independent set. Select an x ∈ Ψ(C, (L,<L)), then there is a finite
D ⊆ C such that x ∈ Ψ(D, (L,<L)). We then define

R := {y ∈ L : ∃F ⊂fin V (F is independent and {x, y} ⊆ Ψ(F, (L,<L))}.

Since R is c.e., there is a y ∈ R such that [x, y]L is infinite.
Let F be such that {x, y} ⊆ Ψ(F, (L,<L)), by 2 we can extend it to a
solution. Contradiction.

DNR 6≤W wRSgr is proved similarly.
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Giovanni Soldà – Leeds Rival-Sands and Weihrauch January 26, 2021 15 / 17



wRSg and wRSgr vs SRT2
2

LPO
Input: a function f : N→ N
Output: 0 if f(n) = 0 for some n ∈ N, 1 otherwise

Lemma (FC-Sh-So)

1 SRT2
2 ≤W LPO ∗ wRSgr

2 SRT2
2 ≤W (LPO× LPO) ∗ wRSg

Sketch of the proof of 1: given a stable f : [N]2 → 2, let
Gf = (N, {{n, s} ∈ [N]2 : f(n, s) = 1}). Let H be a wRSgr-solution to
Gf . We can use LPO to determine which case holds:

H is an independent set. Then H is an f -homogeneous set of color 0.

There are adjacent h, h′ ∈ H. Then H can be refined to an infinite
homogeneous set of color 1.

Corollary (FC-Sh-So)

RT2
2 ≤W wRSgr[3]; RT2

2 ≤W wRSg[3]
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