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A very short overview

I Weihrauch reducibility compares multivalued functions
between represented spaces.

I The induced degrees have a rich algebraic structure.
I Many mathematical theorems can be interpreted as

multivalued functions, with the associated Weihrauch
degrees measuring the computational content of the
theorem.

I The algebraic operations have logic-like meanings
regarding such theorems.

I Many concrete theorems have been classified via
Weihrauch reducibility; and this classification is reminiscent
of reverse mathematics and Brouwerian counterexamples.

I Various techniques have been developed to prove
separation results.
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Represented spaces and computability

Definition
A represented space X is a pair (X , δX ) where X is a set and
δX :⊆ 2N → X a surjective partial function.

Definition
F :⊆ 2N → 2N is a realizer of f :⊆ X⇒ Y, iff
δY (F (p)) ∈ f (δX (p)) for all p ∈ dom(f δX ).

2N F−−−−→ 2NyδX

yδY

X f−−−−→ Y

Definition
f :⊆ X⇒ Y is called computable (continuous), iff it has a
computable (continuous) realizer.
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Weihrauch-reducibility
Definition
For f :⊆ X⇒ Y, g :⊆ V⇒W say

f ≤W g

iff there are computable H,K :⊆ NN → NN, such that
H〈idNN ,GK 〉 is a realizer of f for every realizer G of g. W
denotes the Weihrauch degrees.

Figure: Weihrauch reducibility



Weihrauch reducibility on Baire space

Proposition
For f ,g :⊆ NN ⇒ NN we that f ≤W g iff there are computable
H,K ⊆ NN → NN with K : dom(f )→ dom(g) such that
H(〈p,q〉) ∈ f (p) for all q ∈ g(K (p)).



What people are working on

I Most work on Weihrauch degrees is about classifying
specific theorems.

I Then there is work on creating a “scaffolding” of stuff like
closed choice principles.

I But only a few papers on the structure of the Weihrauch
degrees.

I See http://cca-net.de/publications/weibib.php
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Distributive lattice

Theorem (Brattka & Gherardi; Pauly)
The Weihrauch degrees form a distributive lattice;
I with join t induced by (f t g) :⊆ X + U⇒ Y + U,

(f t g)(0, x) = (0, f (x)) and (f t g)(1, y) = (1,g(y)),
I and with meet u induced by (f u g) :⊆ X× U⇒ Y + V,

(f u g)(x , y) = (0× f (x)) ∪ (1× g(y)).
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Special degrees

I The least element is 0, the trivially true principle without
instances.

I With 1 we denote the degree of idNN comprised of all
computable problems with a computable instance.

I And ∅ is the top element (which is probably fake).
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Incompleteness

Theorem (Higuchi & Pauly)
No non-trivial suprema exist in the Weihrauch lattice, meaning
either ti∈Nfi does not exist, or there is some N ∈ N with
ti∈Nfi = ti≤N fi .

Theorem (Higuchi & Pauly)
Some non-trivial infima exist, others do not.

Corollary
W and Wop are not isomorphic.
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Heyting algebra?

Question (Brattka & Gherardi)
Is the Weihrauch lattice a Brouwer algebra, i.e. does

inf
≤W
{h | g ≤W f t h}

exist for all f ,g?
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The Weihrauch lattice is neither a Brouwer not a Heyting
algebra.
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Medvedev degrees

Definition (Medvedev reducibility)
For A,B ⊆ NN, A ≤M B iff ∃F : B → A, F computable. Let M
denote the Medvedev degrees.

Theorem (Brattka & Gherardi)
A 7→ cA, where cA(p) = A, is a meet-semilattice embedding of
M into W.

Theorem (Higuchi & Pauly)
A 7→ dA, where dA : A→ {0}, is a lattice embedding of Mop into
W. In fact, it is an isomorphism between Mop and
{f ∈W | 0 <W f ≤W 1}.

Question
Is there a lattice-embedding of M into W?
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Many-one degrees

Definition (Many-one reductions)
For A,B ⊆ N, let A ≤m B iff there is a computable F : N→ N
with F−1(B) = A.

Theorem (Brattka & Pauly)
The many-one degrees embed into W.

Proof.
Let p,q ∈ NN be Turing incompatible. Map A ⊆ N to
χp,q

A : N→ {p,q} where (χp,q
A )−1(p) = A.
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What really is “and”?

Definition
We call f join-irreducible, if f ≤W g t h implies that f ≤W g or
f ≤W h.
Most “natural” Weihrauch degrees are join-irreducible.

Definition
Let f × g : X×U⇒ Y×V be defined via (y , v) ∈ (f × g)(x ,u) iff
y ∈ f (x) and v ∈ g(v).

Proposition (Brattka)
(W,0,1,t,×,∗ ) is a Kleene-algebra.
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Sequential composition

Definition
Let f ? g = sup≤W

{F ◦G | F ≤W f ∧G ≤W g}.

Theorem (Brattka & Pauly)
? actually is a total operation on Weihrauch degrees.

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & Pauly)
RT2

2 ≤W SRT2
2 ? COH, but RT2

2 and SRT2
2 × COH are

incomparable.
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Substructural logics

Theorem (Brattka & Pauly)
The minimum min≤W{h | f ≤W g ? h} always exists (and is
denoted by g → f , but in general none of the following have to
exist:

1. inf≤W{h | f ≤W h ? g}
2. inf≤W{h | f ≤W g × h}

This means that the Weihrauch degrees are not a model of any
of the usual substructural logics people have studied.
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Closure under composition

Definition (Neumann & Pauly)
An input for f � is a description of an abstract register machine
operating on represented spaces with computable functions
and f as operations, together with an input on which the
register machine halts. The output is whatever the register
machine outputs.
This is supposed to capture closure under composition.
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Characterizations

Proposition
f ∗ is the least Weihrauch degree above f satisfying 1 ≤W f ∗ and
f ∗ × f ∗ ≡W f ∗.

Theorem (Westrick 2020)
f � is the least Weihrauch degree above f satisfying 1 ≤W f � and
f � ? f � ≡W f �.

I Open since CCA 2015
I There is a constant function f and a multivalued function g

such that f ≤W g�, but no fixed finite number of
applications of g suffices
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Algebraic structure, summary

We have the following operations on Weihrauch degrees:
1. f u g, returning either an answer to f or an answer to g

(OR)
2. f t g, letting us choose between f and g (AND)
3. f × g, letting us both f and g in parallel (AND)
4. f ? g, letting us first use g, then f (AND)
5. f → g = min{h | g ≤W f ? h} (Implication)
6. f ∗, f � letting us use f finitely many times, in parallel or

consecutively (bang, bang)

7. f̂ , letting us use f countably many times in parallel (bang)
8. (and more)
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6. f ∗, f � letting us use f finitely many times, in parallel or

consecutively (bang, bang)

7. f̂ , letting us use f countably many times in parallel (bang)
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The idea

Sometimes, we can understand a Weihrauch degree by figuring
out how it relates to “simple” Weihrauch degrees.

Definition (Dzhafarov, Solomon & Yokoyama)
Let the first-order part of a Weihrauch degree f be:

1f := sup
≤W

{g :⊆ NN ⇒ N | g ≤W f}

Definition (Valenti, Goh & Pauly)
Fix a represented space X. The deterministic part of a
Weihrauch degree f is

DetX(f ) := sup
≤W

{g :⊆ NN → X | g ≤W f}
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Some questions and results

Proposition (Hoyrup)
There is an f with DetNN(f ) <W DetR(f ).

Proposition (de Brecht, Pauly & Schröder)
For overt choice VCQ :⊆ V(Q)⇒ Q it holds that
1(VCQ) ≡W DetNN(VCQ) ≡W 1, but VCQ is not computable.

Question (Valenti, Goh & Pauly)
Is there some f with DetN(f ) <W DetNN(1f )? (It always holds
that DetN(f ) ≡W

1 DetNN(f ))
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Irreducibility

Observation (Kihara)
There are f ,g <W lim with f × g ≡W lim.

Theorem (Uftring, personal communcation)
There is a Weihrauch degree f such that there is no g with
g ? g ≡W f .
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More definability?

I Clearly t, u, ∅, 0 are definable just by ≤W

I Are × or 1 definable from other operations? What about ̂?
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On the theory of Weihrauch degrees

I The Weihrauch degrees are a distributive lattice.
I Every countable distributive lattice embeds into the

Weihrauch degrees (via the Medvedev degrees).
I Thus, any universally quantified statement using t and u is

either provable from the axioms of distributive lattices or
false in W.

I Can we extend this to additional operations?
I A list of known axioms and non-axioms is available in “On

the algebraic structure of Weihrauch degrees”, LMCS 2018
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Continuous Weihrauch reducibility

If we relativize Weihrauch reducibility relative to an arbitrary
oracle, we get continuous Weihrauch reducibility.

Question
How do the Weihrauch degrees inside a given continuous
Weihrauch degree look like?
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