The structure of Weihrauch degrees - what we know and what we don't know

Arno Pauly

Swansea University

MidWest Computability Seminar 2021

2017: The survey

Vasco Brattka, Guido Gherardi & Arno Pauly: Weihrauch Complexity in Computable Analysis. arXiv 1707.03202

And an update

What happened since? What are some interesting open questions?

Arno Pauly:

An update on Weihrauch complexity, and some open questions.

arXiv 2008.11168

And an update

What happened since? What are some interesting open questions?

Arno Pauly:

An update on Weihrauch complexity, and some open questions.

arXiv 2008.11168

- Weihrauch reducibility compares multivalued functions between represented spaces.
- ► The induced degrees have a rich algebraic structure.
- Many mathematical theorems can be interpreted as multivalued functions, with the associated Weihrauch degrees measuring the computational content of the theorem.
- The algebraic operations have logic-like meanings regarding such theorems.
- Many concrete theorems have been classified via Weihrauch reducibility; and this classification is reminiscent of reverse mathematics and Brouwerian counterexamples.
- Various techniques have been developed to prove separation results.

- Weihrauch reducibility compares multivalued functions between represented spaces.
- ► The induced degrees have a rich algebraic structure.
- Many mathematical theorems can be interpreted as multivalued functions, with the associated Weihrauch degrees measuring the computational content of the theorem.
- The algebraic operations have logic-like meanings regarding such theorems.
- Many concrete theorems have been classified via Weihrauch reducibility; and this classification is reminiscent of reverse mathematics and Brouwerian counterexamples.
- Various techniques have been developed to prove separation results.

- Weihrauch reducibility compares multivalued functions between represented spaces.
- ► The induced degrees have a rich algebraic structure.
- Many mathematical theorems can be interpreted as multivalued functions, with the associated Weihrauch degrees measuring the computational content of the theorem.
- ► The algebraic operations have logic-like meanings regarding such theorems.
- Many concrete theorems have been classified via Weihrauch reducibility; and this classification is reminiscent of reverse mathematics and Brouwerian counterexamples.
- Various techniques have been developed to prove separation results.

- Weihrauch reducibility compares multivalued functions between represented spaces.
- ► The induced degrees have a rich algebraic structure.
- Many mathematical theorems can be interpreted as multivalued functions, with the associated Weihrauch degrees measuring the computational content of the theorem.
- ► The algebraic operations have logic-like meanings regarding such theorems.
- Many concrete theorems have been classified via Weihrauch reducibility; and this classification is reminiscent of reverse mathematics and Brouwerian counterexamples.
- Various techniques have been developed to prove separation results.

- Weihrauch reducibility compares multivalued functions between represented spaces.
- ► The induced degrees have a rich algebraic structure.
- Many mathematical theorems can be interpreted as multivalued functions, with the associated Weihrauch degrees measuring the computational content of the theorem.
- ► The algebraic operations have logic-like meanings regarding such theorems.
- Many concrete theorems have been classified via Weihrauch reducibility; and this classification is reminiscent of reverse mathematics and Brouwerian counterexamples.
- Various techniques have been developed to prove separation results.

- Weihrauch reducibility compares multivalued functions between represented spaces.
- ► The induced degrees have a rich algebraic structure.
- Many mathematical theorems can be interpreted as multivalued functions, with the associated Weihrauch degrees measuring the computational content of the theorem.
- ► The algebraic operations have logic-like meanings regarding such theorems.
- Many concrete theorems have been classified via Weihrauch reducibility; and this classification is reminiscent of reverse mathematics and Brouwerian counterexamples.
- Various techniques have been developed to prove separation results.

Represented spaces and computability

Definition

A represented space **X** is a pair (X, δ_X) where X is a set and $\delta_X :\subseteq \mathbf{2}^{\mathbb{N}} \to X$ a surjective partial function.

Definition

 $F:\subseteq \mathbf{2}^{\mathbb{N}} \to \mathbf{2}^{\mathbb{N}}$ is a realizer of $f:\subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$, iff $\delta_Y(F(p)) \in f(\delta_X(p))$ for all $p \in \text{dom}(f\delta_X)$.

$$\begin{array}{ccc}
\mathbf{2}^{\mathbb{N}} & \stackrel{F}{\longrightarrow} & \mathbf{2}^{\mathbb{N}} \\
\downarrow \delta_{X} & & \downarrow \delta_{Y} \\
\mathbf{X} & \stackrel{f}{\longrightarrow} & \mathbf{Y}
\end{array}$$

Definition

 $f:\subseteq X \Rightarrow Y$ is called computable (continuous), iff it has a computable (continuous) realizer.

Represented spaces and computability

Definition

A represented space **X** is a pair (X, δ_X) where X is a set and $\delta_X :\subseteq \mathbf{2}^{\mathbb{N}} \to X$ a surjective partial function.

Definition

 $F:\subseteq \mathbf{2}^{\mathbb{N}} \to \mathbf{2}^{\mathbb{N}}$ is a realizer of $f:\subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$, iff $\delta_Y(F(p)) \in f(\delta_X(p))$ for all $p \in \text{dom}(f\delta_X)$.

$$\begin{array}{ccc}
\mathbf{2}^{\mathbb{N}} & \xrightarrow{F} & \mathbf{2}^{\mathbb{N}} \\
\downarrow^{\delta_{X}} & & \downarrow^{\delta_{Y}} \\
\mathbf{X} & \xrightarrow{f} & \mathbf{Y}
\end{array}$$

Definition

 $f:\subseteq X \Rightarrow Y$ is called computable (continuous), iff it has a computable (continuous) realizer.

Represented spaces and computability

Definition

A represented space **X** is a pair (X, δ_X) where X is a set and $\delta_X :\subseteq \mathbf{2}^{\mathbb{N}} \to X$ a surjective partial function.

Definition

 $F:\subseteq \mathbf{2}^{\mathbb{N}} \to \mathbf{2}^{\mathbb{N}}$ is a realizer of $f:\subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$, iff $\delta_Y(F(p)) \in f(\delta_X(p))$ for all $p \in \text{dom}(f\delta_X)$.

$$\begin{array}{ccc}
\mathbf{2}^{\mathbb{N}} & \xrightarrow{F} & \mathbf{2}^{\mathbb{N}} \\
\downarrow^{\delta_{X}} & & \downarrow^{\delta_{Y}} \\
\mathbf{X} & \xrightarrow{f} & \mathbf{Y}
\end{array}$$

Definition

 $f:\subseteq \mathbf{X} \rightrightarrows \mathbf{Y}$ is called computable (continuous), iff it has a computable (continuous) realizer.

Weihrauch-reducibility

Definition

For $f \subseteq X \Rightarrow Y$, $g \subseteq V \Rightarrow W$ say

$$f \leq_W g$$

iff there are computable $H, K :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, such that $H\langle \operatorname{id}_{\mathbb{N}^{\mathbb{N}}}, GK \rangle$ is a realizer of f for every realizer G of g. \mathfrak{W} denotes the Weihrauch degrees.

Weihrauch reducibility on Baire space

Proposition

For $f,g:\subseteq \mathbb{N}^\mathbb{N} \rightrightarrows \mathbb{N}^\mathbb{N}$ we that $f\leq_W g$ iff there are computable $H,K\subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ with $K:\mathsf{dom}(f)\to \mathsf{dom}(g)$ such that $H(\langle p,q\rangle)\in f(p)$ for all $q\in g(K(p))$.

- Most work on Weihrauch degrees is about classifying specific theorems.
- Then there is work on creating a "scaffolding" of stuff like closed choice principles.
- But only a few papers on the structure of the Weihrauch degrees.
- See http://cca-net.de/publications/weibib.php

- Most work on Weihrauch degrees is about classifying specific theorems.
- Then there is work on creating a "scaffolding" of stuff like closed choice principles.
- But only a few papers on the structure of the Weihrauch degrees.
- See http://cca-net.de/publications/weibib.php

- Most work on Weihrauch degrees is about classifying specific theorems.
- Then there is work on creating a "scaffolding" of stuff like closed choice principles.
- But only a few papers on the structure of the Weihrauch degrees.
- See http://cca-net.de/publications/weibib.php

- Most work on Weihrauch degrees is about classifying specific theorems.
- Then there is work on creating a "scaffolding" of stuff like closed choice principles.
- But only a few papers on the structure of the Weihrauch degrees.
- See http://cca-net.de/publications/weibib.php

Outline

The Weihrauch lattice

Structures embeddable in the Weihrauch degrees

More algebraic operations

Special subclasses

Some side comments

The big open questions

Outline

The Weihrauch lattice

Structures embeddable in the Weihrauch degrees

More algebraic operations

Special subclasses

Some side comments

The big open questions

Distributive lattice

Theorem (Brattka & Gherardi; Pauly)

The Weihrauch degrees form a distributive lattice;

- with join \sqcup induced by $(f \sqcup g) :\subseteq \mathbf{X} + \mathbf{U} \Rightarrow \mathbf{Y} + \mathbf{U}$, $(f \sqcup g)(0, x) = (0, f(x))$ and $(f \sqcup g)(1, y) = (1, g(y))$,
- ▶ and with meet \sqcap induced by $(f \sqcap g) :\subseteq \mathbf{X} \times \mathbf{U} \Rightarrow \mathbf{Y} + \mathbf{V}$, $(f \sqcap g)(x,y) = (0 \times f(x)) \cup (1 \times g(y))$.

Distributive lattice

Theorem (Brattka & Gherardi; Pauly)

The Weihrauch degrees form a distributive lattice;

- ▶ with join \sqcup induced by $(f \sqcup g) :\subseteq \mathbf{X} + \mathbf{U} \Rightarrow \mathbf{Y} + \mathbf{U}$, $(f \sqcup g)(0, x) = (0, f(x))$ and $(f \sqcup g)(1, y) = (1, g(y))$,
- ▶ and with meet \sqcap induced by $(f \sqcap g) :\subseteq \mathbf{X} \times \mathbf{U} \rightrightarrows \mathbf{Y} + \mathbf{V}$, $(f \sqcap g)(x,y) = (0 \times f(x)) \cup (1 \times g(y))$.

Distributive lattice

Theorem (Brattka & Gherardi; Pauly)

The Weihrauch degrees form a distributive lattice;

- ▶ with join \sqcup induced by $(f \sqcup g) :\subseteq \mathbf{X} + \mathbf{U} \Rightarrow \mathbf{Y} + \mathbf{U}$, $(f \sqcup g)(0, x) = (0, f(x))$ and $(f \sqcup g)(1, y) = (1, g(y))$,
- ▶ and with meet \sqcap induced by $(f \sqcap g) :\subseteq \mathbf{X} \times \mathbf{U} \rightrightarrows \mathbf{Y} + \mathbf{V}$, $(f \sqcap g)(x,y) = (0 \times f(x)) \cup (1 \times g(y))$.

Special degrees

- ➤ The least element is 0, the trivially true principle without instances.
- ▶ With 1 we denote the degree of $id_{\mathbb{N}^{\mathbb{N}}}$ comprised of all computable problems with a computable instance.
- ightharpoonup And \emptyset is the top element (which is probably fake).

Special degrees

- The least element is 0, the trivially true principle without instances.
- ▶ With 1 we denote the degree of $id_{\mathbb{N}^{\mathbb{N}}}$ comprised of all computable problems with a computable instance.
- And \emptyset is the top element (which is probably fake).

Special degrees

- ➤ The least element is 0, the trivially true principle without instances.
- ▶ With 1 we denote the degree of $id_{\mathbb{N}^{\mathbb{N}}}$ comprised of all computable problems with a computable instance.
- ▶ And \emptyset is the top element (which is probably fake).

Theorem (Higuchi & Pauly)

No non-trivial suprema exist in the Weihrauch lattice, meaning either $\sqcup_{i \in \mathbb{N}} f_i$ does not exist, or there is some $N \in \mathbb{N}$ with $\sqcup_{i \in \mathbb{N}} f_i = \sqcup_{i \leq N} f_i$.

Theorem (Higuchi & Pauly)

Some non-trivial infima exist, others do not.

Corollary

ໜ and ໜ^{op} are not isomorphic.

Theorem (Higuchi & Pauly)

No non-trivial suprema exist in the Weihrauch lattice, meaning either $\sqcup_{i\in\mathbb{N}}f_i$ does not exist, or there is some $N\in\mathbb{N}$ with $\sqcup_{i\in\mathbb{N}}f_i=\sqcup_{i\leq N}f_i$.

Theorem (Higuchi & Pauly)

Some non-trivial infima exist, others do not.

Corollary

m and moop are not isomorphic.

Theorem (Higuchi & Pauly)

No non-trivial suprema exist in the Weihrauch lattice, meaning either $\sqcup_{i\in\mathbb{N}} f_i$ does not exist, or there is some $N\in\mathbb{N}$ with $\sqcup_{i\in\mathbb{N}} f_i = \sqcup_{i\leq N} f_i$.

Theorem (Higuchi & Pauly)

Some non-trivial infima exist, others do not.

Corollary

m and moop are not isomorphic.

Theorem (Higuchi & Pauly)

No non-trivial suprema exist in the Weihrauch lattice, meaning either $\sqcup_{i\in\mathbb{N}} f_i$ does not exist, or there is some $N\in\mathbb{N}$ with $\sqcup_{i\in\mathbb{N}} f_i = \sqcup_{i\leq N} f_i$.

Theorem (Higuchi & Pauly)

Some non-trivial infima exist, others do not.

Corollary

m and moop are not isomorphic.

Heyting algebra?

Question (Brattka & Gherardi)

Is the Weihrauch lattice a Brouwer algebra, i.e. does

$$\inf_{\leq_W} \{h \mid g \leq_W f \sqcup h\}$$

exist for all f, g?

Theorem (Higuchi & Pauly)

The Weihrauch lattice is neither a Brouwer not a Heyting algebra.

Heyting algebra?

Question (Brattka & Gherardi)

Is the Weihrauch lattice a Brouwer algebra, i.e. does

$$\inf_{\leq_W}\{h\mid g\leq_W f\sqcup h\}$$

exist for all f, g?

Theorem (Higuchi & Pauly)

The Weihrauch lattice is neither a Brouwer not a Heyting algebra.

Outline

The Weihrauch lattice

Structures embeddable in the Weihrauch degrees

More algebraic operations

Special subclasses

Some side comments

The big open questions

Medvedev degrees

Definition (Medvedev reducibility)

For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, $A \leq_M B$ iff $\exists F : B \to A$, F computable. Let \mathfrak{M} denote the Medvedev degrees.

Theorem (Brattka & Gherardi)

 $A\mapsto c_A$, where $c_A(p)=A$, is a meet-semilattice embedding of $\mathfrak M$ into $\mathfrak W$.

Theorem (Higuchi & Pauly)

 $A \mapsto d_A$, where $d_A : A \to \{0\}$, is a lattice embedding of \mathfrak{M}^{op} into \mathfrak{W} . In fact, it is an isomorphism between \mathfrak{M}^{op} and $\{f \in \mathfrak{W} \mid 0 <_W f \leq_W 1\}$.

Question

Is there a lattice-embedding of m into m?

Medvedev degrees

Definition (Medvedev reducibility)

For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, $A \leq_M B$ iff $\exists F : B \to A$, F computable. Let \mathfrak{M} denote the Medvedev degrees.

Theorem (Brattka & Gherardi)

 $A \mapsto c_A$, where $c_A(p) = A$, is a meet-semilattice embedding of \mathfrak{M} into \mathfrak{W} .

Theorem (Higuchi & Pauly)

 $A\mapsto d_A$, where $d_A:A\to\{0\}$, is a lattice embedding of $\mathfrak{M}^{\operatorname{op}}$ into \mathfrak{W} . In fact, it is an isomorphism between $\mathfrak{M}^{\operatorname{op}}$ and $\{f\in\mathfrak{W}\mid 0<_Wf\leq_W1\}.$

Question

Is there a lattice-embedding of m into m?

Medvedev degrees

Definition (Medvedev reducibility)

For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, $A \leq_M B$ iff $\exists F : B \to A$, F computable. Let \mathfrak{M} denote the Medvedev degrees.

Theorem (Brattka & Gherardi)

 $A \mapsto c_A$, where $c_A(p) = A$, is a meet-semilattice embedding of \mathfrak{M} into \mathfrak{W} .

Theorem (Higuchi & Pauly)

 $A\mapsto d_A$, where $d_A:A\to\{0\}$, is a lattice embedding of $\mathfrak{M}^{\operatorname{op}}$ into \mathfrak{W} . In fact, it is an isomorphism between $\mathfrak{M}^{\operatorname{op}}$ and $\{f\in\mathfrak{W}\mid 0<_W f\leq_W 1\}$.

Question

Is there a lattice-embedding of m into m?

Medvedev degrees

Definition (Medvedev reducibility)

For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, $A \leq_M B$ iff $\exists F : B \to A$, F computable. Let \mathfrak{M} denote the Medvedev degrees.

Theorem (Brattka & Gherardi)

 $A \mapsto c_A$, where $c_A(p) = A$, is a meet-semilattice embedding of \mathfrak{M} into \mathfrak{W} .

Theorem (Higuchi & Pauly)

 $A\mapsto d_A$, where $d_A:A\to\{0\}$, is a lattice embedding of $\mathfrak{M}^{\operatorname{op}}$ into \mathfrak{W} . In fact, it is an isomorphism between $\mathfrak{M}^{\operatorname{op}}$ and $\{f\in\mathfrak{W}\mid 0<_W f\leq_W 1\}$.

Question

Is there a lattice-embedding of \mathfrak{M} into \mathfrak{W} ?

Many-one degrees

Definition (Many-one reductions)

For $A, B \subseteq \mathbb{N}$, let $A \leq_m B$ iff there is a computable $F : \mathbb{N} \to \mathbb{N}$ with $F^{-1}(B) = A$.

Theorem (Brattka & Pauly)

The many-one degrees embed into \mathfrak{W} .

Proof.

Let $p,q\in\mathbb{N}^\mathbb{N}$ be Turing incompatible. Map $A\subseteq\mathbb{N}$ to $\chi_A^{p,q}:\mathbb{N} o\{p,q\}$ where $(\chi_A^{p,q})^{-1}(p)=A$.

Many-one degrees

Definition (Many-one reductions)

For $A, B \subseteq \mathbb{N}$, let $A \leq_m B$ iff there is a computable $F : \mathbb{N} \to \mathbb{N}$ with $F^{-1}(B) = A$.

Theorem (Brattka & Pauly)

The many-one degrees embed into \mathfrak{W} .

Proof.

Let $p, q \in \mathbb{N}^{\mathbb{N}}$ be Turing incompatible. Map $A \subseteq \mathbb{N}$ to $\chi_A^{p,q} : \mathbb{N} \to \{p,q\}$ where $(\chi_A^{p,q})^{-1}(p) = A$.

Many-one degrees

Definition (Many-one reductions)

For $A, B \subseteq \mathbb{N}$, let $A \leq_m B$ iff there is a computable $F : \mathbb{N} \to \mathbb{N}$ with $F^{-1}(B) = A$.

Theorem (Brattka & Pauly)

The many-one degrees embed into \mathfrak{W} .

Proof.

Let
$$p, q \in \mathbb{N}^{\mathbb{N}}$$
 be Turing incompatible. Map $A \subseteq \mathbb{N}$ to $\chi_A^{p,q} : \mathbb{N} \to \{p,q\}$ where $(\chi_A^{p,q})^{-1}(p) = A$.

Outline

The Weihrauch lattice

Structures embeddable in the Weihrauch degrees

More algebraic operations

Special subclasses

Some side comments

The big open questions

Definition

We call f join-irreducible, if $f \leq_W g \sqcup h$ implies that $f \leq_W g$ or $f \leq_W h$.

Most "natural" Weihrauch degrees are join-irreducible.

Definition

Let $f \times g : \mathbf{X} \times \mathbf{U} \rightrightarrows \mathbf{Y} \times \mathbf{V}$ be defined via $(y, v) \in (f \times g)(x, u)$ iff $y \in f(x)$ and $v \in g(v)$.

Proposition (Brattka)

Definition

We call f join-irreducible, if $f \leq_W g \sqcup h$ implies that $f \leq_W g$ or $f \leq_W h$.

Most "natural" Weihrauch degrees are join-irreducible.

Definition

Let $f \times g : \mathbf{X} \times \mathbf{U} \rightrightarrows \mathbf{Y} \times \mathbf{V}$ be defined via $(y, v) \in (f \times g)(x, u)$ iff $y \in f(x)$ and $v \in g(v)$.

Proposition (Brattka)

Definition

We call f join-irreducible, if $f \leq_W g \sqcup h$ implies that $f \leq_W g$ or $f \leq_W h$.

Most "natural" Weihrauch degrees are join-irreducible.

Definition

Let $f \times g : \mathbf{X} \times \mathbf{U} \rightrightarrows \mathbf{Y} \times \mathbf{V}$ be defined via $(y, v) \in (f \times g)(x, u)$ iff $y \in f(x)$ and $v \in g(v)$.

Proposition (Brattka)

Definition

We call f join-irreducible, if $f \leq_W g \sqcup h$ implies that $f \leq_W g$ or $f \leq_W h$.

Most "natural" Weihrauch degrees are join-irreducible.

Definition

Let $f \times g : \mathbf{X} \times \mathbf{U} \rightrightarrows \mathbf{Y} \times \mathbf{V}$ be defined via $(y, v) \in (f \times g)(x, u)$ iff $y \in f(x)$ and $v \in g(v)$.

Proposition (Brattka)

Sequential composition

Definition

Let
$$f\star g=\sup_{\leq_{\mathrm{W}}}\{F\circ G\mid F\leq_{\mathrm{W}}f\wedge G\leq_{\mathrm{W}}g\}.$$

Theorem (Brattka & Pauly)

* actually is a total operation on Weihrauch degrees.

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & Pauly) $RT_2^2 \leq_W SRT_2^2 \star COH$, but RT_2^2 and $SRT_2^2 \times COH$ are incomparable.

Sequential composition

Definition

Let $f\star g=\sup_{\leq_{\mathrm{W}}}\{F\circ G\mid F\leq_{\mathrm{W}}f\wedge G\leq_{\mathrm{W}}g\}.$

Theorem (Brattka & Pauly)

* actually is a total operation on Weihrauch degrees.

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & Pauly) $RT_2^2 \leq_W SRT_2^2 \star COH$, but RT_2^2 and $SRT_2^2 \times COH$ are incomparable.

Sequential composition

Definition

Let $f \star g = \sup_{\leq_{\mathrm{W}}} \{ F \circ G \mid F \leq_{\mathrm{W}} f \wedge G \leq_{\mathrm{W}} g \}.$

Theorem (Brattka & Pauly)

* actually is a total operation on Weihrauch degrees.

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey & Pauly)

 $RT_2^2 \leq_W SRT_2^2 \star COH$, but RT_2^2 and $SRT_2^2 \times COH$ are incomparable.

Theorem (Brattka & Pauly)

The minimum $\min_{\leq_W} \{h \mid f \leq_W g \star h\}$ always exists (and is denoted by $g \to f$, but in general none of the following have to exist:

- 1. $\inf_{\leq w} \{ h \mid f \leq_W h \star g \}$
- 2. $\inf_{\leq w} \{h \mid f \leq_W g \times h\}$

Theorem (Brattka & Pauly)

The minimum $\min_{\leq_W} \{h \mid f \leq_W g \star h\}$ always exists (and is denoted by $g \to f$, but in general none of the following have to exist:

- 1. $\inf_{\leq w} \{ h \mid f \leq_W h \star g \}$
- 2. $\inf_{\leq w} \{h \mid f \leq_W g \times h\}$

Theorem (Brattka & Pauly)

The minimum $\min_{\leq_W} \{h \mid f \leq_W g \star h\}$ always exists (and is denoted by $g \to f$, but in general none of the following have to exist:

- 1. $\inf_{\leq w} \{h \mid f \leq_W h \star g\}$
- 2. $\inf_{\leq_W} \{h \mid f \leq_W g \times h\}$

Theorem (Brattka & Pauly)

The minimum $\min_{\leq_W} \{h \mid f \leq_W g \star h\}$ always exists (and is denoted by $g \to f$, but in general none of the following have to exist:

- 1. $\inf_{\leq w} \{h \mid f \leq_W h \star g\}$
- 2. $\inf_{\leq w} \{h \mid f \leq_W g \times h\}$

Closure under composition

Definition (Neumann & Pauly)

An input for f^{\diamond} is a description of an abstract register machine operating on represented spaces with computable functions and f as operations, together with an input on which the register machine halts. The output is whatever the register machine outputs.

This is *supposed* to capture closure under composition.

Closure under composition

Definition (Neumann & Pauly)

An input for f^{\diamond} is a description of an abstract register machine operating on represented spaces with computable functions and f as operations, together with an input on which the register machine halts. The output is whatever the register machine outputs.

This is *supposed* to capture closure under composition.

Proposition

 f^* is the least Weihrauch degree above f satisfying $1 \leq_W f^*$ and $f^* \times f^* \equiv_W f^*$.

Theorem (Westrick 2020)

- ► Open since CCA 2015
- There is a constant function f and a multivalued function g such that $f \leq_W g^{\diamond}$, but no fixed finite number of applications of g suffices

Proposition

 f^* is the least Weihrauch degree above f satisfying $1 \leq_W f^*$ and $f^* \times f^* \equiv_W f^*$.

Theorem (Westrick 2020)

- ► Open since CCA 2015
- There is a constant function f and a multivalued function g such that $f \leq_W g^{\diamond}$, but no fixed finite number of applications of g suffices

Proposition

 f^* is the least Weihrauch degree above f satisfying $1 \leq_W f^*$ and $f^* \times f^* \equiv_W f^*$.

Theorem (Westrick 2020)

- Open since CCA 2015
- ► There is a constant function f and a multivalued function g such that $f \leq_W g^{\diamond}$, but no fixed finite number of applications of g suffices

Proposition

 f^* is the least Weihrauch degree above f satisfying $1 \leq_W f^*$ and $f^* \times f^* \equiv_W f^*$.

Theorem (Westrick 2020)

- Open since CCA 2015
- ▶ There is a constant function f and a multivalued function g such that $f \leq_W g^{\diamond}$, but no fixed finite number of applications of g suffices

- 1. $f \sqcap g$, returning either an answer to f or an answer to g (OR)
- 2. $f \sqcup g$, letting us choose between f and g (AND)
- 3. $f \times g$, letting us both f and g in parallel (AND)
- 4. $f \star g$, letting us first use g, then f (AND)
- 5. $f \rightarrow g = \min\{h \mid g \leq_W f \star h\}$ (Implication)
- 6. f^* , f^{\diamond} letting us use f finitely many times, in parallel or consecutively (bang, bang)
- 7. \hat{f} , letting us use f countably many times in parallel (bang)
- 8. (and more)

- 1. $f \sqcap g$, returning either an answer to f or an answer to g (OR)
- 2. $f \sqcup g$, letting us choose between f and g (AND)
- 3. $f \times g$, letting us both f and g in parallel (AND)
- 4. $f \star g$, letting us first use g, then f (AND)
- 5. $f \rightarrow g = \min\{h \mid g \leq_W f * h\}$ (Implication)
- 6. f^* , f° letting us use f finitely many times, in parallel or consecutively (bang, bang)
- 7. \hat{f} , letting us use f countably many times in parallel (bang)
- 8. (and more)

- 1. $f \sqcap g$, returning either an answer to f or an answer to g (OR)
- 2. $f \sqcup g$, letting us choose between f and g (AND)
- 3. $f \times g$, letting us both f and g in parallel (AND)
- 4. $f \star g$, letting us first use g, then f (AND)
- 5. $f \rightarrow g = \min\{h \mid g \leq_W f * h\}$ (Implication)
- f*, f* letting us use f finitely many times, in parallel or consecutively (bang, bang)
- 7. \hat{f} , letting us use f countably many times in parallel (bang)
- 8. (and more)

- 1. $f \sqcap g$, returning either an answer to f or an answer to g (OR)
- 2. $f \sqcup g$, letting us choose between f and g (AND)
- 3. $f \times g$, letting us both f and g in parallel (AND)
- 4. $f \star g$, letting us first use g, then f (AND)
- 5. $f \rightarrow g = \min\{h \mid g \leq_W f * h\}$ (Implication)
- f*, f* letting us use f finitely many times, in parallel or consecutively (bang, bang)
- 7. \hat{f} , letting us use f countably many times in parallel (bang)
- 8. (and more)

- 1. $f \sqcap g$, returning either an answer to f or an answer to g (OR)
- 2. $f \sqcup g$, letting us choose between f and g (AND)
- 3. $f \times g$, letting us both f and g in parallel (AND)
- 4. $f \star g$, letting us first use g, then f (AND)
- 5. $f \rightarrow g = \min\{h \mid g \leq_W f \star h\}$ (Implication)
- 6. f^* , f^{\diamond} letting us use f finitely many times, in parallel or consecutively (bang, bang)
- 7. \hat{f} , letting us use f countably many times in parallel (bang)
- 8. (and more)

- 1. $f \sqcap g$, returning either an answer to f or an answer to g (OR)
- 2. $f \sqcup g$, letting us choose between f and g (AND)
- 3. $f \times g$, letting us both f and g in parallel (AND)
- 4. $f \star g$, letting us first use g, then f (AND)
- 5. $f \rightarrow g = \min\{h \mid g \leq_W f \star h\}$ (Implication)
- 6. f^*, f^{\diamond} letting us use f finitely many times, in parallel or consecutively (bang, bang)
- 7. f, letting us use f countably many times in parallel (bang)
- 8. (and more)

- 1. $f \sqcap g$, returning either an answer to f or an answer to g (OR)
- 2. $f \sqcup g$, letting us choose between f and g (AND)
- 3. $f \times g$, letting us both f and g in parallel (AND)
- **4**. $f \star g$, letting us first use g, then f (AND)
- 5. $f \rightarrow g = \min\{h \mid g \leq_W f \star h\}$ (Implication)
- 6. f^*, f^{\diamond} letting us use f finitely many times, in parallel or consecutively (bang, bang)
- 7. \hat{f} , letting us use f countably many times in parallel (bang)
- 8. (and more)

- 1. $f \sqcap g$, returning either an answer to f or an answer to g (OR)
- 2. $f \sqcup g$, letting us choose between f and g (AND)
- 3. $f \times g$, letting us both f and g in parallel (AND)
- 4. $f \star g$, letting us first use g, then f (AND)
- 5. $f \rightarrow g = \min\{h \mid g \leq_W f \star h\}$ (Implication)
- 6. f^*, f^{\diamond} letting us use f finitely many times, in parallel or consecutively (bang, bang)
- 7. \hat{f} , letting us use f countably many times in parallel (bang)
- 8. (and more)

Outline

The Weihrauch lattice

Structures embeddable in the Weihrauch degrees

More algebraic operations

Special subclasses

Some side comments

The big open questions

The idea

Sometimes, we can understand a Weihrauch degree by figuring out how it relates to "simple" Weihrauch degrees.

Definition (Dzhafarov, Solomon & Yokoyama)

Let the first-order part of a Weihrauch degree *f* be:

$${}^{1}f := \sup_{\leq_{\mathrm{W}}} \{g : \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N} \mid g \leq_{\mathrm{W}} f\}$$

Definition (Valenti, Goh & Pauly)

Fix a represented space \mathbf{X} . The deterministic part of a Weihrauch degree f is

$$\mathsf{Det}_{\mathbf{X}}(f) := \sup_{\leq_{\mathsf{W}}} \{g : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbf{X} \mid g \leq_{\mathsf{W}} f\}$$

The idea

Sometimes, we can understand a Weihrauch degree by figuring out how it relates to "simple" Weihrauch degrees.

Definition (Dzhafarov, Solomon & Yokoyama)

Let the first-order part of a Weihrauch degree *f* be:

$$^{1}f:=\sup_{\leq_{\mathrm{W}}}\{g:\subseteq\mathbb{N}^{\mathbb{N}}
ightrightarrows\mathbb{N}\mid g\leq_{\mathrm{W}}f\}$$

Definition (Valenti, Goh & Pauly)

Fix a represented space \mathbf{X} . The deterministic part of a Weihrauch degree f is

$$\mathsf{Det}_{\mathbf{X}}(f) := \sup_{\leq_{\mathsf{W}}} \{g : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbf{X} \mid g \leq_{\mathsf{W}} f\}$$

The idea

Sometimes, we can understand a Weihrauch degree by figuring out how it relates to "simple" Weihrauch degrees.

Definition (Dzhafarov, Solomon & Yokoyama)

Let the first-order part of a Weihrauch degree *f* be:

$${}^1f:=\sup_{\leq_{\mathrm{W}}}\{g:\subseteq\mathbb{N}^\mathbb{N}\rightrightarrows\mathbb{N}\mid g\leq_{\mathrm{W}}f\}$$

Definition (Valenti, Goh & Pauly)

Fix a represented space \mathbf{X} . The deterministic part of a Weihrauch degree f is

$$\mathsf{Det}_{\mathbf{X}}(f) := \sup_{\leq_{\mathsf{W}}} \{g : \subseteq \mathbb{N}^{\mathbb{N}} o \mathbf{X} \mid g \leq_{\mathsf{W}} f \}$$

Some questions and results

Proposition (Hoyrup)

There is an f with $\mathsf{Det}_{\mathbb{N}^{\mathbb{N}}}(f) <_W \mathsf{Det}_{\mathbb{R}}(f)$.

Proposition (de Brecht, Pauly & Schröder)

For overt choice $\mathbf{VC}_{\mathbb{Q}} :\subseteq \mathcal{V}(\mathbb{Q}) \rightrightarrows \mathbb{Q}$ it holds that ${}^{1}(\mathbf{VC}_{\mathbb{Q}}) \equiv_{W} \mathrm{Det}_{\mathbb{N}^{\mathbb{N}}}(\mathbf{VC}_{\mathbb{Q}}) \equiv_{W} 1$, but $\mathbf{VC}_{\mathbb{Q}}$ is not computable.

Question (Valenti, Goh & Pauly)

Is there some f with $\mathsf{Det}_{\mathbb{N}}(f) <_W \mathsf{Det}_{\mathbb{N}^{\mathbb{N}}}(^1f)$? (It always holds that $\mathsf{Det}_{\mathbb{N}}(f) \equiv_W ^1 \mathsf{Det}_{\mathbb{N}^{\mathbb{N}}}(f)$)

Some questions and results

Proposition (Hoyrup)

There is an f with $\mathsf{Det}_{\mathbb{N}^{\mathbb{N}}}(f) <_W \mathsf{Det}_{\mathbb{R}}(f)$.

Proposition (de Brecht, Pauly & Schröder)

For overt choice $\mathbf{VC}_{\mathbb{Q}}:\subseteq\mathcal{V}(\mathbb{Q})\rightrightarrows\mathbb{Q}$ it holds that ${}^{1}(\mathbf{VC}_{\mathbb{Q}})\equiv_{W}\mathrm{Det}_{\mathbb{N}^{\mathbb{N}}}(\mathbf{VC}_{\mathbb{Q}})\equiv_{W} 1$, but $\mathbf{VC}_{\mathbb{Q}}$ is not computable.

Question (Valenti, Goh & Pauly)

Is there some f with $\mathsf{Det}_{\mathbb{N}}(f) <_W \mathsf{Det}_{\mathbb{N}^{\mathbb{N}}}(^1f)$? (It always holds that $\mathsf{Det}_{\mathbb{N}}(f) \equiv_W ^1 \mathsf{Det}_{\mathbb{N}^{\mathbb{N}}}(f)$)

Some questions and results

Proposition (Hoyrup)

There is an f with $\mathsf{Det}_{\mathbb{N}^{\mathbb{N}}}(f) <_W \mathsf{Det}_{\mathbb{R}}(f)$.

Proposition (de Brecht, Pauly & Schröder)

For overt choice $\mathbf{VC}_{\mathbb{Q}}:\subseteq\mathcal{V}(\mathbb{Q})\rightrightarrows\mathbb{Q}$ it holds that ${}^{1}(\mathbf{VC}_{\mathbb{Q}})\equiv_{\mathit{W}}\mathsf{Det}_{\mathbb{N}^{\mathbb{N}}}(\mathbf{VC}_{\mathbb{Q}})\equiv_{\mathit{W}}\mathsf{1}$, but $\mathbf{VC}_{\mathbb{Q}}$ is not computable.

Question (Valenti, Goh & Pauly)

Is there some f with $\mathsf{Det}_{\mathbb{N}}(f) <_W \mathsf{Det}_{\mathbb{N}^{\mathbb{N}}}(^1f)$? (It always holds that $\mathsf{Det}_{\mathbb{N}}(f) \equiv_W ^1 \mathsf{Det}_{\mathbb{N}^{\mathbb{N}}}(f)$)

Outline

The Weihrauch lattice

Structures embeddable in the Weihrauch degrees

More algebraic operations

Special subclasses

Some side comments

The big open questions

Irreducibility

Observation (Kihara)

There are $f, g <_W \lim with f \times g \equiv_W \lim$.

Theorem (Uftring, personal communication)

There is a Weihrauch degree f such that there is no g with $g \star g \equiv_W f$.

Irreducibility

Observation (Kihara)

There are $f, g <_W \lim with f \times g \equiv_W \lim$.

Theorem (Uftring, personal communcation)

There is a Weihrauch degree f such that there is no g with $g \star g \equiv_W f$.

Outline

The Weihrauch lattice

Structures embeddable in the Weihrauch degrees

More algebraic operations

Special subclasses

Some side comments

The big open questions

More definability?

- ▶ Clearly \sqcup , \sqcap , \emptyset , 0 are definable just by \leq_W
- ightharpoonup Are imes or 1 definable from other operations? What about $\hat{\ }$?

More definability?

- ▶ Clearly \sqcup , \sqcap , \emptyset , 0 are definable just by \leq_W
- Are \times or 1 definable from other operations? What about $\hat{}$?

- ▶ The Weihrauch degrees are a distributive lattice.
- Every countable distributive lattice embeds into the Weihrauch degrees (via the Medvedev degrees).
- Thus, any universally quantified statement using

 and

 is either provable from the axioms of distributive lattices or false in

 .
- Can we extend this to additional operations?
- A list of known axioms and non-axioms is available in "On the algebraic structure of Weihrauch degrees", LMCS 2018

- ► The Weihrauch degrees are a distributive lattice.
- Every countable distributive lattice embeds into the Weihrauch degrees (via the Medvedev degrees).
- Thus, any universally quantified statement using

 and

 is either provable from the axioms of distributive lattices or false in

 .
- Can we extend this to additional operations?
- A list of known axioms and non-axioms is available in "On the algebraic structure of Weihrauch degrees", LMCS 2018

- ► The Weihrauch degrees are a distributive lattice.
- Every countable distributive lattice embeds into the Weihrauch degrees (via the Medvedev degrees).
- Thus, any universally quantified statement using

 and

 is either provable from the axioms of distributive lattices or false in

 false in

 .
- Can we extend this to additional operations?
- A list of known axioms and non-axioms is available in "On the algebraic structure of Weihrauch degrees", LMCS 2018

- ► The Weihrauch degrees are a distributive lattice.
- Every countable distributive lattice embeds into the Weihrauch degrees (via the Medvedev degrees).
- Thus, any universally quantified statement using

 and

 is either provable from the axioms of distributive lattices or false in

 false in

 .
- Can we extend this to additional operations?
- ➤ A list of known axioms and non-axioms is available in "On the algebraic structure of Weihrauch degrees", LMCS 2018

- ▶ The Weihrauch degrees are a distributive lattice.
- Every countable distributive lattice embeds into the Weihrauch degrees (via the Medvedev degrees).
- Thus, any universally quantified statement using

 and

 is either provable from the axioms of distributive lattices or false in

 false in

 .
- Can we extend this to additional operations?
- A list of known axioms and non-axioms is available in "On the algebraic structure of Weihrauch degrees", LMCS 2018

Continuous Weihrauch reducibility

If we relativize Weihrauch reducibility relative to an arbitrary oracle, we get continuous Weihrauch reducibility.

Question

How do the Weihrauch degrees inside a given continuous Weihrauch degree look like?

Continuous Weihrauch reducibility

If we relativize Weihrauch reducibility relative to an arbitrary oracle, we get continuous Weihrauch reducibility.

Question

How do the Weihrauch degrees inside a given continuous Weihrauch degree look like?