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Models of Transfinite Computability

Several machine models of transfinite computation generalize
Turing machines to infinite time or space (ITTMs, α-TMs,
OTMs...)
We also consider generalizations of a different model, the
so-called unlimited register machines (URM’s):
Definition:
An unlimited register machine (URM) has registers R0,R1, . . .
which can hold natural numbers. A URM program is a finite list
P = I0, I1, ..., Is−1 of instructions, each of which may be of one
of five kinds:
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URM-programs

the zero instruction Z (n) changes the contents of Rn to 0,
leaving all other registers unaltered;
the successor instruction S(n) increases the natural
number contained in Rn by 1, leaving all other registers
unaltered;
the oracle instruction O(n) replaces the content of the
register Rn by the number 1 if the content is an element of
the oracle, and by 0 otherwise;
the transfer instruction T (m,n) replaces the contents of Rn
by the natural number contained in Rm, leaving all other
registers unaltered;
the jump instruction J(m,n,q) is carried out as follows: the
contents rm and rn of the registers Rm and Rn are
compared, all registers are left unaltered; then, if rm = rn,
the URM proceeds to the qth instruction of P; if rm 6= rn,
the URM proceeds to the next instruction in P.Carl, Merlin Complexity and Decision Times for ITTMs
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URM-computability

How an URM works should now be clear: Simply run through
the lines and act according to the commands.
A function f : ω → ω is called URM-computable iff there is a
URM-program P that, starting with n in register R1, stops after
finitely many steps with f (n) in register R1.
A subset x of ω is computable if its characteristic function is. As
usual, we identify P(ω) with the real numbers.
Fact: Every URM-computable function is computable on a URM
with 3 registers.
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Register computations along an ordinal time axis

Keep the ’hardware’: Finitely many registers, each can store an
integer.
Also, keep the notion of a program and the way the
computation works at successor steps.

At limit times, let Ri(λ) = liminfι<λRi(ι) for each i ∈ ω, if it
exists, and Ri(λ) = 0, otherwise. Also, the index of the active
program line l(λ) is defined to be liminfι<λlι.

These machines are called “Infinite Time Register Machines”
(ITRMs), introduced by Koepke.
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Theorem (Koepke/Miller): There is an ITRM-program P that
decides WO, the set of real numbers that code well-orderings.
As a consequence, every Π1

1-set is ITRM-decidable.

Theorem (Koepke): A real number x is ITRM-computable if
and only if x ∈ LωCK

ω
.
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Infinite Time Turing Machines

ITTMs have the same ‘hardware’ as Turing machines: They
have a tape with cells indexed with natural numbers (each of
which can contain a 0 or a 1), a read/write head, a finite set of
internal states, represented by natural numbers and possibly an
oracle.
They also have the same ‘software’: Commands that,
depending on the current state and the symbol currently read,
tell the machine what symbol to write, which new internal state
to assume and where to move the read/write head.
However, the working time of an ITTM can be an arbitrary
ordinal.
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Computations along an ordinal time axis

We keep the way a Turing computation works at successor
steps.
But now, what should the state of the machine be at a limit time
λ?
The internal state sλ at time λ, we set sλ := liminf{sι|ι < λ}.
For ITTMs, the head position pλ at time λ is
pλ := liminf{pι|ι < λ}, if this limit is finite; otherwise, we set
pλ = 0.
Concerning the tape content (tιλ|ι ∈ On) at time λ, we set
tιλ = liminf{tιγ |γ < λ}.
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ITTM-computability
For ITTMs, we have three important notions of writability, due to
Hamkins and Lewis:
x ⊆ ω is ITTM-writable iff there is an ITTM-program P that, when run
on the empty tape, halts with x on the tape.
x ⊆ ω is eventually ITTM-writable iff there is an ITTM-program P such
that, when P is run on the empty tape, there is for every n ∈ ω an
ordinal α such that the nth cell of the tape contains 1 iff n ∈ x from
time α on.
(Think: Tape content ’converges to’ x)
x ⊆ ω is accidentally ITTM-writable iff there are an ITTM-program P
and an ordinal α such that the tape content at time α is x when P is
run on the empty tape.

Fact: (Hamkins/Lewis) x writable→ x eventually writable→ x
accidentally writable. None of these implications can be reversed.

All of these notions and the fact relativize to oracles.
Carl, Merlin Complexity and Decision Times for ITTMs
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A simple ITTM-computation
(q0,0)→ (q0,1, right)
(q0,1)→ (q0,0, right)

Time State Cell 0 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 ...
0 q0 0 0 0 0 0 0 ...
1 q0 1 0 0 0 0 0 ...
2 q0 1 1 0 0 0 0 ...
... ... ... ... ... ... ... ... ...
ω q0 1 1 1 1 1 1 ...
ω + 1 q0 0 1 1 1 1 1 ...
ω + 2 q0 0 0 1 1 1 1 ...
... ... ... ... ... ... ... ... ...
ω · 2 q0 0 0 0 0 0 0 ...
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
ω2 q0 0 0 0 0 0 0 ...
... ... ... ... ... ... ... ... ...
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Characterizing ITTM-computability

Theorem: (Welch) There are ordinals λ < ζ < Σ such that
x ⊆ ω is writable/eventually writable/accidentally writable by an
ITTM iff x is an element of Lλ, Lζ , LΣ, respectively. Moreover,
(λ, ζ,Σ) can be characterized as the lexically minimal tuple
(α, β, γ) of ordinals such that Lα ≺Σ1 Lβ ≺Σ2 Lγ .

The relativization to oracles holds as well.
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Decidability

Let X be a set of real numbers.
X is called ITTM/ITRM-decidable if and only if there is an
ITTM/ITRM-program P such that, for all x ⊆ ω, Px ↓= 1 if and
only if x ∈ X and otherwise Px ↓= 0.

X is called ITTM-semidecidable if and only if there is an
ITTM-program P such that, for all x ⊆ ω, Px halts if and only if
x ∈ X .

X is called ITTM-cosemidecidable if and only if there is an
ITTM-program P such that, for all x ⊆ ω, Px halts if and only if
x /∈ X .
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Time Complexity for ITTMs

(Schindler)
A set X of real numbers (=0-1-strings of length ω, subsets of ω)
is ITTM-decidable with time bound f : R→ On if and only if
there is an ITTM-program P that decides X and runs for ≤ f (x)
many steps on input x .
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Space Complexity for ITTMs

This is not quite as easy. An ITTM has a tape of length ω, and
in all but the most trivial cases uses all of it.

Idea (Löwe): Rather than the total amount of cells used,
measure the “complexity” of the occuring snapshots.

A set X of real number is of space complexity f : R→ On if and
only if there is an ITTM-program P that decides X and, on input
x , only produces elements of Lα[x ] on its scratch tape.
The class of these sets is denoted as SPACEITTM

α .
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The Bold Conjecture

It is trivial that low time complexity implies low space
complexity: In α many steps, you cannot step outside of Lα[x ]
on input x .

Löwe1 asked whether there is a converse: Does low space
complexity imply low time complexity? Are sets that are
decidable with “simple” snapshots also “quickly” decidable?

In particular: If X ⊆ P(ω) is ITTM-decidable with recursive
snapshots, does that imply that X is decidable with some
uniform time bound γ < ωω (which was Schindler’s definition of
P for ITTMs)?

1Space bounds for infinitary computation. (CiE 2006 Proceedings)
Carl, Merlin Complexity and Decision Times for ITTMs
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Nice Question. And now for something completely
different

The concept of recognizability was defined by Hamkins and
Lewis for ITTMs; it has no straightforward analogue in finite
computability.

A real number x such that {x} is ITTM-decidable is called
ITTM-recognizable. (And similarly for ITRMs.)

Theorem: (Hamkins/Lewis, the “lost melody theorem” for
ITTMs) There are real numbers x that are ITTM-recognizable,
but not ITTM-writable.
The same holds for ITRMs. (C.)

Fact (Folklore): If x is ITTM-recognizable, then x ∈ Lλx . If x is
ITRM-recognizable, then x ∈ L

ωCK,x
ω

.
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Some basic facts about ITRM-recognizability

Let us denote by σ the minimal ordinal satisfying Lσ ≺Σ1 L.

Equivalently, σ is the supremum of the Σ
Lω1
1 -definable ordinals.

Then σ is also minimal with the property that Lσ contains all
ITRM-recognizable real numbers (the same is true for ITTMs).

In fact, if α < σ is minimal with the property that Lα |= φ for
some ∈-sentence φ, then the <L-minimal real number c that
codes Lα is ITRM-recognizable.
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ITRMs refute the bold conjecture
These results about ITRM-recognizability seem unrelated to the bold
conjecture. However, they can easily be used to show that it is false:

An ITRM with n registers can be simulated by an ITTM with n
scratch tapes by representing the content n ∈ ω of register Ri on
the i-th scratch tape by n many 1s followed by 0s.

The snapshots occuring thereby are clearly recursive, and in fact
as simple as one could possibly ask for.

But this means that ITTMs with extremely simple snapshots can
decide every ITRM-decidable set, such as WO.

However, WO is Π1
1-universal, and every set that is

ITTM-decidable with a constant countable space-bound γ is Σ1
1

in any code for γ.

Thus, we have a set that is not ITTM-decidable with any
countable time bound (the minimal time bound for deciding WO
is ω1), but ITTM-decidable with extremely simple snapshots.
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Is there anything you can’t do with recursive
snapshots?

We consider a “proof” that ITTMs can solve their own halting
problem. It will, of course, be false, but lead us into the right
direction. Here it goes:
Fact (Hamkins/Lewis): An ITTM-program either halts or runs
into a “strong loop”; that is a configuration c reappears, and in
between the two occurences, all configurations majorized c
component-wise.
So, in order to determine whether an ITTM-program P halts, we
simply run P and keep track of the occuring snapshots.
Whenever a snapshot occurs that is below some of the stored
snapshots in at least one component, these snapshots are
deleted and the new one is added. When a snapshot occurs
that is already stored, we know that P never halts.
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The reason why this does not work is that we cannot know
beforehand how many snapshots will occur, so that we cannot
organize the tape in order to “store” them in a way compatible
with limits.
However, when all snapshots are recursive, we can simply
store a snapshot s by finding a program Pi that (classically)
computes s and marking i on the tape.
Thus, we can solve the halting problem for ITTMs with recursive
snapshots on an ITTM.
A very similar argument shows that, for α < λ, SPACEITTM

α is a
proper subset of the set of ITTM-decidable sets.
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With some further analysis, we obtain:
If α < λ, then SPACEITTM

α (SPACEITTM
λ .

If α < λ, there is β ∈ (α, λ) such that
SPACEITTM

α (SPACEITTM
β .

There are cofinally many α < σ such that
SPACEITTM

β (SPACEITTM
α for all β < α.
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The modified bold conjecture
Determining Decision Times for ITTMs
Semidecidability

Aren’t you playing unfair?

The WO-example suggests the following modification of the
bold conjecture:

If X is ITTM-decidable with some fixed countable time bound α
and also ITTM-decidable with recursive snapshots, then α = ωω

(or at least, α should be “small” in some sense).
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ITRMs refute the modified bold conjecture

Let α < σ be given. Pick β < σ such that β > α+ω (the next limit
of admissible ordinals after α) and β is minimal with the
property that Lβ |= φ for some ∈-sentence φ.
Let c be the <L-minimal real code for Lβ.
By the results on ITRM-recognizability, c is ITRM-recognizable.
Thus, {c} is ITTM-decidable with recursive (in fact, extremely
simple) snapshots.
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c has a countable decision time bound

Let P be an ITTM-program that recognizes c. We will “improve”
P to one that has a countable time bound.
Consider the following routine: On input x , run Px . As soon as
Px halts, output the result.
In parallel, run Welch’s “theory machine” that successively
computes codes for the L-levels Lγ [x ] with γ < λx ; for each
such code, search through it to determine whether Lγ contains
a real number y such that Py ↓= 1; if not, continue, otherwise,
compare this real number to c, output 1 if they agree and 0
otherwise.
If λx ≥ λc , c will be found and identified in < λc many steps. If
λx < λc , this halts in < λc many steps by definition of λx . In any
case, the halting time is bounded by λc .
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Deciding {c} takes long

Assume for a contradiction that {c} is ITTM-decidable with
constant time bound α, say by the program P.
Then the sentence “There is a real number x such that
Px ↓= 1” is Σ1 and true in Vα+ω .
By a variant of Shoenfield absoluteness, due to Jensen and
Karp, if γ is a limit of admissible ordinals, then a Σ1-statement
that holds in Vγ holds in Lγ .
It follows that c ∈ Lα+ω . However, this implies that Lβ ∈ Lα+ω ,
while β > α+ω, a contradiction.
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The last resort

We now know that, for any α < σ, there is a set (in fact, a
singleton set) of real numbers that is ITTM-decidable with
extremely simple snapshots and a uniform time bound, but not
with uniform time bound α.

It is still possible that there are α ≥ σ such that some sets are
ITTM-decidable with uniform time bound > α, but not with
recursive snapshots.

This would be ruled out if uniform decision time bounds for
ITTMs were always < σ.
Which turns out to be true.
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... is gone

Theorem: If X is a set of real numbers that is ITTM-decidable
with minimal constant time bound α < ω1, then α < σ.

Proof: Let P be an ITTM-program that decides X with constant
time bound α < ω1, where α is minimal.

The the statement “There is a countable ordinal α such that, for
all real numbers x , Px halts in < α many steps” is Σ1

2 and holds
in V .

By Shoenfield absoluteness, it holds in L.

As Lσ ≺Σ1
2

L, it holds in Lσ. Thus α ∈ Lσ, so α < σ.
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One answer leads to more questions

What is the supremum of...
countable ITTM-decision times for sets of real numbers?
countable ITTM-decision times for singletons?
countable ITTM-semidecision times for sets of real
numbers?
countable ITTM-semidecision times for singletons?
countable ITTM-co-semidecision times for singletons? (For
sets of reals, this is of course the same as for
ITTM-semidecision times.)
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σ is significant

The supremum of countable ITTM-decision times for sets
of real numbers is σ.
The supremum of ITTM-decision times for singletons is σ.
Every decidable singleton has a countable time bound.
The supremum of countable ITTM-semidecision times for
singletons is σ.
The supremum of countable ITTM-co-semidecision times
for singletons is σ. (In particular, they exist.)

The first two statements are already proved by the above.
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But what about semidecidability?

Let us denote by σs the supremum of countable bounds on
ITTM-semidecision times.
Soon after we started investigating this, we observed that
σs > σ and in fact that, if ωL

1 is countable, we can even have
σs > ωL

1!
The problem here is that “If Px halts, it does so in < α stepsl” is
more complicated than “Px halts in < α many steps”. It is Σ2
rather than Σ1.
Thus let us, in analogy with σ, define τ to be the supremum of

the Σ
L
ωV

1
2 -definable ordinals. Equivalently, τ is the supremum of

the Π
Lω1
1 -definable ordinals.
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Theorem: We have σs = τ , i.e., the supremum of
ITTM-semidecision times for sets of real numbers is equal to

the supremum of the Σ
Lω1
2 -definable ordinals.
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Proof (Sketch):
(i) “There is α < ω1 such that, if Px halts, then it halts in < α

many steps” is Σ1
2; thus, if it holds, it holds in L

Lω1
τ by definition

of τ .
(ii) It remains to show that the semidecision times are cofinal in
τ . Pick ν < τ ; wlog, ν is Π

Lω1
1 -definable, say by the formula φ.

Let A be the set of real numbers x such that:
x codes an ordinal γ.
Lγ |= ∃βφ(β); let ξ be the minimal witness.
Lγ is minimal such that some ∈-formula with parameters
from ξ + 1 becomes true.

A is Π1
1 and thus ITTM-(semi)decidable.
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Suppose for a contradiction that A is ITTM-semidecidable in
time γ < σν .
Pick f and g mutually generic over Lσν for the forcing that
makes γ countable. Let xg , xf be real numbers that code g and
f , respectively.
Then A is Σ1

1 in both xg and xf . Since A is well-ordered by the
<-relation on the coded elements, we have A ⊆ L

ω
CK,xg
1

[xg] and

also A ⊆ L
ω

CK,xf
1

[xf ].

Thus A ⊆ L
ω

CK,xg
1

[xg] ∩ L
ω

CK,xf
1

[xf ] = L
ω

CK,xg
1

.

Since σν is a limit of admissible ordinals and forcing over Lσν
preserves their admissibility, we have ωCK,xg

1 < σν .
On the other hand, A can be seen to be unbounded in Lσν , a
contradiction.
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A bit of τ -ism

τ is equal to the supremum of...
1 the countable ITTM/ITRM/OTM-semidecision times.
2 the Π

Lω1
1 -definable ordinals.

3 the Σ
Lω1
2 -definable ordinals.

4 the minimal elements of Π
Hω1
1 -definable subsets of ω1.

5 the countable lengths of Π1
1-prewellorders on Π1

1-sets.
6 minimal elements of nonempty Π1

2-subsets of WO, i.e., the
ordinal γ1

2 introduced by Kechris.
7 levels of the Borel hierarchy at which Σ1

1-sets appear
(Kechris/Marker/Sami) ... and many more ordinals defined
via ranks.

Moreover, if ωL
1 is countable, then τ > ωL

1. If ω1 is inaccessible
in L (e.g., when 0] exists), then τ = ℵL

τ .
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Thank you for your attention!
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