Maximal order types of well partial orders

David Belanger, National University of Singapore

joint with Andreas Weiermann

13 Apr 2021

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Basics I

Well partial order (wpo)

A partial order in which there is no infinite descending sequence, and no infinite antichain.

Equivalently 'Bed sequences'

One in which there is no sequence a_1, a_2, \ldots such that i < j implies $a_1^{\bullet} \not\leq a_j$.

Equivalently

One for which every linearization is a well-order.

Basics II

Quasi-embedding

A map $f : A \to B$ such that $f(a_1) \leq f(a_2)$ implies $a_1 \leq a_2$.

Theorem

If B as above is wpo then A is wpo.

ヘロア 人間 アメヨアメヨア 三日

Theorem

If C, D are wpo then so are $C \sqcup D$ and $C \times D$.

Higman ordering

The '*' constructor

$$A^* = \{a_1 a_2 \cdots a_n : \forall i.a_i \in A\}$$
 is equipped with the ordering:
 $\sigma \leq \tau$ if $(\exists f : |\sigma| \rightarrow |\tau| \text{ increasing})(\forall i)\sigma(i) \leq \tau(f(i)).$

$$\underbrace{ \underset{n}{\text{Ex. }} I_n 3^*, \quad 111 \leq 222 \qquad 1001 \leq 1000001 \\ 11 \leq 21 \\ 11 \neq 2$$

イロン 不聞と 不同と 不同とう 同

Theorem (Higman's Lemma)

If A is wpo then A^* is wpo.

The constructor T Tree constructor

$T(X \times X \sqcup \{\bullet\})$	}) 'Binny trees'	Strong embedding
$\underbrace{E[l_{2}]}_{X=0} (x, x_{2})$	$\overset{\underline{K}_{\underline{\mathfrak{g}}}}{\approx} \circ(o(\bullet, \bullet), \bullet)$	$\begin{array}{cccc} x \leq x^{i} & \text{if} & x = 0 \\ & \text{or} & x = 0 \left(X_{i}, X_{2} \right) & \text{a-d} & x^{i} = 0 \left(X_{i}^{i}, x_{2}^{i} \right) \\ & \text{a-d} & \text{either} & x \leq X_{i}^{i} & \text{er} & x \leq X_{2}^{i} \\ & \text{or} & \left(X_{i} \leq X_{i}^{i} \right) & \text{a-d} & X_{2} \leq Y_{2}^{i} \right) \end{array}$
$T(A \times X \sqcup \{\bullet\})$	'دو. 'Strive'	Higman cidering
<u>EH</u> >. x = ● x = O(a, x,)	$ \begin{vmatrix} E.g. \ o(a_{r_j} \ o(a_{r_1} \dots \ o(a_{r_p})) \\ \approx a_{r_1} \dots a_{r_p} \end{vmatrix} $	$\begin{array}{cccc} x \leq y' & i \neq & x = 0 \\ & or & x = 0 (a_1 x_1) & a_1 d \\ & x' = 0 (q'_1 x'_1) & a_1 d \\ & (e_1 & ther & x \leq y_1) \end{array}$
$T(X \sqcup \{\bullet\})$	1/5.1	Nor a sa' and x, 5x') usual ordering
<u>E </u>	Log 00 0 n times ~ 55 50	$\begin{array}{c} x \leq x' \text{if} x = \bullet \\ & \circ r (x = \circ x, y' = \circ x', \\ & a \cdot o X'_1 \leq x, ' \end{array}$

Theorem (De Jongh, Parikh)

Let A be a wpo, and let mA be the supremum of the order types of all its linear extensions. Then there is a linear extension with order type mA.

Theorem If $A \rightarrow B$ is a gua

0

f
$$A o B$$
 is a quasiembedding then $mA \le mB$.

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$$

Theorem

 $m(C \sqcup D) = mC \oplus mD$, and $m(C \times D) = mC \otimes mD$.

) < (~

Basics IV

Left sets

If
$$a \in A$$
 then $L(a) = \{b \in A : a \not\leq b\}$. "Left set of a "

Theorem

A is wpo iff L(a) is wpo for every $a \in A$.

Theorem

$$mA = \sup_{a \in A} (mLa + 1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Old theorem, our proof In some sense implicit in thesis of pine schwidt 79.

Higman's Lemma

If A is wpo then A^* is wpo.

$$A^{*} = T(A \times X \sqcup \{\bullet\}) . We need to show that Lx is up.o. for every X.
By induction.
If x=0 then Lx = Ø. \int
If x=0(a,x_{1}) then what is Lx?
 $x \neq x'$ if : $x'=0$
and either $x_{1} \neq x'_{1}$
or $x'=0(a', x'_{0})$
and either $x_{1} \neq x'_{1}$
or $a \neq a'$ and $x \neq x'_{1}$.
 $\int C Lx up = \{\bullet\} \sqcup A \times Lx_{1} \sqcup Lx_{1} \sqcup Lx_{1} \sqcup Lx_{2} \sqcup X \sqcup Lx_{2} \sqcup$$$

Old theorem 2

Theorem

Let \mathbb{B} denote the binary trees with strong embedding. Then \mathbb{B} is a wpo with $m\mathbb{B} \leq \epsilon_0$.

 $\underline{P4} \quad \mathbb{B} = T(X \times X \sqcup \{\bullet\}) .$ Since this is upo by It x= + then Lx= Ø J Highen induction If x= a(x1, x2) then So he is upo. Lx->{•} U Lx, x Lx U Lx x Lx2 Furthermore, by industicul Tower completity mLX; < En i.e. < www $\longrightarrow T((L_{x, U} L_{x_2}) \times X \cup \{e\})$ And by known results, () +his menos m (Lx, ULx) & & about when it $= (L_{X_1 \cup L_{X_2}})^*$

 $m 1^{*} = \omega m 2^{*} = \omega m 3^{*} = \omega^{*}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Weiermann's Conjecture

$$\begin{split} k\beta &= \text{`max: nol coefficient'} \\ \vartheta(\beta) &= (\mu\gamma > \neq) (\forall \alpha < \neq) [k\alpha < \neq \Rightarrow \forall (\alpha) < \gamma] \\ \Omega &= \omega_{1}. \end{split}$$

Theorem

$$mT(X \cup \{\bullet\}) = \vartheta(\Omega) \qquad \forall f(x) \ \forall f(x)$$

Conjecture

 $mT(W(X)) = \vartheta(W(\Omega))$, always. Also for multiple \mathcal{T} .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Thank you