
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Strong Minimal Pair Problem

YANG Yue

Department of Mathematics
National University of Singapore

15 February, 2022

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

Background

Some Highlights

Remarks on Priority Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Acknowledgement

This is a joint work with Mingzhong Cai, Yiqun Liu, Yong
Liu, and Cheng Peng.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Minimal Pairs in R.E. Degrees

▸ We study the structure of recursively enumerable (r.e.) Turing
degrees (R,≤).

▸ Since Post [1944], many interesting results are obtained.

▸ Theorem (Lachlan and Yates) There are r.e. degrees a,b > 0
with infimum 0.

▸ Such a pair is called a minimal pair.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Strong Minimal Pairs

▸ An r.e. minimal pair a,b is called strong if furthermore for any
nonzero r.e. degree x ≤ a, b ∨ x ≥ a.

▸ Note: It is “one-sided”. One also has a “two-sided” version.

▸ In fact, strong minimal pairs are closer to “Slaman triples”
than “minimal pairs”.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Slaman Handwritten Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Slaman Triples
Theorem (Slaman) There are r.e. degrees a,b and c such that
a > 0, c /≤ b, and for any nonzero r.e. degree x ≤ a, b ∨ x ≥ c.

0

a •
c

•

x

•

b

•

x ∨ b

1

▸ Strong Minimal Pair
Problem says that one can
make a = c.

▸ But in the “gap-cogap”
construction of a Slaman
Triple, a is on one side and
b, c is on another. It is not
easy to merge a and c.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

“A Long and Twisted History”

▸ In 2015, BCLS claimed that strong minimal pairs exist.

▸ Main Theorem of this talk: There are NO strong minimal
pairs.

▸ We actually benefit greatly from BCLS’s ideas and techniques,
as we shall see later.

▸ BCLS: “[It] has a long and twisted history. It was discussed
and claimed, in both directions, by a number of researchers
over the past 25 years.”

▸ (Our starting point: BCLS asked if there is a two-sided strong
minimal pair.)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Main Theorem

Theorem
For any r.e. degrees a and b,
either a ≤ b or there exists an
r.e. degree x ≤ a such that x ≠ 0
and x ∨ b /≥ a.

0

a •

•

x

•

b

•

x ∨ b

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Corollary

Corollary
If (a,b, c) form a Slaman triple, then a and c form a minimal pair.

Otherwise, any nonzero x ≤ a, c and b form a strong minimal pair.

(This fits the gap-cogap construction.)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Highlights (I): Nonuniformity

▸ BCLS spent section 3 illustrating how to defeat two
requirements/candidates and their idea works.

▸ However, they overlooked the more complicated interactions
of three requirements, which cause new problems.

▸ Our approach: We need an r.e. set X s.t. X ≤T A and
satisfies the following requirements:
▸ Ge : (assuming A ≰ B) Γe(B ⊕X) ≠ A; and
▸ De : (assuming A ≰ 0) ∆e ≠ X .

▸ In fact, we built one U, a family Vα and families Wα,β so that
one of them will play the role of X .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Nonuniformity (conti.)

▸ Q: Is it necessary?

▸ BCLS can defeat two candidates explicitly. Their method
seemed to fail when 3 candidates are “active”.

▸ (In fact, for fixed n, there seemed a variation of BCLS to
organize the requirements, so that we can defeat n sets.)

▸ That is the reason we exploit 3 families of candidates.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Highlights (II): ω + 1-Branching

▸ Inspired by BCLS’s “c-outcome”, we have certain C -nodes
whose outcomes are arranged with order type ω + 1.

0 <L 1 <L 2 <L ⋅ ⋅ ⋅ <L ω.

▸ The outcome Cˆn indicates that Γ(BU;n) ↑, which is a
Σ3-outcome; whereas Cˆω indicates Γ(BU) is total, which is
a Π3-outcome.

▸ It was used long before. E.g. in Shore’s Nonjump-Inversion
Theorem (1988).

▸ We view Cˆω as the gateway to a Π3-world, which is parallel
to Σ3-world (those below the Cˆn’s).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Highlights (II) (conti.): Π3-Worlds

▸ Below Cˆn, there might be
other C ′ which leads to
another Π3-world.

▸ Once we enter a Π3-world,
we assume Γ(BU) is total
and U is finished. There will
be no more Π3-worlds, i.e.,
there is no nesting of
Π3-worlds.

▸ (Again this is not new.)

C
•

ω

. •

Π3-world
C

′

•

ω

. •

Π3-world

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Π3-worlds (conti.): Static Priority

Usually, we can partition the Π3-world into ω pieces and interlace
them with {Cˆn ∶ n ∈ ω} to get priority.

C
•

P0 P1 P2

ω

. •

Q0

Q1

Q2

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Π3-worlds (conti.): Dynamic Priority

▸ Pairing at one C -node: At
each stage, we may pair
some Cˆni in Σ3-world with
some nodes Qi in Π3-world.
And determine priority
“accordingly”.

▸ (We actually had a partial
order.)

C
•

1

. . .

4

ω

. . . •

•

Q0

•

Q1

1

C_0 C_1

A0 Q0

C_2 C_3 C_4

A1 Q1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Π3-worlds (conti.): More Dynamic Priority

▸ We may have some nodes Pk ≺ Cˆni who may attack U and
nodes Qj may attack V .

▸ Like in the minimal pair, we don’t want U and V to change at
the same time. Dynamic priority: The side who acts first may
injure the other side.

▸ This adds more burdens on showing the existence of true path.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

True Path

▸ We define the true path to be the left-most one which is
visited infinitely often.

▸ (A strange feature: We can’t rule out that both Σ3-world and
Π3-world(s) contain a true path, although our definition favors
the Σ3-one.)

▸ As pointed out in Shore [1988], it takes 0′′′ to figure out the
true path on (ω + 1)-setting.

▸ Due to nonuniformity, it takes 0(4) to figure out which set of
U, Vα and Wα,β wins.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Using 0(4) to Determine the Winner
Lemma
Given r.e. sets A =Wa and B =Wb with A ≰T B, there is a function
f ≤T ∅(4) such that ∅ <T Wf (a,b) ≤T A and A ≰T B ⊕Wf (a,b).

Sketch: We use ∅(4) to decide if A ≤T B. If A ≤T B, define
f (a,b) = 0. If A ≰T B, one can show that ρ is infinite and
ρ ≤T ∅′′′.

Next, we use ρ′ ≤T ∅(4) to decide whether ρ ever enters a
Π3-world.

Case 1. Yes, it enters. Then use the unique C -node as a
parameter, ρ becomes ≤ ∅′′. Ask ρ′′ if there are infinitely many
V -nodes on ρ, if yes, then V wins; otherwise the “last” W wins.

Case 2. No, it doesn’t. Then again ρ becomes ≤ ∅′′. Ask ρ′′ if
there are infinitely many U-nodes, if yes, then U wins; otherwise
do as in Case 1 after the “last” U.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Is It Necessary?

Using BCLS, we can show that

Theorem
Given f ≤T ∅′′′, we can find two nonrecursive incomparable r.e.
sets A =Wa and B =Wb such that for e = f (a,b), either We ≰T A,
or We ≡ ∅ or We ⊕B ≥T A.
▸ We outline a proof for the weaker version which ruled out

f ≤T ∅′′.

▸ By Recursion Theorem, we know the indices a, b we are
constructing. f is recursive in ∅′′, so the relation e = f (a,b)
is both Σ3 and Π3. Let R and S be Π2 predicates such that:

e = f (a,b) ⇐⇒ ∃xR(x , a,b, e) ⇐⇒ ¬∃yS(y , a,b, e) (1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proof (conti.)

We use a priority tree to guess the value of Π2 predicates.

The root is labelled G0 (G for guessing),which tests whether
0 = f (a,b). This is done by finding the correct witness x or y for
R(x , a,b,0) or S(y , a,b,0). G0 has ω many outcomes labeled by
n ∈ ω. The even ones 2x are testing for each x and the odd ones
2y + 1 are testing for each y .

In the end, the true path gives us the correct witness x or y . If it is
even, then we know that 0 = f (a,b) and have the correct index to
work with below G0, i.e., we use BCLS to attack W0. (Since there
is only one set W being involved, BCLS works.) If it is odd, then
we continue with another guessing node G1, which tests whether
1 = f (a,b), and so on. Eventually we can figure out the correct
index along the true path and win.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Priority Methods

We are also interested in the proof method involved.

The intuitive complexity of priority methods is measured by:
▸ Counting (obviously too crude)

▸ Harrington’s Syntactical Analysis of the requirements. Tension
between recursive construction and the approximation of the
Σn-instructions.

▸ (?) The function which provides the indices of the winning
sets.

▸ The induction required (but that is more of reversing the
theorem, not the construction).

▸ Lempp and Lerman’s general framework.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remarks on 0(3)-arguments

▸ Finite and infinite injury methods are well-understood.

▸ Most of 0′′′ injury method is viewed as finite injury on the
true path (i.e., 0′ argument over 0′′-one).

▸ Shore [1988]: “Our construction [non-jump inversion] is a 0(3)
one for a different reason. We use an (ω + 1)-branching tree
of strategies. Thus it takes 0(3) to simply calculate the true
path in this tree. ... it might best be described as a 0′′
argument over 0′.”

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Some Questions

▸ Are there other interesting types of 0′′′ arguments?

▸ What is a typical 0(4)-one?

▸ Is there a general framework which can prevent/minimize the
risk of mistakes?

	Background
	Some Highlights
	Remarks on Priority Methods

