Strong Minimal Pair Problem

YANG Yue

Department of Mathematics
National University of Singapore

15 February, 2022

Outline

Background

Some Highlights

Remarks on Priority Methods

Acknowledgement

This is a joint work with Mingzhong Cai, Yiqun Liu, Yong
Liu, and Cheng Peng.

Minimal Pairs in R.E. Degrees

v

We study the structure of recursively enumerable (r.e.) Turing
degrees (R, <).

v

Since Post [1944], many interesting results are obtained.

v

Theorem (Lachlan and Yates) There are r.e. degrees a,b >0
with infimum 0.

> Such a pair is called a minimal pair.

Strong Minimal Pairs

> An r.e. minimal pair a, b is called strong if furthermore for any
nonzero r.e. degree x<a, bvx>a.

> Note: It is “one-sided”. One also has a “two-sided” version.

> In fact, strong minimal pairs are closer to “Slaman triples”
than “minimal pairs".

Slaman Handwritten Notes

" .
od. 1972

e gk A% C .
(i oA A kX
ok
0<x <A
zc ¢
T

oW

Lo<w

Slaman Triples

Theorem (Slaman) There are r.e. degrees a,b and c such that
a>0, c¢b, and for any nonzero r.e. degree x <a, bvx>c.

. xVb
RN » Strong Minimal Pair
S Problem says that one can
[make a = c.
a) \
E > But in the “gap-cogap”

construction of a Slaman
Triple, a is on one side and
b, c is on another. It is not
easy to merge a and c.

“A Long and Twisted History"

> In 2015, BCLS claimed that strong minimal pairs exist.

» Main Theorem of this talk: There are NO strong minimal
pairs.

> We actually benefit greatly from BCLS's ideas and techniques,
as we shall see later.

» BCLS: "[It] has a long and twisted history. It was discussed
and claimed, in both directions, by a number of researchers
over the past 25 years.”

» (Our starting point: BCLS asked if there is a two-sided strong
minimal pair.)

Main Theorem

. d xVb
Theorem
For any r.e. degrees a and b,
either a < b or there exists an
r.e. degree x < a such that x + 0
and xvb }a.

Corollary

Corollary
If (a,b,c) form a Slaman triple, then a and ¢ form a minimal pair.

Otherwise, any nonzero x < a,c and b form a strong minimal pair.

(This fits the gap-cogap construction.)

Highlights (1): Nonuniformity

» BCLS spent section 3 illustrating how to defeat two
requirements/candidates and their idea works.

» However, they overlooked the more complicated interactions
of three requirements, which cause new problems.

» Our approach: We need an r.e. set X s.t. X<+ A and
satisfies the following requirements:
» G.: (assuming A¢ B) F.(B® X) # A; and
» D.: (assuming A£0) A, # X.

» In fact, we built one U, a family V,, and families W, 5 so that
one of them will play the role of X.

Nonuniformity (conti.)

v

Q: Is it necessary?

v

BCLS can defeat two candidates explicitly. Their method
seemed to fail when 3 candidates are “active”.

v

(In fact, for fixed n, there seemed a variation of BCLS to
organize the requirements, so that we can defeat n sets.)

v

That is the reason we exploit 3 families of candidates.

Highlights (I1): w + 1-Branching
> Inspired by BCLS's “c-outcome”, we have certain C-nodes

whose outcomes are arranged with order type w + 1.

0<L1<L2<L---<Lw.

» The outcome C"n indicates that ['(BU; n) 1, which is a
Y 3-outcome; whereas C"w indicates ['(BU) is total, which is
a 3-outcome.

> It was used long before. E.g. in Shore’s Nonjump-Inversion
Theorem (1988).

» We view C"w as the gateway to a [3-world, which is parallel
to X3-world (those below the C"n's).

Highlights (I1) (conti.): M3-Worlds

» Below C"n, there might be
other C’ which leads to
another Mg-world. .~ /[...

» Once we enter a [N3-world,
we assume [(BU) is total
and U is finished. There will
be no more [M3-worlds, i.e.,
there is no nesting of
[M13-worlds.

/ \
/ \
/ RN
/ [I3-world \

/ N
/// \\\
/0 Tg-world

» (Again this is not new.)

M3-worlds (conti.): Static Priority

Usually, we can partition the lN3-world into w pieces and interlace
them with {C"n: new} to get priority.

@

Q>

[3-worlds (conti.): Dynamic Priority

» Pairing at one C-node: At .

each stage, we may pair %\
some C"n; in X3-world with N\

some nodes Q; in 3-world.
And determine priority
“accordingly”.

» (We actually had a partial
order.)

[3-worlds (conti.): More Dynamic Priority

» We may have some nodes P, < C"n; who may attack U and
nodes Q; may attack V.

> Like in the minimal pair, we don't want U and V to change at
the same time. Dynamic priority: The side who acts first may
injure the other side.

» This adds more burdens on showing the existence of true path.

True Path

» We define the true path to be the left-most one which is
visited infinitely often.

» (A strange feature: We can't rule out that both ¥3-world and
M3-world(s) contain a true path, although our definition favors
the X3-one.)

» As pointed out in Shore [1988], it takes 0"’ to figure out the
true path on (w + 1)-setting.

» Due to nonuniformity, it takes 0*) to figure out which set of
U, Vo and W, g wins.

Using 0(4) to Determine the Winner

Lemma
Given r.e. sets A= W, and B = W}, with A <1 B, there is a function
f<t a®) such that @ <T Wf(a,b) <rAand A{r Be® Wf(a,b)-

Sketch: We use @ to decide if A<+ B. If A<t B, define
f(a,b) =0. If A£7 B, one can show that p is infinite and
p<r 2"

Next, we use p’ <7 @(*) to decide whether p ever enters a
M3-world.

Case 1. Yes, it enters. Then use the unique C-node as a
parameter, p becomes < @”. Ask p”’ if there are infinitely many
V-nodes on p, if yes, then V wins; otherwise the “last” W wins.

Case 2. No, it doesn't. Then again p becomes < @, Ask p" if
there are infinitely many U-nodes, if yes, then U wins; otherwise
do as in Case 1 after the “last” U.

Is It Necessary?

Using BCLS, we can show that

Theorem

Given f <7 @', we can find two nonrecursive incomparable r.e.
sets A=W, and B = W), such that for e = f(a,b), either W, £1 A,
or We=@ or Wed B>1 A.

» We outline a proof for the weaker version which ruled out

f<ro”

> By Recursion Theorem, we know the indices a, b we are
constructing. f is recursive in @”, so the relation e = f(a, b)
is both X3 and 3. Let R and S be I, predicates such that:

e=f(a,b) < 3IxR(x,a,b,e) < -3yS(y,a,b,e) (1)

Proof (conti.)

We use a priority tree to guess the value of I, predicates.

The root is labelled Gy (G for guessing),which tests whether
0=f(a,b). This is done by finding the correct witness x or y for
R(x,a,b,0) or S(y,a,b,0). Gy has w many outcomes labeled by
n€w. The even ones 2x are testing for each x and the odd ones
2y + 1 are testing for each y.

In the end, the true path gives us the correct witness x or y. If it is
even, then we know that 0 = f(a, b) and have the correct index to
work with below Gy, i.e., we use BCLS to attack Wj. (Since there
is only one set W being involved, BCLS works.) If it is odd, then
we continue with another guessing node G, which tests whether
1=1f(a,b), and so on. Eventually we can figure out the correct
index along the true path and win.

Priority Methods

We are also interested in the proof method involved.

The intuitive complexity of priority methods is measured by:

>

Counting (obviously too crude)

Harrington’s Syntactical Analysis of the requirements. Tension
between recursive construction and the approximation of the
> ,-instructions.

(?) The function which provides the indices of the winning
sets.

The induction required (but that is more of reversing the
theorem, not the construction).

Lempp and Lerman’s general framework.

Remarks on 03)-arguments

> Finite and infinite injury methods are well-understood.

» Most of 0" injury method is viewed as finite injury on the
true path (i.e., 0’ argument over 0"-one).

» Shore [1988]: “Our construction [non-jump inversion] is a 0¢)
one for a different reason. We use an (w + 1)-branching tree
of strategies. Thus it takes 0 to simply calculate the true
path in this tree. ... it might best be described as a 0"
argument over 0"

Some Questions

> Are there other interesting types of 0" arguments?
» What is a typical 0()-one?

> Is there a general framework which can prevent/minimize the
risk of mistakes?

	Background
	Some Highlights
	Remarks on Priority Methods

