Arithmetic under negated induction

Tin Lok Wong

National University of Singapore

Joint work with Marta Fiori-Carones (Novosibirsk), Leszek Aleksander Kołodziejczyk (Warsaw), Keita Yokoyama (Sendai)

15 December, 2021

[T]he method is extremely valuable when we want to beat a particular theory into the ground. When it can be carried out, the method of elimination of quantifiers gives a tremendous amount of information about a theory.

Chang-Keisler 1973

This talk

Main theorem

The theory $WKL_0^* + \neg I\Sigma_1^Z$ in the language for second-order arithmetic eliminates set quantifiers.

Plan

- 1. induction and collection
- 2. the Weak König Lemma
- 3. quantifier elimination
- 4. consequences

[T]he method is extremely valuable when we want to beat a particular theory into the ground. When it can be carried out, the method of elimination of quantifiers gives a tremendous amount of information about a theory.

Chang-Keisler 1973

First-order arithmetic

- ▶ $\mathcal{L}_1 = \{0, 1, +, \times, <, =\}.$
- A quantifier is *bounded* if it is of the form $\forall v < t$ or $\exists v < t$.
- An \mathcal{L}_1 formula is Δ_0 if all its quantifiers are bounded.
- $\blacktriangleright \ \underline{\Sigma}_n = \{ \exists \bar{v}_1 \ \forall \bar{v}_2 \ \cdots \ \mathbf{Q} \bar{v}_n \ \theta : \theta \in \Delta_0 \} \text{ and } \underline{\Pi}_n = \{ \forall \bar{v}_1 \ \exists \bar{v}_2 \ \cdots \ \mathbf{Q}' \bar{v}_n \ \theta : \theta \in \Delta_0 \}.$
- ► $I\Sigma_n$ consists of the axioms of PA⁻ and for every $\theta \in \Sigma_n$,

$$heta(0) \wedge orall x \; ig(heta(x) o heta(x+1)ig) o orall x \; heta(x).$$

- $\blacktriangleright \mathsf{PA} = \bigcup_{k \in \mathbb{N}} \mathsf{I}\Sigma_k.$
- exp asserts the totality of $x \mapsto 2^x$ over $I\Sigma_0$.
- ▶ $\mathsf{B}\Sigma_n$ consists of the axioms of $\mathsf{I}\Sigma_0$ and for every $\theta \in \Sigma_n$,

$$\forall a \ (\forall x < a \ \exists y \ \theta(x, y) \rightarrow \exists b \ \forall x < a \ \exists y < b \ \theta(x, y)).$$

Theorem (Paris-Kirby 1978)

$$\begin{split} & \mathsf{I}\Sigma_0 + \mathsf{exp} - \mid \mathsf{B}\Sigma_1 + \mathsf{exp} - \mid \mathsf{I}\Sigma_1 - \mid \mathsf{B}\Sigma_2 - \mid \mathsf{I}\Sigma_2 - \mid \mathsf{B}\Sigma_3 - \mid \mathsf{I}\Sigma_3 - \mid \mathsf{B}\Sigma_4 - \mid \mathsf{I}\Sigma_4 - \mid \cdots \text{ and} \\ & \mathsf{none of the converses holds.} \end{split}$$

Model theory of fragments of PA

Insight (Kaye, around 1991)

The model-theoretic properties of a model of arithmetic do not only depend on the induction axioms it satisfies, but also on the induction axioms it does *not* satisfy.

Theorem (Kossak 1990, Kaye 1991)

Every countable model of $B\Sigma_{n+1} + exp + \neg I\Sigma_{n+1}$ has 2^{\aleph_0} -many automorphisms and proper elementary cofinal substructures.

Theorem (Paris-Kirby 1978)

There is a countable model of $I\Sigma_n + exp + \neg B\Sigma_{n+1}$ with no non-trivial automorphism and no proper elementary substructure.

Theorem (Paris-Kirby 1978)

$$\begin{split} & |\Sigma_0 + exp - \mid B\Sigma_1 + exp - \mid I\Sigma_1 - \mid B\Sigma_2 - \mid I\Sigma_2 - \mid B\Sigma_3 - \mid I\Sigma_3 - \mid B\Sigma_4 - \mid I\Sigma_4 - \mid \cdots \text{ and} \\ & \text{none of the converses holds.} \end{split}$$

ω -extensions

Definition

An ω -extension of an \mathcal{L}_2 structure is an extension with no new number.

Theorem (Towsner 2015 for $n \ge 1$)

Given any countable $(M, \mathscr{X}) \models I\Sigma_n^0 + \exp + \neg B\Sigma_{n+1}^0$ and any $S \subseteq M$, one can ω -extend (M, \mathscr{X}) to $(M, \mathscr{Y}) \models I\Sigma_n^0 + \exp + \neg B\Sigma_{n+1}^0$ in which S is definable.

Proposition

For every countable $(M, \mathscr{X}) \models \mathsf{B}\Sigma_{n+1}^0 + \exp + \neg \mathsf{I}\Sigma_{n+1}^0$, there is $S \subseteq M$ such that one can *never* ω -extend (M, \mathscr{X}) to $(M, \mathscr{Y}) \models \mathsf{B}\Sigma_{n+1}^0 + \exp + \neg \mathsf{I}\Sigma_{n+1}^0$ in which S is definable.

Theorem (Paris–Kirby 1978) $I\Sigma_0^0 + exp - B\Sigma_1^0 + exp - I\Sigma_1^0 - B\Sigma_2^0 - I\Sigma_2^0 - B\Sigma_3^0 - I\Sigma_3^0 - B\Sigma_4^0 - I\Sigma_4^0 - \cdots$ and none of the converses holds.

Preservation theorem

Definition

An ω -extension of an \mathcal{L}_2 structure is an extension with no new number.

Lemma (elementary)

recursively saturated

Let T, T^* be \mathcal{L}_2 theories, where T is Π_1^1 -axiomatized. If every countable model of T with finitely many sets has an ω -extension to a model of T^* , then $T \vdash \Pi_1^1$ -Th (T^*) .

Definition

A type $p(\bar{v}, \bar{V})$ over an \mathcal{L}_2 structure (M, \mathscr{X}) is *recursive* if it involves only finitely many free variables and finitely many parameters $\bar{c}, \bar{C} \in (M, \mathscr{X})$, and

$$ig\{ heta(ar v,ar V,ar z,ar Z): heta(ar v,ar V,ar c,ar C)\in p(ar v,ar V)ig\}$$

is recursive. The structure is *recursively saturated* if it realizes all recursive types.

Theorem (mostly Barwise 1975, Ressayre 1977, independently)

Let T, T^* be \mathcal{L}_2 theories, where T is Π_1^1 -axiomatized and T^* is recursively axiomatized. If $T \models \Pi_1^1$ -Th (T^*) , then every countable *recursively saturated* model of T with finitely many sets has an ω -extension to a model of T^* .

Ramsey's Theorem for pairs for two colours

Definition

 RT_2^2 denotes an \mathcal{L}_2 sentence which expresses "whenever each unordered pair of numbers is given exactly one of two colours, there is an unbounded monochromatic set" over $\mathsf{I}\Sigma_0 + \mathsf{exp}.$

Open question

Does $B\Sigma_2^0 \models \Pi_1^1$ -Th(RCA₀ + RT₂²)?

Model-theoretic version of the question

$$\left(\mathsf{RCA}_0 = \mathsf{I}\Sigma_1^0 + \Delta_1^0\text{-comprehension}.\right)$$

Does every countable recursively saturated $(M, \mathscr{X}) \models B\Sigma_2^0$ with finitely many sets have an ω -extension to a model of RCA₀ + RT₂²?

Partial answer (Cholak–Jockusch–Slaman 2001) Yes, if $(M, \mathscr{X}) \models I\Sigma_2^0$.

Remaining question

Does every countable recursively saturated $(M, \mathscr{X}) \models \mathsf{B}\Sigma_2^0 + \neg \mathsf{I}\Sigma_2^0$ with finitely many sets have an ω -extension to a model of $\mathsf{RCA}_0 + \mathsf{RT}_2^2$?

The Weak König Lemma

- BΣ₁ + exp and WKL^{*}₀ are respectively the first- and the second-order theories of exponentially closed initial segments in models of arithmetic.
- ▶ WKL₀^{*} consists of $I\Sigma_0^0 + exp$, the Δ_1^0 comprehension scheme, and an axiom stating "every unbounded 0–1 tree has an unbounded path".

```
\begin{array}{l} \mbox{Proposition (Simpson-Smith 1986)} \\ \mbox{WKL}_0^* \models B\Sigma_1^0 + exp. \end{array}
```

```
Any set of numbers that is both \Sigma_1^{0-} and \Pi_1^{0-} definable is in the set universe.
```

Theorem (Simpson-Smith 1986)

Proof

Every countable model of $B\Sigma_1^0 + exp$ has an ω -extension to a model of WKL_0^* .

(not necessarily recursively saturated

Force in the style of Jockusch–Soare (1972), where conditions are unbounded trees.

Corollary (Simpson–Smith 1986) $B\Sigma_1^0 + exp$ axiomatizes Π_1^1 -Th(WKL₀^{*}).

The model-theoretic core

Theorem

 $\begin{cases}
\forall b \exists w < a \forall v < b \dots \\
\leftrightarrow \exists w < a \forall v \dots
\end{cases}$

Every countable $(M, \mathscr{X}) \models \mathsf{B}\Sigma_1^0 + \exp + \neg \mathsf{I}\Sigma_1^0$ has a unique countable ω -extension $(M, \mathscr{Y}) \models \mathsf{WKL}_0^0 + \neg \mathsf{I}\Sigma_1^0$ up to isomorphism.

Proof sketch

 $\stackrel{\uparrow}{=} (\forall b \exists P \forall v < b \ldots \leftrightarrow \exists P \forall v \ldots)$

Given two such extensions $(M, \mathscr{Y}), (M, \mathscr{Z})$, build an isomorphism between them by a back-and-forth construction.

At every stage, we have $ar{r},ar{R}\in (M,\mathscr{Y})$ and $ar{s},ar{S}\in (M,\mathscr{Z})$ such that

$$\exists \beta \in M \setminus \mathbb{N} \quad \exists b \in M \setminus J \quad \forall \ \Sigma_0^0 \text{ formula } \theta < \beta \quad \forall \bar{x} < b \quad \forall \bar{j} \in J \\ (M, \mathscr{Y}) \models \theta(\bar{x}, f(\bar{j}), \bar{r}, \bar{R}, A) \quad \Leftrightarrow \quad (M, \mathscr{Z}) \models \theta(\bar{x}, f(\bar{j}), \bar{s}, \bar{S}, A)$$

where

- J is a proper initial segment of M that is closed under x → 2^x and is Σ₁⁰-definable over the parameter A ∈ X in (M, X); and
- f: J → M whose graph is Σ₀⁰-definable over A in (M, X) and whose range is cofinal in M.

Quantifier elimination

Theorem

Every countable $(M, \mathscr{X}) \models \mathsf{B}\Sigma_1^0 + \exp + \neg \mathsf{I}\Sigma_1^0$ has a unique countable ω -extension $(M, \mathscr{Y}) \models \mathsf{WKL}_0^* + \neg \mathsf{I}\Sigma_1^0$ up to isomorphism.

Lemma (folklore?)

A theory T has quantifier elimination if the following is true: whenever A is a common substructure of $M, N \models T$, if $\bar{a} \in A$ such that $M \models \exists y \ \varphi(\bar{a}, y)$, where φ is quantifier-free, then $N \models \exists y \ \varphi(\bar{a}, y)$.

Main theorem

Every \mathcal{L}_2 formula is equivalent to a Δ_0^1 formula over WKL₀^{*} + $\neg I\Sigma_1^Z$.

Proof

Run a proof of the lemma above on countable recursively saturated models, so that all extensions can be assumed to be ω -extensions.

Over WKL₀^{*} + $\neg I\Sigma_1^Z$, every \mathcal{L}_2 formula $\theta(\bar{x}, \bar{Y})$ is equivalent to $\mathbb{JS}_{\bar{Y},Z} \Vdash \theta(\bar{x}, \bar{Y})$.

 $(M, \mathscr{Y}) \stackrel{\mathbb{I}}{\cong} (M, \mathscr{X})$ er (M, \mathscr{X}) T T T $\mathbb{I} \stackrel{\mathbb{I}}{\boxtimes} N$ $\overset{\mathbb{I}}{\cong} N$

A

WKL₀^{*} + \neg I Σ_1^0

The Weak König Lemma as a model completion

Main theorem

Every \mathcal{L}_2 formula is equivalent to a Δ_0^1 formula over WKL₀^{*} + $\neg I\Sigma_1^Z$.

Corollary

 $\mathsf{WKL}_0^* + \neg \mathsf{I}\Sigma_1^{\mathsf{Z}}$ is the unique \mathcal{L}_2 theory \mathcal{T} such that

(a) Π_1^1 -Th(T) = Π_1^1 -Th($B\Sigma_1^0 + exp + \neg I\Sigma_1^Z$); and

(b) every Π_1^1 formula is equivalent to a Σ_1^1 formula over T.

$\begin{array}{c} \Delta_0^1 \mapsto \mathsf{quantifier}\text{-}\mathsf{free} \\ \Pi_1^1 \mapsto \forall_1 \\ \Pi_2^1 \mapsto \forall_2 \end{array} \end{array}$

Theorem (Simpson 1999, after Kleene)

Provably in ACA₀, some Π_1^1 formula is not equivalent to any Σ_1^1 formula. In particular, this fact is true in $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.

Corollary

Models of WKL₀^{*} + $\neg I\Sigma_1^Z$ are precisely the Σ_1^1 -closed models of B Σ_1^0 + exp + $\neg I\Sigma_1^Z$, i.e., if a Σ_1^1 formula, possibly with parameters, can be satisfied in a Δ_0^1 -elementary extension satisfying B Σ_1^0 + exp + $\neg I\Sigma_1^Z$, then it is already true in the ground model.

 Π_1^1 conservativity over $\mathsf{B}\Sigma_1^0 + \mathsf{exp} + \neg \mathsf{I}\Sigma_1^0$ σ is Π_1^1 -conservative over $B\Sigma_1^0 + exp + \neg I\Sigma_1^0$. Corollary The following are equivalent for all Π_2^1 sentences σ . (i) Π_{1}^{1} -Th $(B\Sigma_{1}^{0} + \exp + \neg I\Sigma_{1}^{0} + \sigma) = \Pi_{1}^{1}$ -Th $(B\Sigma_{1}^{0} + \exp + \neg I\Sigma_{1}^{0})$. (ii) WKL₀^{*} + $\neg I\Sigma_1^0 \vdash \sigma$. (iii) Every countable model of $B\Sigma_1^0 + exp + \neg I\Sigma_1^0$ has an ω -extension satisfying $B\Sigma_1^0 + exp + \neg I\Sigma_1^0 + \sigma$. Theorem WKL₀^{*} + \neg I $\Sigma_1^0 \not\vdash$ RT₂². Theorem $\{\sigma \in \Pi_2^1$ -Snt : Π_1^1 -Th $(B\Sigma_1^0 + exp + \sigma) = \Pi_1^1$ -Th $(B\Sigma_1^0 + exp)\}$ is Π_2 -complete. Proposition

WKL^{*}₀ is the strongest Π_1^1 -conservative Π_2^1 sentence over $B\Sigma_1^0 + exp + \neg I\Sigma_1^0$

Turing-equivalent to
$$\Pi_2$$
-Th(\mathbb{N})

There is a Π_2^1 sentence σ such that Π_1^1 -Th(B Σ_1^0 + exp + σ) = Π_1^1 -Th(B Σ_1^0 + exp) but some countable model of $B\Sigma_1^0 + \exp$ does not ω -extend to any model of $B\Sigma_1^0 + \exp + \sigma$. **Pigeonhole Principles**

In a model $M \models I\Sigma_n + \exp + \neg B\Sigma_{n+1}$,

(Dimitracopoulos–Paris 1986) for some $b \in M$, there is a

 Σ_{n+1} -definable injection $[0, b+1) \rightarrow [0, b);$

(Groszek–Slaman 1994) maybe there is a Σ_{n+1} -definable bijection $M \to \mathbb{N}$;

(Belanger-Chong-Wang-W-Yang 2021) maybe, for every non-zero $b \in M$, there is no Σ_{n+1} -definable injection $[0, 2b) \rightarrow [0, b)$.

In a model $M \models \mathsf{B}\Sigma_{n+1} + \exp + \neg \mathsf{I}\Sigma_{n+1}$,

(Dimitracopoulos–Paris 1986) for some $b \in M$, there is a $(\Sigma_{n+1} \vee \Pi_{n+1})$ -definable injection $[0, b+1) \rightarrow [0, b)$;

(Belanger–Chong–Li–W–Yang, in progress) maybe, for every $b \ge 2$ in M, there is no Σ_{n+3} -definable injection $[0, b^2) \rightarrow [0, b)$;

(Kołodziejczyk–Kowalik–Yokoyama 2021+) for every sufficiently large $b \in M$, there is *no* definable injection $f : [0, \operatorname{supexp}(b)) \to [0, b)$.

build $g \in Aut(M)$

 $\therefore f$ is not injective

The model theory of $\mathsf{B}\Sigma_1^0 + \mathsf{exp} + \neg\mathsf{I}\Sigma_1^0$

Main theorem

Every \mathcal{L}_2 formula is equivalent to a Δ_0^1 formula over WKL₀^{*} + $\neg I\Sigma_1^Z$.

Model-theoretic core

Every countable $(M, \mathscr{X}) \models B\Sigma_1^0 + \exp + \neg I\Sigma_1^0$ has a unique countable ω -extension $(M, \mathscr{Y}) \models \mathsf{WKL}_0^* + \neg I\Sigma_1^0$ up to isomorphism.

WKL₀^{*} is the strongest Π_1^1 -conservative Π_2^1 sentence.

- These results relativize to $B\Sigma_{n+1}^0 + \exp \neg I\Sigma_{n+1}^0$.
- The model theory of $I\Sigma_n^0 + exp + \neg B\Sigma_{n+1}^0$ is radically different.
- ► Such model-theoretic properties cannot be achieved without including a false-in-N sentence in the theory.

Insight (Kaye, around 1991)

The model-theoretic properties of a model of arithmetic do not only depend on the induction axioms it satisfies, but also on the induction axioms it does *not* satisfy.

 $I\Sigma_2^0$

 $B\Sigma_2^0$

 $\overline{1}$

 $B\Sigma_1^0 + exp$

 $I\Sigma_0^0 + \exp$