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[T]he method is extremely
valuable when we want to beat a
particular theory into the
ground. When it can be carried
out, the method of elimination
of quantifiers gives a tremendous
amount of information about a
theory.

Chang–Keisler 1973



This talk

Main theorem
The theory WKL∗0 + ¬IΣZ

1 in the language
for second-order arithmetic eliminates set
quantifiers.

Plan

1. induction and collection

2. the Weak König Lemma

3. quantifier elimination

4. consequences

[T]he method is extremelyextremely
valuablevaluable when we want to beat a
particular theory into the
ground. When it can be carried
out, the method of elimination
of quantifiers gives a tremendousa tremendous
amount of informationamount of information about a
theory.

Chang–Keisler 1973



First-order arithmetic
I L1 = {0, 1,+,×, <,=}.
I A quantifier is bounded if it is of the form ∀v < t or ∃v < t.

I An L1 formula is ∆0 if all its quantifiers are bounded.

I

n ∈ N

Σn = {∃v̄1 ∀v̄2 · · · Qv̄n θ : θ ∈ ∆0} and Πn = {∀v̄1 ∃v̄2 · · · Q′v̄n θ : θ ∈ ∆0}.
I IΣn consists of the axioms of PA− and for every θ ∈ Σn,

θ(0) ∧ ∀x
(
θ(x)→ θ(x + 1)

)
→ ∀x θ(x).

I PA =
⋃

k∈N IΣk .

I exp asserts the totality of x 7→ 2x over IΣ0.

I BΣn consists of the axioms of IΣ0 and for every θ ∈ Σn,

∀a
(
∀x < a ∃y θ(x , y)→ ∃b ∀x < a ∃y < b θ(x , y)

)
.

Theorem (Paris–Kirby 1978)

IΣ0 + exp −| BΣ1 + exp −| IΣ1 −| BΣ2 −| IΣ2 −| BΣ3 −| IΣ3 −| BΣ4 −| IΣ4 −| · · · and
none of the converses holds.



Model theory of fragments of PA

Insight (Kaye, around 1991)

The model-theoretic properties of a model of arithmetic do not only depend on the
induction axioms it satisfies, but also on the induction axioms it does not satisfy.

n ∈ N

Theorem (Kossak 1990, Kaye 1991)

Every countable model of BΣn+1 + exp + ¬IΣn+1 has 2ℵ0-many automorphisms and
proper elementary cofinal substructures.

Theorem (Paris–Kirby 1978)

There is a countable model of IΣn + exp + ¬BΣn+1 with no non-trivial automorphism
and no proper elementary substructure.

Theorem (Paris–Kirby 1978)

IΣ0 + exp −| BΣ1 + exp −| IΣ1 −| BΣ2 −| IΣ2 −| BΣ3 −| IΣ3 −| BΣ4 −| IΣ4 −| · · · and
none of the converses holds.



ω-extensions
Definition

n ∈ N

An ω-extension of an L2 structure is an extension with no new number.

Theorem (Towsner 2015 for n > 1)

Given any countable (M,X ) |= IΣ0
n + exp + ¬BΣ0

n+1 and any S ⊆ M, one can
ω-extend (M,X ) to (M,Y ) |= IΣ0

n + exp + ¬BΣ0
n+1 in which S is definable.

Proposition

For every countable (M,X ) |= BΣ0
n+1 + exp + ¬IΣ0

n+1, there is S ⊆ M such that one
can never ω-extend (M,X ) to (M,Y ) |= BΣ0

n+1 + exp + ¬IΣ0
n+1 in which S is

definable.

Theorem (Paris–Kirby 1978)

IΣ0
0 + exp −| BΣ0

1 + exp −| IΣ0
1 −| BΣ0

2 −| IΣ0
2 −| BΣ0

3 −| IΣ0
3 −| BΣ0

4 −| IΣ0
4 −| · · · and

none of the converses holds.



Preservation theorem
Definition
An ω-extension of an L2 structure is an extension with no new number.

Lemma (elementary)

Let T ,T ∗ be L2 theories, where T is Π1
1-axiomatized. If every countable model of T

with finitely many sets has an ω-extension to a model of T ∗, then T |− Π1
1-Th(T ∗).

Definition
A type p(v̄ , V̄ ) over an L2 structure (M,X ) is recursive if it involves only finitely
many free variables and finitely many parameters c̄ , C̄ ∈ (M,X ), and{

θ(v̄ , V̄ , z̄ , Z̄ ) : θ(v̄ , V̄ , c̄, C̄ ) ∈ p(v̄ , V̄ )
}

is recursive.

We identify L2 formulas with their Gödel numbers.

The structure is recursively saturated if it realizes all recursive types.

Theorem (mostly Barwise 1975, Ressayre 1977, independently)

Let T ,T ∗ be L2 theories, where T is Π1
1-axiomatized and T ∗ is recursively

axiomatized. If T |− Π1
1-Th(T ∗), then every countable recursively saturated model

of T with finitely many sets has an ω-extension to a model of T ∗.

recursively saturated



Ramsey’s Theorem for pairs for two colours
Definition
RT2

2 denotes an L2 sentence which expresses “whenever each unordered pair of
numbers is given exactly one of two colours, there is an unbounded monochromatic
set” over IΣ0 + exp.

Open question

Does BΣ0
2 |− Π1

1-Th(RCA0 + RT2
2)? RCA0 = IΣ0

1 + ∆0
1-comprehension.

Model-theoretic version of the question

Does every countable recursively saturated (M,X ) |= BΣ0
2 with finitely many sets

have an ω-extension to a model of RCA0 + RT2
2?

Partial answer (Cholak–Jockusch–Slaman 2001)

Yes, if (M,X ) |= IΣ0
2.

Remaining question

Does every countable recursively saturated (M,X ) |= BΣ0
2 + ¬IΣ0

2¬IΣ0
2 with finitely many

sets have an ω-extension to a model of RCA0 + RT2
2?



The Weak König Lemma

I BΣ1 + exp and WKL∗0 are respectively the first- and the second-order theories of
exponentially closed initial segments in models of arithmetic.

I WKL∗0 consists of IΣ0
0 + exp, the ∆0

1 comprehension scheme, and an axiom stating
“every unbounded 0–1 tree has an unbounded path”.

Any set of numbers that is
both Σ0

1- and Π0
1-definable

is in the set universe.

Proposition (Simpson–Smith 1986)

WKL∗0 |− BΣ0
1 + exp.

Theorem (Simpson–Smith 1986)

Every countable model of BΣ0
1 + exp has an ω-extension to a model of WKL∗0.

not necessarily recursively saturatedProof
Force in the style of Jockusch–Soare (1972), where conditions are unbounded trees.

Corollary (Simpson–Smith 1986)

BΣ0
1 + exp axiomatizes Π1

1-Th(WKL∗0).



The model-theoretic core
Theorem
Every countable (M,X ) |= BΣ0

1 + exp + ¬IΣ0
1 has a unique countable

ω-extension (M,Y ) |= WKL∗0 + ¬IΣ0
1 up to isomorphism.

∀b ∃w < a ∀v < b . . .
↔→ ∃w < a ∀v . . .

∀b ∃P ∀v < b . . . ↔→ ∃P ∀v . . .Proof sketch
Given two such extensions (M,Y ), (M,Z ), build an isomorphism
between them by a back-and-forth construction.

At every stage, we have r̄ , R̄ ∈ (M,Y ) and s̄, S̄ ∈ (M,Z ) such that

∃β ∈ M \ N ∃b ∈ M \ J ∀ Σ0
0 formula θ < β ∀x̄ < b ∀j̄ ∈ J

(M,Y ) |= θ(x̄ , f (j̄), r̄ , R̄,A) ⇔ (M,Z ) |= θ(x̄ , f (j̄), s̄, S̄ ,A),

where
I J is a proper initial segment of M that is closed under x 7→ 2x and

is Σ0
1-definable over the parameter A ∈X in (M,X ); and

I f : J → M whose graph is Σ0
0-definable over A in (M,X ) and

whose range is cofinal in M.

N
β

j

J

x

b

f (0)

f (1)

...
M



Quantifier elimination
Theorem
Every countable (M,X ) |= BΣ0

1 + exp + ¬IΣ0
1 has a unique countable

ω-extension (M,Y ) |= WKL∗0 + ¬IΣ0
1 up to isomorphism.

Lemma (folklore?)

A theory T has quantifier elimination if the following is true: whenever
A is a common substructure of M,N |= T , if ā ∈ A such that
M |= ∃y ϕ(ā, y), where ϕ is quantifier-free, then N |= ∃y ϕ(ā, y).

Main theorem
Every L2 formula is equivalent to a ∆1

0 formula over WKL∗0 + ¬IΣZ
1 .

Proof
Run a proof of the lemma above on countable recursively saturated
models, so that all extensions can be assumed to be ω-extensions.

(M,X )

(M,Y ) (M,Z )

WKL∗0 + ¬IΣ0
1

∼=
(M,X )

|= |=

A

M N≡
∃

A

|=

T

|=

T

Over WKL∗0 + ¬IΣZ
1 , every L2 formula θ(x̄ , Ȳ ) is equivalent to JSȲ ,Z  θ(¯̌x , ¯̌Y ).



The Weak König Lemma as a model completion

Main theorem
Every L2 formula is equivalent to a ∆1

0 formula over WKL∗0 + ¬IΣZ
1¬IΣZ
1 .

∆1
0 7→ quantifier-free

Π1
1 7→ ∀1

Π1
2 7→ ∀2

Corollary

WKL∗0 + ¬IΣZ
1¬IΣZ
1 is the unique L2 theory T such that

(a) Π1
1-Th(T ) = Π1

1-Th(BΣ0
1 + exp + ¬IΣZ

1 ); and

(b) every Π1
1 formula is equivalent to a Σ1

1 formula over T .

Theorem (Simpson 1999, after Kleene)

Provably in ACA0, some Π1
1 formula is not equivalent to any Σ1

1 formula. In particular,
this fact is true in (N,P(N)).

Corollary

Models of WKL∗0 + ¬IΣZ
1 are precisely the Σ1

1-closed models of BΣ0
1 + exp + ¬IΣZ

1 ,
i.e., if a Σ1

1 formula, possibly with parameters, can be satisfied in a ∆1
0-elementary

extension satisfying BΣ0
1 + exp + ¬IΣZ

1 , then it is already true in the ground model.



Π1
1 conservativity over BΣ0

1 + exp + ¬IΣ0
1

Corollary

The following are equivalent for all Π1
2 sentences σ.

(i) Π1
1-Th(BΣ0

1 + exp + ¬IΣ0
1¬IΣ0
1 + σ) = Π1

1-Th(BΣ0
1 + exp + ¬IΣ0

1¬IΣ0
1).

σ is Π1
1-conservative

over BΣ0
1 + exp + ¬IΣ0

1.

(ii) WKL∗0 + ¬IΣ0
1¬IΣ0
1 |− σ.

WKL∗0 is the strongest
Π1

1-conservative Π1
2 sentence

over BΣ0
1 + exp + ¬IΣ0

1

(iii) Every countable model of BΣ0
1 + exp + ¬IΣ0

1¬IΣ0
1 has an

ω-extension satisfying BΣ0
1 + exp + ¬IΣ0

1¬IΣ0
1 + σ.

Theorem
WKL∗0 + ¬IΣ0

1 6|− RT2
2.

Theorem
{σ ∈ Π1

2-Snt : Π1
1-Th(BΣ0

1 + exp + σ) = Π1
1-Th(BΣ0

1 + exp)} is Π2-complete.

Turing-equivalent to Π2-Th(N)

Proposition

There is a Π1
2 sentence σ such that Π1

1-Th(BΣ0
1 + exp + σ) = Π1

1-Th(BΣ0
1 + exp) but

some countable model of BΣ0
1 + exp does not ω-extend to any model of BΣ0

1 + exp +σ.



Pigeonhole Principles n ∈ N

In a model M |= IΣn + exp + ¬BΣn+1,

(Dimitracopoulos–Paris 1986) for some b ∈ M, there is a
Σn+1-definable injection [0, b + 1)→ [0, b);

(Groszek–Slaman 1994) maybe there is a Σn+1-definable bijection
M → N;

(Belanger–Chong–Wang–W–Yang 2021) maybe, for every non-zero
b ∈ M, there is no Σn+1-definable injection [0, 2b)→ [0, b).

In a model M |= BΣn+1 + exp + ¬IΣn+1¬IΣn+1,

(Dimitracopoulos–Paris 1986) for some b ∈ M, there is a
(Σn+1 ∨ Πn+1)-definable injection [0, b + 1)→ [0, b);

(Belanger–Chong–Li–W–Yang, in progress) maybe, for every b > 2
in M, there is no Σn+3-definable injection [0, b2)→ [0, b);

(Ko lodziejczyk–Kowalik–Yokoyama 2021+) for every sufficiently large
b ∈ M, there is no definabledefinable injection f : [0, supexp(b))→ [0, b). ∴ f is not injective

f (x1)

f (x2)
g

b

J fixed by g
pointwise

x2

x16=

g

supexp(b)

d defines fg

M

build g ∈ Aut(M)

=



The model theory of BΣ0
1 + exp + ¬IΣ0

1

Main theorem

n ∈ N

Every L2 formula is equivalent to a ∆1
0 formula over WKL∗0 + ¬IΣZ

1 .

Model-theoretic core
Every countable (M,X ) |= BΣ0

1 + exp + ¬IΣ0
1 has a unique

countable ω-extension (M,Y ) |= WKL∗0 + ¬IΣ0
1 up to isomorphism.

WKL∗0 is the strongest Π1
1-conservative Π1

2 sentence.

I These results relativize to BΣ0
n+1 + exp + ¬IΣ0

n+1.

I The model theory of IΣ0
n + exp + ¬BΣ0

n+1 is radically different.

I Such model-theoretic properties cannot be achieved without
including a false-in-N sentence in the theory. IΣ0

0 + exp

−|

BΣ0
1 + exp

−|

IΣ0
1

−|

BΣ0
2

−|

IΣ0
2

−|

...

Insight (Kaye, around 1991)

The model-theoretic properties of a model of arithmetic do not only depend on the
induction axioms it satisfies, but also on the induction axioms it does not satisfy.
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