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Recursion theory on admissible ordinals

A limit ordinal α is admissible if (Lα,∈) |= KP.

Given A,B ⊆ α, we say that A is α-recursive in B (A ≤α B)
if there is an algorithm for computing every α-finite subset
of A and α \ A using α-finite information about B and α \ B.
≤α is a transitive relation.
. A ≡α B means A ≤α B and B ≤α A.
≡α decomposes subsets of α into equivalence classes
called α-degrees.
0 is the α-degree of the α-recursive sets.
0′ is the α-degree of the halting set ∅′, etc.
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Brief overview

(Sacks and Simpson, 1972) The Friedberg-Muchnik
Theorem holds for all admissible α.
(Lerman, 1974) There is a maximal α-r.e. set if and only if
S3-projectum(α) = ω.
(Shore, 1976) The α-r.e. degrees are dense.
(S Friedman, 1981) Assume V = L. If α = ℵω1 , then the
α-degrees ≥ 0′ are well-ordered with successor generated
via the jump operator. Every a ≥ 0′ is the α-degree of a
master code.
(Greenberg, Shore and Slaman, 2006) If α = ωCK

1 , then the
ω-degree of the theory of α-r.e. degrees is that of O(ω).
(Chong and Slaman, 2010) The theory of the α-degrees is
undecidable for all α.
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Minimal α-degree

Definition

An α-degree a > 0 is minimal if for all b,

b < a⇒ b = 0.

(Spector, 1956) There is a minimal ω-degree.
(Sacks, 1963) There is a minimal ω-degree < 0′.
(J Macintyre, 1973) If α is countable or a regular cardinal,
then there is a minimal α-degree.
(Shore, 1972) If α is Σ2-admissible, then there is a minimal
α-degree < 0′.
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The minimal α-degree problem

Prove that there is a minimal α-degree for every admissible α.

The Spector construction of a set of minimal ω-degree:

Forcing with perfect trees to produce a generic G;
Every oracle computation Φ is assigned with a recursive
perfect tree TΦ which is either “splitting” or “full”;
For each Φ, G is a path on TΦ.
If ΦG is total and TΦ is a splitting tree, then ΦG ≡T G;
If ΦG is total and TΦ is a full tree, then ΦG is recursive.
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The Spector technology

The map
e 7→ (Index of)TΦe

can be made ∅′′-recursive so as to obtain a set of minimal
degree <T 0′′.
By refining the construction with a ∅-recursive
approximation, one can obtain a solution below 0′.
This idea can be extended to handle Σ2-admissible
ordinals.
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Failure of the Spector idea

The approach fails for Σ2-inadmissible α. As an example:

Let α = ℵL
ω. For n ∈ ω define

Φσ
n(x) =

{
σ(x) If Lx |= “There are less than n cardinals′′

1 Otherwise

For any G and n, ΦG
n is α-recursive, and the Spector

construction mandates TΦn to be a full tree.
Major obstruction:
The set (of indices of) {Φn : n ∈ ω} is α-finite but⋂

n∈ω TΦn = {G} is a single path and not an α-recursive
perfect tree.
Similar situation for any Σ2-inadmissible cardinal.
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Theorem (V = L)

If a is a minimal α-degree, then a < 0′.
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Growth function of a set under V = L

Definition (v = L)

Let A ⊆ α = ℵω1 . The growth function fA of A is

fA(x) = the order of A � x in L.

Definition

A ⊂ α is tame if there is a B ≤α ∅′ such that

{ν : ν < ω1 and fA(ℵν) ≤ fB(ℵν)}

is stationary in ω1.

Lemma

If A ⊂ α is tame, then A ≤α ∅′.
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Minimal α-degree for α = ℵω1 under V = L

Lemma

For any A ⊂ α either deg(A) is not a minimal α-degree, or A is
tame.



Below ∅′

A tree T is tagged with an α-recursive function f : T → α if
{f (σ) : σ ∈ T} is unbounded in α;
For all σ ∈ T , f (σ) ≤ |σ|.

Definition

An α-recursive tree T tagged with f is quasi-splitting for Φ if
For all σ, τ ∈ T ,

σ � f (σ) 6= τ � f (τ)⇒ ∃x ≤ min{f (σ), f (τ)}(Φσ(x) 6= Φτ (x)).

Definition

An α-recursive tree T tagged with f is quasi-full for Φ if

For all σ, τ ∈ T ,

Φσ(x) = Φτ (x) for all x ≤ min{f (σ), f (τ)}.
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Below 0′

(Chong, 1979) The α-degree of G ≤α ∅′ is minimal if and only if
1 For each Φ, if ΦG is total then there is an α-recursive tree

TΦ tagged with an f such that TΦ is either quasi-splitting or
quasi-full for Φ;

2 G is a path on TΦ;
3

{min{f (σ), f (τ} : σ, τ ∈ TΦ & σ ≺ G, τ 6≺ G}

is unbounded in α.
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When is the degree of A minimal?

Theorem (V = L)

Let α = ℵω1 . Then A ⊂ α is of minimal α-degree if and only if

{ν : A � ℵν is of minimal ℵν-degree }

is stationary in ω1.

Corollary (V = L)

Let α = ℵω1 . If A 6≤α ∅′, then

{ν : A � ℵν 6≤α ∅′ & is not of minimal ℵν-degree}

is stationary in ω1.
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Countable vs uncountable cofinality

Corollary (V = L)

If there is a minimal ℵω1-degree below 0′, then the set

{ν : There is a minimal ℵν-degree below 0′}

is stationary in ω1. In particular, each such ν is countable.

Conjecture:

Assume V = L. There is no minimal α-degree for α = ℵω1 .
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