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A limit ordinal « is admissible if (L., €) = KP.

m Given A, B C «a, we say that A is a-recursive in B (A <, B)
if there is an algorithm for computing every a-finite subset
of Aand « \ A using a-finite information about B and a \ B.

m <, is a transitive relation.
m.A=,Bmeans A<, Band B <, A

m =, decomposes subsets of « into equivalence classes
called a-degrees.

m 0 is the a-degree of the a-recursive sets.
m 0’ is the a-degree of the halting set (', etc.
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Brief overview

m (Sacks and Simpson, 1972) The Friedberg-Muchnik
Theorem holds for all admissible «.

m (Lerman, 1974) There is a maximal a-r.e. set if and only if
Ss-projectum(a) = w.

m (Shore, 1976) The a-r.e. degrees are dense.

m (S Friedman, 1981) Assume V = L. If o = R,,,, then the
a-degrees > 0’ are well-ordered with successor generated
via the jump operator. Every a > 0’ is the a-degree of a
master code.

m (Greenberg, Shore and Slaman, 2006) If o = w®K, then the
w-degree of the theory of a-r.e. degrees is that of O“).

m (Chong and Slaman, 2010) The theory of the a-degrees is
undecidable for all .
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An a-degree a > 0 is minimal if for all b,

b<a=b=0.

m (Spector, 1956) There is a minimal w-degree.

m (Sacks, 1963) There is a minimal w-degree < 0'.

m (J Macintyre, 1973) If « is countable or a regular cardinal,
then there is a minimal a-degree.

m (Shore, 1972) If « is L-admissible, then there is a minimal
a-degree < 0.
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The minimal «-degree problem

Prove that there is a minimal «-degree for every admissible «.

The Spector construction of a set of minimal w-degree:

m Forcing with perfect trees to produce a generic G;

m Every oracle computation ¢ is assigned with a recursive
perfect tree Ty which is either “splitting” or “full”;

m Foreach ¢, Gis a pathon Ty.
m If % s total and Ty is a splitting tree, then ¢¢ =1 G;
m If ®C is total and Ty is a full tree, then € is recursive.
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The Spector technology

m The map
e — (Index of) Ty,

can be made ()-recursive so as to obtain a set of minimal
degree <7 0”.

m By refining the construction with a ()-recursive
approximation, one can obtain a solution below 0'.

m This idea can be extended to handle ¥ >-admissible
ordinals.
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Failure of the Spector idea

The approach fails for X-inadmissible «. As an example:

m Let o = RL. For n € w define
"

7 (x) = o(x) If Ly = “There are less than n cardinals
R Otherwise

m Forany G and n, ¢¢ is a-recursive, and the Spector
construction mandates Ty, to be a full tree.

m Major obstruction:
The set (of indices of) {®, : n € w} is a-finite but
MNhew To, = {G} is a single path and not an a-recursive
perfect tree.

m Similar situation for any ¥»-inadmissible cardinal.
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Theorem (V = L)

Ifa is a minimal a-degree, thena < 0'.
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fa(x) =the order of A [ x in L.

A C ais tame if there is a B <,, (" such that
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Minimal a-degree for o = R,,, under V =L

Lemma

For any A C « either deg(A) is not a minimal o.-degree, or A is
tame.
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Below (/

A tree T is tagged with an a-recursive function f : T — « if
m {f(c): 0 € T} is unbounded in «;
m ForaloeT,f(o) <|ol

Definition
An a-recursive tree T tagged with f is quasi-splitting for @ if
m Forallo,7 €T,

o | f(o) # 7 | f(r) = Ix < min{f(o), F(7)}($7(x) # &7 (x)).

Definition
An a-recursive tree T tagged with f is quasi-full for ¢ if

m Forallo,7 €T,

®7(x) = &7 (x) for all x < min{f(o), f(7)}.
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Below 0’

(Chong, 1979) The a-degree of G <, " is minimal if and only if
For each @, if ®C is total then there is an a-recursive tree
T tagged with an f such that Ty is either quasi-splitting or
quasi-full for ®;
Gis apathon Ty;
{min{f(o),f(7} :0,7€ Top & 0 < G, 7 £ G}

is unbounded in a.
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Theorem (V = L)

Leta =R,,. Then A C « is of minimal a-degree if and only if
{v: AN, is of minimal X, -degree }
is stationary in w.

Corollary (V = L)
Leta=1X,,. IfAL,V, then

{v: AR, £, 0 & is not of minimal X, -degree}

is stationary in wy.
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Countable vs uncountable cofinality

Corollary (V = L)
If there is a minimal X,,, -degree below 0', then the set

{v : There is a minimal X, -degree below 0'}

is stationary in wq. In particular, each such v is countable.

Conjecture:

Assume V = L. There is no minimal a-degree for a = X,



