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We will mostly consider subsets of ω and study their relative

computational complexity.

De�nition

A reducibility is a transitive re�exive relation ≤r on P(ω)
(so that A ≤r B expresses that B �can compute� A).

A,B ⊆ ω are r -equivalent (written A ≡r B) if A ≤r B and

B ≤r A. (A and B have �equal computational content�.)

The r -degree of A is degr (A) = {B | A ≡r B}.
The global r -degree structure is the partial order

Dr = (P(ω)/≡r , ≤),

where ≤ is induced by the pre-partial order ≤r .

We also consider local r -degree structures

Sr = (S/≡r , ≤)

for a (usually countable) subfamily S ⊂ P(ω).

Ste�en Lempp Degree Structures and Decidability



De�nitions and Examples
Degree Theory

Fragments of the Theory

Reducibilities and Degrees
Examples of Degree Structures

Many reducibilities have been considered in computability theory,

e.g.:

Many-one reducibility: A ≤m B if there is a computable

function f such that for all x , x ∈ A i� f (x) ∈ B .
Turing reducibility: A ≤T B if there is a Turing functional Φ
with A = Φ(B).
Enumeration reducibility: A ≤e B if there is an enumeration

operator Φ with A = Φ(B).
Ziegler reducibility (or ∗-reducibility):
A ≤∗ B if A ≤e B and Ac ≤1

e B (de�ned on next slide).

All these lead to global (and many local) degree structures.

The local structures of particular interest arise when S is the family

of c.e. sets, of ∆0
2-sets, or of Σ

0
2-sets.

More general degree structures have also been de�ned on P(P(ω))
(Medvedev and Muchnik reducibility) and on the set of partial

multivalued functions from ωω to ωω (Weihrauch reducibility).
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For completeness, here are precise de�nitions for some reducibilities:

De�nitions

A ≤T B if there is a Turing functional Φ with A = Φ(B), i.e.,
a c.e. set Φ of tuples (x , y ,F ,G ) such that for all x and y ,
A(x) = y i� there is (x , y ,F ,G ) ∈ Φ with F ⊆ B and

G ⊆ Bc .

A ≤e B if there is an enumeration operator Φ with A = Φ(B),
i.e., a c.e. set Φ of pairs (x ,F ) such that for all x ,
x ∈ A i� there is (x ,F ) ∈ Φ with F ⊆ B .

C ≤1
e B if there is a 1-enumeration operator Ψ, i.e., a c.e.

set Ψ of triples (x ,F ,G ) such that for all x , x ∈ C i� there is

(x ,F ,G ) ∈ Ψ with F ⊆ B , |G | ≤ 1 and G ⊆ Bc .

A ≤∗ B if A ≤e B and Ac ≤1
e B .
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Degree theory studies degree structures as algebraic objects,

namely, as partial orders, sometimes in an expanded language.

For most �natural� degree structures D, we have:

D has a least element 0D.

Local degree structures often have a greatest element, global

degree structures usually do not.

D is locally countable, i.e., any degree has at most countably

many predecessors.

D is an upper semilattice (but usually not a lattice),

i.e., D has a join operation deg(A) ∪ deg(B) = deg(A⊕ B),
where A⊕ B = {2x | x ∈ A} ∪ {2x + 1 | x ∈ B}.
Global degree structures support a �jump� operation a 7→ a′

such that a < a′, and a ≤ b implies a′ ≤ b′.
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Most �natural� degree structures D are very complicated partial

orders and usually follow this pattern:

The �rst-order theory of the partial order D is undecidable.

In fact, it is usually as complicated as second-order arithmetic

(for global degree structures) or �rst-order arithmetic (for

countable local degree structures).

Therefore, computability theorists often study �fragments� of the

�rst-order theory, determined by a bound on the quanti�er depth of

the formulas:

The ∃-theory of D is decidable (since all �nite partial orders

embed into D).

The ∀∃-theory of D can �often� be shown to be decidable

(more later).

The ∃∀∃-theory of D can �usually� be shown to be

undecidable (more later).
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degree
structure

complexity: 1st/2nd

order arithmetic
∃-/∀∃-fragment
decidable?

∃∀∃-fragment
undecidable?

Dm

Dm(≤ 0
′
m)

DT

DT (≤ 0
′
T )

DT (c.e.)

De

De(≤ 0
′
e)

D∗
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For most degree structures, the undecidability of the �rst-order

theory (in the language of partial order) was shown before the exact

complexity of the full theory was determined.

In most cases, eventually the full theory turned out to have

maximal complexity (that of second-order or �rst-order arithmetic)

by coding a standard model of arithmetic (using parameters) into

the degree structure.

These arguments tend to be quite complicated, using a fairly high

quanti�er complexity.
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The undecidability of the ∃∀∃-theory can be usually shown via the

Nies Transfer Lemma 1996 (special case)

If a class C of �nite relational structures is ∃-de�nable with

parameters in D, and the common ∀∃∀-theory of C is hereditarily

undecidable, then the ∃∀∃-theory of D is undecidable.

The class C used in the results cited on the next slide is

the class of all �nite distributive lattices coded as initial

segments for the m-degrees, the c.e. m-degrees, the Turing

degrees, the ∆0
2-Turing degrees, and the Ziegler degrees;
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degree
structure

complexity: 1st/2nd

order arithmetic
∃-/∀∃-fragment
decidable?

∃∀∃-fragment
undecidable?

Dm
2nd: Nerode,
Shore 1980 Nies 1996

Dm(≤ 0
′
m) 1st: Nies 1994

DT 2nd: Simpson 1977
Lerman,
Schmerl 1983DT (≤ 0

′
T ) 1st: Shore 1981

DT (c.e.)
1st: Harrington,
Slaman 1984

De
2nd: Slaman,
Woodin 1997

De(≤ 0
′
e)

1st: Ganchev,
M. Soskova 2012

D∗ undecidable
(see right)

Jacobsen-Grocott,
Lempp, I. Scott ta
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The undecidability of the ∃∀∃-theory can be usually shown via the

Nies Transfer Lemma 1996 (special case)

If a class C of �nite relational structures is ∃-de�nable with

parameters in D, and the common ∀∃∀-theory of C is hereditarily

undecidable, then the ∃∀∃-theory of D is undecidable.

The class C used in the results cited on the next slide is

the class of all �nite distributive lattices coded as initial

segments for the m-degrees, the c.e. m-degrees, the Turing

degrees, the ∆0
2-Turing degrees, and the Ziegler degrees; and

the class of all �nite bipartite graphs without equality with

nonempty left and right domain in delicate coding arguments

for the c.e. Turing degrees, the enumeration degrees, and the

Σ0
2-enumeration degrees.
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T ) 1st: Shore 1981

DT (c.e.)
1st: Harrington,
Slaman 1984

Lempp, Nies,
Slaman 1998

De
2nd: Slaman,
Woodin 1997
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De(≤ 0

′
e)

1st: Ganchev,
M. Soskova 2012
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(see right)

Jacobsen-Grocott,
Lempp, I. Scott ta
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The undecidability of the ∃∀∃-theory can be usually shown via the

Nies Transfer Lemma 1996 (special case)

If a class C of �nite relational structures is ∃-de�nable with

parameters in D, and the common ∀∃∀-theory of C is hereditarily

undecidable, then the ∃∀∃-theory of D is undecidable.

The class C used in the results cited on the next slide is

the class of all �nite distributive lattices coded as initial

segments for the m-degrees, the c.e. m-degrees, the Turing

degrees, the ∆0
2-Turing degrees, and the Ziegler degrees; and

the class of all �nite bipartite graphs without equality with

nonempty left and right domain in delicate coding arguments

for the c.e. Turing degrees, the enumeration degrees, and the

Σ0
2-enumeration degrees.

(One can also code the class of all �nite distrib. lattices as intervals

in the enumeration degrees (Lempp, Slaman, M. Soskova 2021).)
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Deciding the ∀∃-theory of D amounts to giving a uniform decision

procedure to the following

Algebraic Problem (for deciding the ∀∃-theory of D)

Given �nite partial orders P and Qi ⊇ P (for i < n), does every
embedding of P into D extend to an embedding of Qi into D for

some i < n (where i may depend on the embedding of P)?

For the m-degrees and the c.e. m-degrees, one extends P minimally

to a �nite distributive lattice L and embeds it into D as an initial

segment; now an embedding of L can be extended to an

embedding of a �nite partial order Qi ⊇ L i� no element of Qi is

below any element of L, and Qi respects joins in L.

Ste�en Lempp Degree Structures and Decidability



De�nitions and Examples
Degree Theory

Fragments of the Theory

∃∀∃-Theory
∀∃-Theory
Two Subproblems of the ∀∃-Theory
A Subsubproblem of the ∀∃-Theory of the Σ0

2
-e-Degrees

degree
structure

complexity: 1st/2nd

order arithmetic
∃-/∀∃-fragment
decidable?

∃∀∃-fragment
undecidable?

Dm
2nd: Nerode,
Shore 1980

∀∃: Dëgtev
1979

Nies 1996

Dm(≤ 0
′
m) 1st: Nies 1994

DT 2nd: Simpson 1977
Lerman,
Schmerl 1983DT (≤ 0

′
T ) 1st: Shore 1981

DT (c.e.)
1st: Harrington,
Slaman 1984
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Deciding the ∀∃-theory of D amounts to giving a uniform decision

procedure to the following

Algebraic Problem (for deciding the ∀∃-theory of D)

Given �nite partial orders P and Qi ⊇ P (for i < n), does every
embedding of P into D extend to an embedding of Qi into D for

some i < n (where i may depend on the embedding of P)?

For the m-degrees and the c.e. m-degrees, one extends P minimally

to a �nite distributive lattice L and embeds it into D as an initial

segment; now an embedding of L can be extended to an

embedding of a �nite partial order Qi ⊇ L i� no element of Qi is

below any element of L, and Qi respects joins in L.
For the Turing degrees, one proceeds similarly but with a �nite

lattice L minimally extending P.
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Deciding the ∀∃-theory of D amounts to giving a uniform decision

procedure to the following

Algebraic Problem (for deciding the ∀∃-theory of D)

Given �nite partial orders P and Qi ⊇ P (for i < n), does every
embedding of P into D extend to an embedding of Qi into D for

some i < n (where i may depend on the embedding of P)?

For the m-degrees and the c.e. m-degrees, one extends P minimally

to a �nite distributive lattice L and embeds it into D as an initial

segment; now an embedding of L can be extended to an

embedding of a �nite partial order Qi ⊇ L i� no element of Qi is

below any element of L, and Qi respects joins in L.
For the Turing degrees, one proceeds similarly but with a �nite

lattice L minimally extending P.

For the ∆0
2-Turing degrees, embed L both as an initial segment;

and also L − {1} as an initial segment, mapping 1 to 0
′
T .
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Lempp, I. Scott ta

Ste�en Lempp Degree Structures and Decidability



De�nitions and Examples
Degree Theory

Fragments of the Theory

∃∀∃-Theory
∀∃-Theory
Two Subproblems of the ∀∃-Theory
A Subsubproblem of the ∀∃-Theory of the Σ0

2
-e-Degrees

Two major subproblems of the ∀∃-theory are the following:

Extension of Embeddings Problem

Given �nite partial orders P and Q ⊇ P, does every embedding

of P into D extend to an embedding of Q into D?

Lattice Embeddings Problem

Which �nite lattices L can be embedded into D (preserving join

and meet)?

The EE problem is decidable for the c.e. Turing degrees (Slaman,

Soare 2001), for the enumeration degrees (Lempp, Slaman,

M. Soskova 2021), and for the Σ0
2-enumeration degrees (Lempp,

Slaman, Sorbi 2005).

The LE problem remains open for the c.e. Turing degrees, but is

decidable for the enumeration degrees and for the Σ0
2-enumeration

degrees (Lempp, Sorbi 2002: all �nite lattices embed).
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Given the di�culty of the overall problem of deciding the ∀∃-theory
of the enumeration degrees and of the Σ0

2-enumeration degrees, we

are currently concentrating on the following subproblem of the

Extension of Embeddings Problem for the Σ0
2-enumeration degrees:

1-Point Extensions of Antichains

Decide, given a �nite antichain P = {a0, . . . , an} and 1-point

extensions QS = {a0, . . . , an, xS} and QT = {a0, . . . , an, xT} for

some nonempty subsets S ,T ⊆ {0, . . . , n} (where xS < ai i� i ∈ S ;
and xT > ai i� i ∈ T ), whether any embedding of P can be

extended to an embedding of QS for some such S or to an

embedding of QT for some such T (not mapping the new element

to 0e or 0′e)?

(Note that it is always possible to extend an embedding of a �nite

antichain P to an embedding of the antichain Q∅ = Q∅.)
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The context for our subproblem is the two following earlier results:

Theorem (Ahmad 1989 (cf. Ahmad, Lachlan 1998))

1 There is an Ahmad pair of Σ0
2-enumeration degrees (a,b), i.e.,

there are incomparable degrees a and b such that any degree

v < a is ≤ b.

2 There is no symmetric Ahmad pair of Σ0
2-enumeration degrees,

i.e., there are no incomparable degrees a and b such that any

degree v < a is ≤ b, and any degree w < b is ≤ a.

These are examples of ∀∃-statements blocking P ⊂ Q0 but not

P ⊂ Q0,Q1:

P Q0 Q1
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We can handle the case of QS :

Theorem in Progress (Goh, Lempp, Ng, M. Soskova)

Fix n > 1 and S ⊆ P({0, . . . , n})− {∅}.
Let S0 = {i ≤ n | {i} ∈ S}, and let S1 = {0, . . . , n} − S0.
Then some embedding of P into De(≤ 0

′
e) cannot be extended to

an embedding of QS for any S ∈ S i�

1 S0 = ∅; or
2

⋃
S ≠ {0, 1, . . . , n}; or

3 S1 ̸= ∅ and there is an assignment ν : S0 → P(S1)− {∅}, i.e.,
a function such that

for each i ∈ S0, {i} ∪ ν(i) /∈ S, and
for each F ⊆ S0 with |F | > 1, we have

⋂
{ν(i) | i ∈ F} /∈ S.

The proof extends both results of Ahmad and combines them with

minimal pair techniques.
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As for QT , we have to take into account the following

Theorem (Kalimullin, Lempp, Ng, Yamaleev 2022)

There is no cupping Ahmad pair, i.e., an Ahmad pair (a,b) with
a ∪ b = 0

′
e .

We conjecture that this is the only additional obstruction when

considering extensions by points above an antichain:

Conjecture

Fix n > 1 and S, T ⊆ P({0, . . . , n})− {∅}.
Then some embedding of P into De(≤ 0

′
e) cannot be extended to

an embedding of QS for any S ∈ S or of QT for any T ∈ T i�

QS satis�es the conditions of the Theorem in Progress, and

any T ∈ T contains only one element, or contains two

elements i , j with j ∈ ν(i) (from the Theorem in Progress).
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Happy Belated Birthday,

and

Happy Retirement, Ted!
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