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Borel graphability



Definition (Arant). An equivalence relation E on a Polish space X is
Borel graphable if there is a Borel graph G on X such that

x E y ⇐⇒ there is a path from x to y in G .

Observation. Borel ⊆ Borel graphable ⊆ Analytic

Proof.
(1)

(2) Obvious.

(Easy) Question. Borel ( Borel graphable ( Analytic?

Answer. Yes.



Proposition. Borel graphable 6= Analytic.

Proof. Let A ⊆ X be an analytic set which is not Borel.
Define E on X × 2 by

(x , i)E (y , j) ⇐⇒

{
x = y if x ∈ A

x = y and i = j if x /∈ A.
.

Since all equivalence classes of E have size at most 2:

E Borel graphable ⇐⇒ E is Borel ⇐⇒ A is Borel.

Comment. By Lusin-Novikov, if all equivalence classes of E are
countable then E Borel graphable ⇐⇒ E is Borel



Proposition. Borel 6= Borel graphable.

Proof. Let E be an analytic equivalence relation on X which is not Borel.
Define E ′ on X × 2ω by

(x , a)E ′ (y , b) ⇐⇒ x E y .

i.e. add a “dummy coordinate”

Define a graph G on X × 2ω by setting (x , a) and (y , b) adjacent if
a⊕ b computes a witness that x E y .

Comment. If E is Borel graphable then there is almost always a graphing
given by setting x and y adjacent if (x ⊕ y ⊕ a)(α) computes a witness
to the E -equivalence of x and y for some fixed a ∈ 2ω and α < ω1.



A more interesting example



ωCK
1 = the least ordinal with no computable presentation
ωx

1 = the least ordinal with no presentation computable from x

Definition. Fω1 is the equivalence relation on 2ω defined by

x Fω1 y ⇐⇒ ωx
1 = ωy

1 .

Some facts about Fω1 .
(1) It is analytic (actually, Σ1

1)
(2) Each equivalence class is Borel
(3) It has exactly ℵ1 many equivalence classes

Fω1 looks kind of like a counterexample to the topological Vaught’s
conjecture... but not that much.

Theorem (Marker). Fω1 is not generated by any continuous Polish group
action on 2ω.

Theorem (Becker). Or even by any Borel Polish group action.



Definition. Fω1 is the equivalence relation on 2ω defined by

x Fω1 y ⇐⇒ ωx
1 = ωy

1 .

Question. Is Fω1 Borel graphable?

Answer. It depends!

Theorem (Arant-Kechris-L.). Fω1 is Borel graphable if and only if there
is a non-constructible real.



Fω1 is not Borel graphable



Theorem (Arant). If all reals are constructible, Fω1 is not Borel
graphable.

Easier to prove:
Theorem (Arant). Fω1 is not ∆1

1-graphable.

Proof idea. Assume Fω1 is ∆1
1-graphable and show that the connected

component of 0 is countable. Contradicts the fact that there are
uncountably many x such that ωx

1 = ω0
1 = ωCK

1 .

Idea: Identify some countable set which contains 0 and has strong
closure properties

Obvious choice: ∆1
1.

Useful closure property: x is ∆1
1 and A ⊆ 2ω is ∆1

1(x) =⇒ A is ∆1
1.

Two key ingredients:
(1) Effective Perfect Set Theorem
(2) Friedman’s Conjecture



Effective Perfect Set Theorem:
Theorem (Harrison). Every Σ1

1 subset of 2ω either contains a perfect set
or every real in ∆1

1.

Friedman’s Conjecture (kind of):

Theorem (Martin/Friedman). If A ⊆ 2ω is an uncountable ∆1
1 set then

for every α < ω1, there is some x ∈ A such that ωx
1 > α.

The point. If A ⊆ 2ω is a ∆1
1 set such that for every x ∈ A, ωx

1 = ωCK
1

then every real in A is ∆1
1.



Theorem (Arant). Fω1 is not ∆1
1-graphable.

Proof. Suppose G is a ∆1
1-graphing of G . We will show that every real

in the connected component of 0 is ∆1
1.

Suppose y is in the connected component of 0 and x0, x1, . . . , xn is a
path from 0 to y . We will show by induction that each xi is ∆1

1.

Assume xi is ∆1
1. The set of neighbors of xi ,

A = {z | xi and z are neighbors in G},

is ∆1
1(xi ), hence ∆1

1.

Since every z ∈ A is in the same Fω1-equivalence class as xi (and hence
0), every z ∈ A has ωz

1 = ωCK
1

So by the Effective Perfect Set Theorem/Friedman’s Conjecture, every
real in A is ∆1

1. In particular, xi+1 is ∆1
1.



Theorem (Arant). Fω1 is not ∆1
1-graphable.

Recall. Borel = ∆1
1(a) for some a ∈ 2ω

Question. Why doesn’t the proof relativize to give Fω1 not Borel
graphable?

Answer. The problem is in the application of Friedman’s Conjecture

Friedman’s Conjecture, relativized. If A ⊆ 2ω is an uncountable ∆1
1(a)

set then for every α < ω1, there is some x ∈ A such that ωx⊕a
1 > α.

But in general, ωx
1 can be much smaller than ωa⊕x

1 .

Solution. Use a special fact about reals in L.

Theorem (Guaspari/Kechris/Sacks). For every real a ∈ L, there is some
real b ∈ L such that:
(1) a is ∆1

1(b)

(2) and for all reals x , if ωx
1 ≥ ωb

1 then b is ∆1
1(x) (and hence

ωx
1 = ωx⊕b

1 ).



Fω1 is Borel graphable



Theorem (Arant-Kechris-L.). If there is a non-constructible real then Fω1

is Borel graphable.

Proof strategy. Let a be a non-constructible real.

Define a graph G by setting x and y adjacent if x ⊕ y ⊕ a computes a
witness that ωx

1 = ωy
1 .

Show that any two elements of 2ω which are Fω1-equivalent are
connected in G by a path of length 2.

Enough to show: Given x , y ∈ 2ω such that ωx
1 = ωy

1 , we can find z
such that ωz

1 = ωx
1 and z ⊕ a computes witnesses that ωx

1 = ωz
1 and

that ωy
1 = ωz

1 .

Perfect tool to build z : Kumabe-Slaman forcing



Enough to show: Given x , y ∈ 2ω such that ωx
1 = ωy

1 , we can find z
such that ωz

1 = ωx
1 and z ⊕ a computes witnesses that ωx

1 = ωz
1 and

that ωy
1 = ωz

1 .

Perfect tool to build z : Kumabe-Slaman forcing

Key property of Kumabe-Slaman forcing. Suppose we have
• M, a countable transitive model of ZFC
• a, a real not in M

Then there is some g Kumabe-Slaman generic over M such that g ⊕ a
encodes essentially any information, including information about g itself

Theorem (L.-Siskind). For any countable transitive model M, any
x ∈ M and and any g Kumabe-Slaman generic over M, ωx⊕g

1 = ωx
1 .

These two properties are enough to complete the proof under the
assumption that ωL

1 = ω1.

This assumption can be removed using an absoluteness argument
(thanks to Gabe Goldberg)



Kumabe-Slaman forcing



End result of Kumabe-Slaman forcing. A partial labelling of 2<ω.
i.e. a function g : 2<ω → {0, 1,⊥} (⊥ means “no label”)

Computational interpretation. Given a Kumabe-Slaman generic g and a
real x ∈ 2ω, obtain a sequence in 2≤ω byreading off the labels that g
has placed along x . Denoted g(x).

Intuitively: g encodes information on the path along x and adds labels
on other paths through 2<ω in order to obfuscate where the information
is hidden.



Conditions for Kumabe-Slaman forcing. A condition p for
Kumabe-Slaman forcing consists of:
(1) A finite partial labelling gp : 2≤n → {0, 1,⊥} for some n

(2) A finite set Xp ⊆ 2ω of “forbidden paths.”

To extend p, we can add new forbidden paths and/or add new labels
above n, as long as those new labels are not on any paths in Xp.



A brief history of Kumabe-Slaman
forcing



Theorem (Posner-Robinson). For every noncomputable x , there is some
g such that x ⊕ g ≡T g ′.

Intuitively: x “looks like the halting problem” relative to g .



Theorem (Posner-Robinson). For every noncomputable x , there is some
g such that x ⊕ g ≡T g ′.

Natural question. Can this be extended? E.g. if x is not arithmetic, is
there some g such that x ⊕ g ≡T g (ω)?

A brief timeline:

Essentially resolved by Kumabe and Slaman in 1991 or 1992, via the
invention of Kumabe-Slaman forcing.



Theorem (Posner-Robinson). For every noncomputable x , there is some
g such that x ⊕ g ≡T g ′.

Key challenge in proving versions of the Posner-Robinson Theorem: You
need to decide facts about g ′ without accidentally interfering with the
coding of information into g .

Key fact about Kumabe-Slaman forcing. Suppose that we have:
• M, a countable, transitive model of ZFC
• a ∈ 2ω, a real not in M

• p ∈ M, a condition for Kumabe-Slaman forcing over M
• D ∈ M, a dense set for Kumabe-Slaman forcing over M.

Then we can find an extension q of p in M which meets D without
adding any new labels along a

The proof consists of an ingenious use of compactness.



My involvement with Kumabe-Slaman
forcing



Martin’s Conjecture: A proposed classification of Turing invariant
functions 2ω → 2ω.

Slaman and Steel: The Posner-Robinson Theorem can be used to prove
special cases of Martin’s Conjecture.

They used it to prove Martin’s Conjecture for order-preserving functions
which are below the hyperjump.

Generalizing this past the hyperjump requires two things:
(1) Proving further generalizations of the Posner-Robinson Theorem
(2) Showing that you can find witnesses to the Posner-Robinson

Theorem which preserve ordinal valued functions on the Turing
degrees.

It seems natural to use Kumabe-Slaman forcing for both.



Generalizing this past the hyperjump requires two things:
(1) Proving further generalizations of the Posner-Robinson Theorem
(2) Showing that you can find witnesses to the Posner-Robinson

Theorem which preserve ordinal valued functions on the Turing
degrees.

Day and Marks: Worked out item (1) using Kumabe-Slaman forcing

Siskind and Me: Currently working on item (2).
This was our motivation for:
Theorem (L.-Siskind). For any countable transitive model M, any
x ∈ M and and any g Kumabe-Slaman generic over M, ωx⊕g

1 = ωx
1 .

It just happened to also be the exact theorem needed to analyze Borel
graphability of Fω1!



Theorem (L.-Siskind). For any countable transitive model M, any
x ∈ M and and any g Kumabe-Slaman generic over M, ωx⊕g

1 = ωx
1 .

The main idea in the proof is to prove:

Lemma. Suppose that M is an ω-model of ZFC and g is Kumabe-
Slaman generic over V . Then g is also Kumabe-Slaman generic over M.
This is despite the fact that the forcing poset in M is different from the
forcing poset in V .

The proof of the lemma follows the original analysis of Kumabe-Slaman
forcing discovered by Kumabe and Slaman.


