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Borel graphability



Definition (Arant). An equivalence relation E on a Polish space X is
Borel graphable if there is a Borel graph G on X such that

x Ey <= thereis a path from x to y in G.

Observation. Borel C Borel graphable C Analytic

Proof.
(1)
)~
OO ©e
(2) Obvious.

(Easy) Question. Borel C Borel graphable C Analytic?

Answer. Yes.



Proposition. Borel graphable # Analytic.

Proof. Let A C X be an analytic set which is not Borel.
Define E on X x 2 by

. . X = if xe A
(x, ) E(y.,)) < oo :
x=yandi=j ifx¢A.
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Since all equivalence classes of E have size at most 2:

E Borel graphable <= E is Borel <= A is Borel.

Comment. By Lusin-Novikov, if all equivalence classes of E are
countable then E Borel graphable <= E is Borel



Proposition. Borel # Borel graphable.

Proof. Let E be an analytic equivalence relation on X which is not Borel.
Define E' on X x 2% by

(x,a) E' (y,b) < xEy.

i.e. add a “"dummy coordinate”

Define a graph G on X x 2“ by setting (x, a) and (y, b) adjacent if
a® b computes a witness that x E y.

Comment. If E is Borel graphable then there is almost always a graphing
given by setting x and y adjacent if (x & y @ a)(®) computes a witness
to the E-equivalence of x and y for some fixed a € 2% and a < wy.



A more interesting example



wch = the least ordinal with no computable presentation
wy = the least ordinal with no presentation computable from x

Definition. F,, is the equivalence relation on 2 defined by

X _ Y
xFny &= wi =w;.

Some facts about F,,.
(1) It is analytic (actually, ¥1)
(2) Each equivalence class is Borel

(3) It has exactly 83 many equivalence classes
F., looks kind of like a counterexample to the topological Vaught's
conjecture... but not that much.

Theorem (Marker). F,, is not generated by any continuous Polish group
action on 2%.

Theorem (Becker). Or even by any Borel Polish group action.



Definition. F,, is the equivalence relation on 2 defined by

— Y
XFuy <= wi =uwy.

Question. Is F,,, Borel graphable?

Answer. It depends!

Theorem (Arant-Kechris-L.). F,, is Borel graphable if and only if there
is a non-constructible real.



F.,, is not Borel graphable



Theorem (Arant). If all reals are constructible, F,, is not Borel
graphable.

Easier to prove:

Theorem (Arant). F,, is not Al-graphable.

Proof idea. Assume F,, is Al-graphable and show that the connected
component of 0 is countable. Contradicts the fact that there are
uncountably many x such that w = w{ = wK

Idea: Identify some countable set which contains 0 and has strong
closure properties

Obvious choice: A}l
Useful closure property: x is Al and A C 2¥is Al(x) = Ais Al
Two key ingredients:

(1) Effective Perfect Set Theorem

(2) Friedman's Conjecture



Effective Perfect Set Theorem:

Theorem (Harrison). Every ¥1 subset of 2 either contains a perfect set
or every real in Al

Friedman’s Conjecture (kind of):

Theorem (Martin/Friedman). If A C 2¥ is an uncountable Al set then
for every o < wy, there is some x € A such that wf > a.

The point. If A C 2% is a A} set such that for every x € A, wf = wK

then every real in A is Al



Theorem (Arant). F,, is not Al-graphable.
Proof. Suppose G is a Al-graphing of G. We will show that every real
in the connected component of 0 is Al.

Suppose y is in the connected component of 0 and xg, x1,...,X, is a
path from 0 to y. We will show by induction that each x; is Al.

Assume x; is Al. The set of neighbors of x;,
A ={z | x; and z are neighbors in G},

is Al(x;), hence Al.

Since every z € A is in the same F,, -equivalence class as x; (and hence
0), every z € A has w? = w&K

So by the Effective Perfect Set Theorem/Friedman’s Conjecture, every
real in Ais Al In particular, x; ;1 is Al



Theorem (Arant). F,, is not Al-graphable.

Recall. Borel = Al(a) for some a € 2

Question. Why doesn't the proof relativize to give F,, not Borel
graphable?

Answer. The problem is in the application of Friedman's Conjecture
Friedman's Conjecture, relativized. If A C 2“ is an uncountable Al(a)
set then for every o < wy, there is some x € A such that wi‘@a > a.

But in general, w} can be much smaller than w{®*.

Solution. Use a special fact about reals in L.

Theorem (Guaspari/Kechris/Sacks). For every real a € L, there is some
real b € L such that:

(1) ais A}(b)

(2) and for all reals x, if wf > w? then b is Al(x) (and hence

W = wi®P).



F.,, is Borel graphable



Theorem (Arant-Kechris-L.). If there is a non-constructible real then F,,
is Borel graphable.
Proof strategy. Let a be a non-constructible real.

Define a graph G by setting x and y adjacent if x ® y & a computes a
witness that wf = wy.

Show that any two elements of 2 which are F,, -equivalent are
connected in G by a path of length 2.

Enough to show: Given x,y € 2 such that wf = wy, we can find z
such that wf = w{ and z @& a computes witnesses that wj = wf and
that w} = w?.

Perfect tool to build z: Kumabe-Slaman forcing



Enough to show: Given x,y € 2 such that wf = w{, we can find z
such that wf = wi and z & a computes witnesses that wj = wf and
that w} = w?.

Perfect tool to build z: Kumabe-Slaman forcing

Key property of Kumabe-Slaman forcing. Suppose we have
e M, a countable transitive model of ZFC
® 3 areal notin M
Then there is some g Kumabe-Slaman generic over M such that g & a

encodes essentially any information, including information about g itself

Theorem (L.-Siskind). For any countable transitive model M, any

x € M and and any g Kumabe-Slaman generic over M, w8 = w}.

These two properties are enough to complete the proof under the
assumption that wi = ws.

This assumption can be removed using an absoluteness argument
(thanks to Gabe Goldberg)



Kumabe-Slaman forcing



End result of Kumabe-Slaman forcing. A partial labelling of 2<%.
i.e. a function g: 2<“ — {0,1, L} (L means “no label”)

Computational interpretation. Given a Kumabe-Slaman generic g and a
real x € 2¥, obtain a sequence in 2% byreading off the labels that g
has placed along x. Denoted g(x).

—> s(x): ol0...

Intuitively: g encodes information on the path along x and adds labels
on other paths through 2<% in order to obfuscate where the information
is hidden.



Conditions for Kumabe-Slaman forcing. A condition p for
Kumabe-Slaman forcing consists of:

(1) A finite partial labelling g,: 2<" — {0,1, L} for some n
(2) A finite set X, C 2% of “forbidden paths.”

To extend p, we can add new forbidden paths and/or add new labels
above n, as long as those new labels are not on any paths in Xj,.



A brief history of Kumabe-Slaman
forcing



Theorem (Posner-Robinson). For every noncomputable x, there is some

gsuchthat x® g =1 g’

Intuitively: x “looks like the halting problem” relative to g.
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Theorem (Posner-Robinson). For every noncomputable x, there is some
gsuchthat x® g =1 g’

Natural question. Can this be extended? E.g. if x is not arithmetic, is

there some g such that x @ g =7 g(@)?

A brief timeline:
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Essentially resolved by Kumabe and Slaman in 1991 or 1992, via the
invention of Kumabe-Slaman forcing.



Theorem (Posner-Robinson). For every noncomputable x, there is some
gsuchthat x®d g=7g'.

Key challenge in proving versions of the Posner-Robinson Theorem: You
need to decide facts about g’ without accidentally interfering with the
coding of information into g.
Key fact about Kumabe-Slaman forcing. Suppose that we have:

® M, a countable, transitive model of ZFC

® 2€2¥ areal notin M

® p € M, a condition for Kumabe-Slaman forcing over M

e D e M, a dense set for Kumabe-Slaman forcing over M.

Then we can find an extension g of p in M which meets D without
adding any new labels along a

The proof consists of an ingenious use of compactness.



My involvement with Kumabe-Slaman
forcing



Martin's Conjecture: A proposed classification of Turing invariant
functions 2¢ — 2v.

Slaman and Steel: The Posner-Robinson Theorem can be used to prove

special cases of Martin’s Conjecture.

They used it to prove Martin's Conjecture for order-preserving functions
which are below the hyperjump.

Generalizing this past the hyperjump requires two things:

(1) Proving further generalizations of the Posner-Robinson Theorem

(2) Showing that you can find witnesses to the Posner-Robinson
Theorem which preserve ordinal valued functions on the Turing

degrees.

It seems natural to use Kumabe-Slaman forcing for both.



Generalizing this past the hyperjump requires two things:
(1) Proving further generalizations of the Posner-Robinson Theorem

(2) Showing that you can find witnesses to the Posner-Robinson
Theorem which preserve ordinal valued functions on the Turing
degrees.

Day and Marks: Worked out item (1) using Kumabe-Slaman forcing

Siskind and Me: Currently working on item (2).
This was our motivation for:

Theorem (L.-Siskind). For any countable transitive model M, any

x € M and and any g Kumabe-Slaman generic over M, wi%8 = w}.

It just happened to also be the exact theorem needed to analyze Borel
graphability of F,,!



Theorem (L.-Siskind). For any countable transitive model M, any

x € M and and any g Kumabe-Slaman generic over M, w}%€ = wy.

The main idea in the proof is to prove:
Lemma. Suppose that M is an w-model of ZFC and g is Kumabe-
Slaman generic over V. Then g is also Kumabe-Slaman generic over M.

This is despite the fact that the forcing poset in M is different from the
forcing poset in V.

The proof of the lemma follows the original analysis of Kumabe-Slaman
forcing discovered by Kumabe and Slaman.



