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Application 1

Thm: [Solecki 98 for ∆0
2] [Zapletal 04 for Borel]

For every Borel function F : ωω → X , the following are equivalent:

F is not piecewise continuous;

Every Baire-class-1 function continuously reduces to F .

where
- F is piecewise continuous if F = ∪n∈ωFn where Fn it partial continuous.
- F continuously reduces to G if ∃ continuous ϕ,ψ such that F = ψ ◦G ◦ ϕ.
- F is Baire-class-1 if it is the pointwise limit of continuous functions.
- F is Baire-class-β if the pre-image of every open set is Σβ+1.

Theorem: [Marks, Montalbán]

For every ordinal β and Borel function F : ωω → X ,
the following are equivalent:

F is not piecewise Baire-class-β.

Every Baire-class-(β + 1) function continuously reduces to F .
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Application 2

Thm: [Jayne, Rogers, 82] For every Borel function F , TFAE:
• The pre-image under F of every Σ0

2 set is Σ0
2.

• F is piecewise continuous on closed domains,

Solecki’s 98 paper sparked a lot of work:

[Semmes 09] [Motto Ros, Semmes 11] [Pawlikowski, Sabok 12] [Kihara 15] [Miller, Carroy 20] [Kihara, Gregoriades, Ng 21]

Thm: [Ding, Kihara, Semmes, Zhao 20] For every Borel function F , TFAE:
• The pre-image under F of every Σ0

3 set is Σ0
3.

• F is piecewise continuous on Π0
2 domains,

Day and Marks announced a proof for Σ0
n for all n ∈ ω using analytic determinacy.

Theorem: [Marks, Montalbán – work in progress]

For every ordinal β and every Borel function F , TFAE:
• The pre-image under F of every Σ0

β+1 set is Σ0
β+1.

• F is piecewise continuous on Π0
β domains,
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Summary

1 Applications

2 The statement of the topological α-game metatheorem

3 An example: Wadge’s theorem

4 The predecessor: the game metatheorem for structures

5 The general version: using α-topology

6 The key-ingredient in the proof: α-true stages
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The topological (X ,A,Aα)-game

X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A

such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .

The extender builds a map τ 7→ Bτ : ω<ω → Aα

such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ and Aτ ∩Bτ 6= ∅.
They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A

such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .

The extender builds a map τ 7→ Bτ : ω<ω → Aα

such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ and Aτ ∩Bτ 6= ∅.
They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A

such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .

The extender builds a map τ 7→ Bτ : ω<ω → Aα

such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ and Aτ ∩Bτ 6= ∅.
They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A

such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .

The extender builds a map τ 7→ Bτ : ω<ω → Aα

such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ and Aτ ∩Bτ 6= ∅.

They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A

such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .

The extender builds a map τ 7→ Bτ : ω<ω → Aα such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ

and Aτ ∩Bτ 6= ∅.
They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A

such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .

The extender builds a map τ 7→ Bτ : ω<ω → Aα such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ

and Aτ ∩Bτ 6= ∅.

They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .
The extender builds a map τ 7→ Bτ : ω<ω → Aα such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ

and Aτ ∩Bτ 6= ∅.

They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .
The extender builds a map τ 7→ Bτ : ω<ω → Aα such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ and Aτ ∩Bτ 6= ∅.
They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .
The extender builds a map τ 7→ Bτ : ω<ω → Aα such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ and Aτ ∩Bτ 6= ∅.
They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .
The extender builds a map τ 7→ Bτ : ω<ω → Aα such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ and Aτ ∩Bτ 6= ∅.
They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters, and A<α =
⋃
ζ<α Aζ

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .
The extender builds a map τ 7→ Bτ : ω<ω → Aα such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ and Aτ ∩Bτ 6= ∅.
They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters, and A<α =
⋃
ζ<α Aζ

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .
The extender builds a map τ 7→ Bτ : ω<ω → Aα such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ and Aτ ∩Bτ 6= ∅.
They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán]

(There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



The topological (X ,A,Aα)-game
X is a polish space,
A is the collection of non-empty Σ1

1 subsets of X , and
Aα is the collection of Π0

α sets with hyp parameters, and A<α =
⋃
ζ<α Aζ

Definition: In the (X ,A,Aα)-game the engineer and the extender take turns.

The engineer builds a map τ 7→ Aτ : ω<ω → A such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Aτ .
The extender builds a map τ 7→ Bτ : ω<ω → Aα such that

τ ′ ⊂ τ =⇒ Bτ ′ ⊇ Bτ and Aτ ∩Bτ 6= ∅.
They end up with: p : ωω → X where

P (Y ) =
⋂
{Bτ : τ ⊂ Y }.

Theorem: [Marks, Montalbán] (There is an ordering of the moves τ ∈ ω<N such that...)

There is a left-complete Σ0
α-function Tα : ωω → ωω such that,

for every strategy for the engineer in the (X ,A,A<α)-game,
there is a strategy for the extender so that,

P ◦ Tα : ωω → X is total and continuous.

where Tα : ωω → ωω is left-complete Σ0
α if for every Σ0

α function F : ωω → ωω ,

there is a continuous function G : ωω → ωω such that F = G ◦ Tα.

Antonio Montalbán (U.C. Berkeley) The topological α-game. October 2024 5 / 12



Wedge’s theorem from the (X ,A,Aα)-game metatheorem

A = Σ1
1, Aα = Π0

α(HY P ), Tα+1 : ωω → ωω left-complete Σ0
α+1, P : ωω → X , P (Y ) =

⋂
τ⊂Y Bτ

The engineer: τ 7→ Aτ : ω<ω → A such that τ ′ ⊂ τ =⇒ Bτ′ ⊇ Aτ .

The extender: τ 7→ Bτ : ω<ω → Aα such that τ ′ ⊂ τ =⇒ Bτ′ ⊇ Bτ and Aτ ∩ Bτ 6= ∅.

Thm: For every strategy for the engineer, there is a strategy for the extender, s.t. P ◦ Tα : ωω → X is continuous.

Theorem: Let M,N be Σ1
1 disjoint s.t. for no Σ0

α+1 set C, M ⊆ C ⊆ N c.
Then, for every Π0

α+1 set D, there is a continuous F : (D,Dc)→ (M,N).

Proof: We build a strategy for the engineer such that P ◦ Tα : (D,Dc)→ (M,N).
By metatheorem, the extender can then ensure that F = P ◦ Tα : ωω → X is continuous.

We want P such that x ∈ D → P (y) ∈M and x 6∈ D → P (y) ∈ N for y = Tα(x).

Let H : ωω → 2ω be a Σ0
α+1 function s.t. (∀x ∈ ωω) x ∈ D ⇐⇒ H(x) = 0ω .

Let G : ωω → 2ω be continuous such that H = G ◦ Tα. Extend to G : ω≤ω → 2≤ω .

We want, for τ ∈ ω<ω , G(τ) = 0...0→ Aτ ⊆M and G(τ) 6= 0...0→ Aτ ⊆ N .

Engineer’s strategy: for τ ∈ ω<ω , define Aτ =

{
Bτ− ∩Aτ− if G(τ) = 0...0

Bτ− ∩N if G(τ) 6= 0...0
(τ− = τ � |τ | − 1)

A0 = M \
⋃
{B ∈ Π0

α(HY P ) : B ⊆ Nc}. A0 6= ∅, A0 is Σ1
1, and Bτ ∩A0 6= ∅ → Bτ ∩N 6= ∅

(Also take steps on the Gandy-Harrington forcing to make the intersection work out.)
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The predecessor: The α-game for structures

Fix a list of structures {Ai : i ∈ ω} with certain effectiveness conditions

(α-friendly).

engineer (Ai0 , ā0), e0 (Ai1 , ā1), e1 (Ai2 , ā2), e2 · · ·
extender b̄0 b̄1 b̄2 · · ·
oracle n0 n1 n2 · · ·

ā0 ⊆ b̄0 ≤α ā1 ⊆ b̄1 ≤α ā2 ⊆ b̄2

where (A0, b̄) ≤α (A1, ā) ⇐⇒ Πin
α -tpA0(b̄) ⊆ Πin

α -tpA1(ā)

and ni is the answer to the ei-th ∆0
α question.

Atomic diagrams are preserved:
⋃
nDAin (ān) is diagram of structure.

Theorem: [M] Given a computable strategy for the engineer, there is a
strategy for the extender such that the limit structure is computable.
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α -tpA0(b̄) ⊆ Πin

α -tpA1(ā)
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Some applications of the α-game for structures

We get simpler proofs of the following theorems:

Under enough effectiveness conditions:

Pairs-of-structures Theorem [Ash, Knight 90]: If B ≤α A,
for every Π0

α set D, there is computable sequence {Cn : n ∈ ω}
with Cn ∼= A or ∼= B depending on whether n ∈ D.

Theorem [Ash, Jockusch, Knight 90]: A structure is ∆0
α-categorical if and only

if there is a tuple over which no other tuple is α-free.

Theorem[Ash 87]: A linear ordering L has ∆(2α+1)-copy ⇐⇒
Zα · L has computable copy.

...and many more theorems proved using Ash-Knight’s η-systems.
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A borader setting for the (X ,A,Aα)-game: the α-topology

For a Polish space X and A ⊆ P(X ), we define Aξ ⊆ P(X ) for ξ ≤ α:

Let A0 be the basic open sets in the topology of X .

Let Aξ = A<ξ ∪ {B
ξ

: B ∈ A},
where A<ξ =

⋃
ζ<ξ Aζ and

B
ξ

be the closure of B in the topology generated by A<ξ.

The (X ,A,Aα)-game metatheorem holds, provided A is ∩-closed and Aα ⊆ A.

Theorem: [Louveau][MM] For the collection, A, of lightface Σ1
1 subsets:

Aα = Σ1
1 ∩Π0

α = Π0
α(HY P ).

Let X be the space of presentations of structures, {Ai : i ∈ ω} ⊆ X , and
A the collection of {B ∈ X : (Ai, ā) ∼= (B, n̄)} for i ∈ ω and ā ∈ A<ωi .

Then Aa consist of {B ∈ X : (Ai, ā) ≤α (B, n̄)} for i ∈ ω and ā ∈ A<ωi .
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The proof uses the method of α-true stages,

a combinatorial framework to computably approximate the αth-jump,
built on ideas of Lachlan, Ash, and Knight, Marcone, Montalbán, Greenberg, Turetski....

• Tα : ωω → ωω is left-complete Σ0
α

• σ 7→ Tασ : ω<ω → ω<ω is a computable “approximation” to Tα:
for all x ∈ ωω, there are n0, n1, ... such that Tα(x) =

⋃
Tαx �ni .

• We say that σ ⊂ x is x-α-true if Tασ ⊆ Tα(x).

• We say that τ α-believes in σ if Tασ ⊆ Tατ . We write σ ≤α τ .

For ξ ≤ α, the relations ≤ξ on ω<ω satisfy:

0 ≤0 is the inclusion ordering on N<ω.

1 Nestedness: if σ ≤ξ τ and ξ≥γ , then σ ≤γ τ .

2 Continuity: if λ is limit, ≤λ=
⋂
ξ<λ ≤ξ.

♣ For every ρ ⊂ σ ⊂ τ , if ρ ≤ξ+1 τ and σ ≤ξ τ , then ρ ≤ξ+1 σ.

Theorem: [Greenberg, Turetsky 22] [M. 14] [M, CST book II] Such Tξ and ≤ξ, for ξ ≤ α, exist.
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The main applications of the topological α-game so far:

Theorem: [Marks, Montalbán]

For every ordinal β and Borel function F : ωω → X ,
the following are equivalent:

F is not piecewise Baire-class-β.

Every Baire-class-(β + 1) function continuously reduces to F .

Theorem: [Marks, Montalbán – work in progress]

For every ordinal β and Borel function F : ωω → X ,
the following are equivalent:
• The pre-image under F of every Σ0

β+1 set is Σ0
β+1.

• F is piecewise continuous on Π0
β domains.
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HAPPY BIRTHDAY TED!
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