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My papers with Ted

(1998 Annali di Matematica Pura ed Applicata,
Quasi-minimal enumeration degrees and minimal Turing
degrees) There exists a set A of quasiminimal e-degree which
is e-below uncountably many sets B of minimal Turing degree.

(2005 J. Math. Logic, On extensions of embeddings into the
enumeration degrees of the Σ0

2 sets, with Steffen Lempp).
The paper gives an algorithm for deciding whether an
embedding of a finite partial order P into the enumeration
degrees of the Σ2-sets can always be extended to an
embedding of a finite partial order Q ⊃ P.

(2014 J. Symbolic Logic, A note on initial segments of the
enumeration degrees) There is no linearly ordered nontrivial
initial segment of the enumeration degrees.



Effective Inseparability: The work of Smullyan

Definition [Kleene, Smullyan] A disjoint pair (A,B) of c.e. sets of
natural numbers is effectively inseparable (or, simply, e.i.) if there
exists a partial computable function ψ(u, v) (called a productive
function for the pair) such that

(∀u, v)[A ⊆ Wu &B ⊆ Wv &Wu ∩Wv = ∅ ⇒
ψ(u, v) ↓ &ψ(u, v) /∈ Wu ∪Wv ].

R. Smullyan. Theory of Formal Systems. Princeton University
Press, Princeton, New Jersey, 1961. Annals of Mathematical
Studies Vol 47



Applications to formal systems

Let T be any consistent c.e. extension of Robinson’s system R, or
Q. Then

the pair (ThmT ,RefT ) is e.i. (T is said to be an e.i. theory),
where:

ThmT = {α ∈ Sent : T ⊢ α}
RefT = {α ∈ Sent : T ⊢ ¬α}

T is essentially undecidable.

Proof If (A,B), (C ,D) are pairs of disjoint c.e. sets, (A,B) is e.i.,
and (A,B) ⊆ (C ,D) then (C ,D) is e.i.. □



Positive structures, I

By a c.e structure, or a positive structure, A we will mean a
nontrivial algebraic-relational structure for which there exists a
positive presentation, i.e. a structure Aω of the same type as A but
with universe ω and possessing uniformly computable operations,
uniformly c.e. relations, and a c.e. equivalence relation =A which
is a congruence on Aω such that A is isomorphic with Aω divided
by =A (i.e. A ≃ Aω/=A

).

Example The Lindenbaum Boolean algebra LT of the sentences of
a c.e. consistent theory T is (modulo Gödel coding) a positive
Boolean algebra.

A c.e. equivalence relation will be called a ceer.

See [Selivanov 2003] for a masterly introduction to c.e. structures.

V. Selivanov. Positive structures. In S.B. Cooper and S.S. Goncharov,

editors, Computability and Models, pages 321–350. Springer, New York,

2003



Effectively inseparability and Boolean algebras, I

Definition A positive Boolean algebra B is effectively inseparable if
the pair of =B -equivalence classes (0B , 1B) is e.i. (we write for
simplicity xB = [x ]=B

, and 0, 1 are supposed to present the least
and the greatest element of B). (Warning: “e.i.” will tacitly
assume “positive”.)

Example The Lindenbaum algebra LPA of PA is an e.i. Boolean
algebra.

Theorem [Computable Isomorphism Thm for e.i. BAs [Pour-El and
S. Kripke, 1967]]
All e.i. Boolean algebras are computably isomorphic.



Effectively inseparability and Boolean algebras, II

Theorem [Pour El and Kripke, Montagna and S. 1985] If B is an
e.i. Boolean algebra then the following universality properties hold:
B computably embeds

all positive Boolean algebras;

all positive bounded distributive lattices (and all positive
distributive lattices);

all positive posets.

By computable embeddings and computable isomorphisms we
mean of course embeddings and isomorphisms, respectively,
“induced” by computable functions.

Corollary Every e.i. Boolean algebra is locally universal, i.e. the
above universality results (with respect to the classes of positive
structures mentioned in the theorem) hold in every nontrivial
interval of the algebra.

Proof Obvious since every nontrivial interval is an e.i. Boolean
algebra as well.



Effectively inseparability and Boolean algebras, III

Definition If ⪯ is a preordering relation on ω (with ≡ its associated
equivalence relation), then we say that ⪯ is uniformly dense, if
there exists a computable function f such that for every a, b if
a ≺ b then

a ≺ f (a, b) ≺ b,
if a ≡ a′ and b ≡ b′ then f (a, b) ≡ f (a′, b′).

Theorem [Uniform Density Theorem for e.i. Boolean
algebras [Shavrukov and Visser 2014] Every e.i. Boolean algebra B
is uniformly dense, i.e. the preordering ≤B is uniformly dense.

M. B. Pour-El and S. Kripke. Deduction preserving “Recursive

Isomorphisms” between theories. Fund. Math., 61:141–163, 1967

F. Montagna and A. Sorbi. Universal recursion theoretic properties of r.e.

preordered structures. J. Symbolic Logic, 50(2):397–406, 1985

V. Yu. Shavrukov and A. Visser. Uniform density in Lindenbaum
algebras. Notre Dame J. Form. Log., 55(4):569–582, 2014



Going from Boolean algebras to lattices: Effectively inseparabile lattices, I

Definition A positive bounded lattice L is effectively inseparable if
the pair of =L-equivalence classes (0L, 1L) is e.i.. (Again: “e.i.”
assumes “positive”.)

Example The Lindenbaum algebra LHA of Heyting Arithmetic is an
e.i. lattice.

In fact, the Gödel-Gentzen double-negation translation ensures
that there is a computable mapping, which 1-reduces the disjoint
pairs (0PA, 1PA) ≤1 (0HA, 1HA), implying that (0HA, 1HA) is e.i. as
so is (0PA, 1PA).



Effectively inseparability lattices, II

What does it survive when we go from e.i. Boolean algebras to e.i.
lattices?

Of course we cannot expect that all the previous results for
Boolean algebras extend to lattices or even distributive lattices.
For instance:

We cannot expect a computable isomorphism theorem:
lattices can be distributive, non-distributive, Heyting algebras,
Boolean algebras, etc.

“universality” fails. For instance:

Theorem [Andrews and S., 2021] E.i. distributive lattices are
not necessarily universal with respect to the class of positive
distributive lattices.

U. Andrews and A. Sorbi. Effective inseparability, lattices, and

pre-ordering relations. Review of Symbolic Logic, 14 (4) pages

838-865, 2021



Effectively inseparability lattices, III

However, define:

Definition A positive preordering ⪯ is universal, if for every positive
preordering R there exists a computable function f such that

(∀x , y [x R y ⇔ f (x) ⪯ f (y)].

⪯ is is locally universal if every interval [a, b]⪯ wth a ≺ b
computably embeds every positive preorder.
(In other words, from now on, universal means universal with
respect to the class of positive preorders.)

Then in the rest of the talk we will see:

An e.i. lattice L is universal and locally universal (hence, in
going from e.i. Boolean algebras to e.i. lattices, universality
and local universality are preserved only with respect to
positive preorders).

An e.i. lattice is uniformly dense i.e. its preordering relation is
uniformly dense.



The Basic Lemma

[Basic Lemma [Andrews and S.]] Let A be a positive algebra whose
type contains two binary operations +, ·, and two constants
(presented by the numbers) 0, 1 such that + is associative, the pair
of sets (0A, 1A) is e.i. and, for every a,

0 + a =A a+ 0 =A a, a · 0 =A 0, a · 1 =A a.

Then =A is a uniformly finitely precomplete (u.f.p.) ceer.

Corollary If L is an e.i. lattice then the ceer =L is u.f.p. .



Uniformly finitely precompleteness

Definition [Montagna 1982, Shavrukov 1996] A nontrivial
equivalence relation E on ω is uniformly finitely precomplete
(u.f.p.) if it has a u.f.p. totalizer, i.e. a (total) computable
function f (D, e, x) such that

(∀D, e, x) [φe(x) ↓ &φe(x) ∈ [D]E ⇒ φe(x) E f (D, e, x)] .

F. Montagna. Relative precomplete numerations and arithmetic. J.

Philosphical Logic, 11(4):419–430, 1982

V. Yu. Shavrukov. Remarks on uniformly finitely precomplete positive

equivalences. Math. Log. Quart., 42:67–82, 1996



Proof of the Basic Lemma: Need to find a totalizer f (D, e, x) such that

φe(x) ↓∈ [D]=A
⇒ f (D, e, x) =A φe(x)

Let p be a (total) productive function for (0A, 1A). Given D, e, x
and d ∈ D (here the numbers ud ,D,e,x and vd ,D,e,x form a
computable set of fixed points we control by the Recursion
Theorem: for simplicity write u = ud ,D,e,x and v = vd ,D,e,x) let:

Wu =

{
0A ∪ {p(u, v)}, if we first see φe(x) =A d ,

0A, otherwise

Wv =

{
1A ∪ {p(u, v)}, if we first see φe(x) =A d ′ ∈ D, d ′ ̸= d ,

1A otherwise

So:
• if φe(x) =A d first, then p(u, v) =A 1,
• if φe(x) =A d ′ first to a d ′ ∈ D, d ′ ̸= d , then p(u, v) =A 0.

It follows that f (D, e, x) =
∑

d ′∈D d ′ · p(ud ′,D,e,x , vd ′,D,e,x) is a
suitable u.f.p. totalizer.



First application of e.i-ness: universality with respect to the positive preorderings

Theorem [Universality Theorem [Andrews and S.]]
If L is an e.i. lattice then L is universal.

Remark The lattice structure is needed! There exists an e.i.
bounded upper semi-lattice U such that ≤U is not universal,
[Andrews and S.].

However, distributivity is not needed!

Corollary Every e.i. lattice is locally universal.

Proof Let L be an e.i. lattice and let a <L b in L. It is easy to see
that every disjoint pair of equivalence classes of a u.f.p. ceer is
(uniformly) e.i. .
Therefore, the pair (aL, bL) is e.i., and so the interval [a, b]≤L

is an
e.i. bounded lattice, and therefore universal, by the theorem.



Sketch of proof of the Universality Theorem, I

A preliminary observation:

Claim If L is e.i., then there is a computable function
k(a, b,D, e, x) (called a local u.f.p. totalizer) so that

a ≤L b ⇒ k(a, b,D, e, x) ∈ [a, b]≤L

and if φe(x) =L d ∈ D for some d ∈ D then

k(a, b,D, e, x) =L (d ∧ b) ∨ a.

In particular, if φe(x) =L d ∈ D for some d ∈ D with d ∈ [a, b]≤L
,

then k(a, b,D, e, x) =L d .

Proof Let k(a, b,D, e, x) = (j(D, e, x) ∧ b) ∨ a, where j(D, e, x) is
a u.f.p. totalizer of =L.



Sketch of proof of the Universality Theorem, II

Let R be a given positive preorder. We need a computable
function f such that

m R n ⇔ f (m) ≤L f (n).

How to define f (n), supposing we have f (j), for all j < n?
Let us denote by σ any generic pre-ordering configuration that one
can have on the interval [0, n] of natural numbers, with λ denoting
the antichain (which we may assume is also the configuration of R
at stage 0). Let Xσ be the set of elements strictly σ-below n, and
let Yσ be the set of elements which are strictly σ-above n.
Partially order these configurations by τ ⪯ σ if Xτ ⊆ Xσ and
Yτ ⊆ Yσ. Denote aσ =

∨
f (Xσ) and bσ =

∧
f (Yσ).

For each such σ we have a dedicated fixed point eσ which we
control by the Recursion Theorem.



Sketch of proof of the Universality Theorem, III

Let k(a, b,D, e, x) be a local u.f.p. totalizer for =L , and define
xν = k(aν , bν , {0, 1}, eν , 0) for the leaf ν, corresponding to the
total preordering on [0, n]).

Finally, for every σ define

xσ = k(aσ, bσ, {0, 1, xτ : σ ≺ τ}, eσ, 0)

and
f (n) = xλ.

We now specify how to compute φeσ(0) (by stages, starting from
φeσ(0) ↑).

At stage s + 1, if the preordering configuration of R at s was σ,
and at s + 1 it has evolved to τ (with clearly σ ≺ τ), then define
(as φeσ(0) is still undefined)

φeσ(0) = xτ .

So, xσ =L xτ . Notice that this leaves φeτ (0) still undefined.



Sketch of proof of the Universality Theorem, IV

By properties of the local u.f.p. totalizer, and by induction, it is
easy to see that xλ =L xτ and f (n) = xλ =L xτ ∈ [aτ , bτ ]≤L

.

Eventually we stop acting on f (n), and we stop when we make a
definition φeσ(0) = xρ where ρ is the final preordering
configuration of R on [0, n].

Thus we get, for all m < n,

m R n ⇒ f (m) ≤L f (n) and n R m ⇒ f (n) ≤L f (m).

On the other hand at no stage s does the construction show that
f (m) ≤L f (n), but m�Rn. Should we see this, we would be able at
that stage to take advantage of the possibility of making more
definitions for some of those φeρ(0) which are still undefined to
force f (m) =L 1 and f (n) =L 0, thus getting 0 =L 1, ”killing” the
construction. (Notice that φeν (0) is certainly undefined, unless we
have defined it already to kill already the construction.) □



Second application of e.i.-ness: uniform density

Theorem [Uniform Density Theorem for e.i. lattices [Andrews and
S.]]
If L is an e.i. lattice then L is uniformly dense, i.e. the associated
pre-ordering relation ≤L is uniformly dense.



Sketch of proof of the Uniform Density Theorem, I

By the Basic Lemma we have a computable function k(D, e, x)
witnessing that =L is u.f.p. Let {ea,b : a, b ∈ ω} be a computable
list of indices we control by the Recursion Theorem, and define

f (a, b) = (a ∨ j(a, b)) ∧ b,

where

j(a, b) = k(Da,b, ea,b, 0)

Da,b = {a, b, j(a′, b′) : ⟨a′, b′⟩ < ⟨a, b⟩}



How to compute the various φea,b(0):

j(a, b) = k(Da,b, ea,b, 0), Da,b = {a, b, j(a′, b′) : ⟨a′, b′⟩ < ⟨a, b⟩} Sketch II

Recall: f (a, b) = (a ∨ j(a, b)) ∧ b, j(a, b) = k(Da,b, ea,b, 0).

At step s we consider all pairs (a, b) with ⟨a, b⟩ ≤ s, for which
φea,b(0) is still undefined:

1 for each such pair (a, b) let ⟨am, bm⟩ < ⟨a, b⟩ (if it exists)
have least Cantor number in the =2

L-class of (a, b). If so,
define φea,b(0) = j(am, bm). As k is a totalizer, this makes
j(a, b) =L j(am, bm) and thus f (am, bm) =L f (a, b);

2 if after this, ⟨a, b⟩ ≤ s is still a pair such that φea,b(0) is
undefined and a ≤L b at s then

if f (a, b) =L a (at s) then define φea,b(0) = b: this forces
j(a, b) =L b and thus a =L b;
if f (a, b) =L b (at s) then define φea,b(0) = a: this forces
j(a, b) =L a and thus, again, a =L b.



Sketch of proof of the Uniform Density Theorem, III

Verifications:

f is well defined on =2
L-classes by Clause 1: If a =L b then

f (a, b) =L a, and thus f is well defined in this case.
Assume a��=Lb: then as Clause 2 does not happen (since it
would force a =L b), we have that f (a, b) =L f (am, bm) where
(am, bm) has least Cantor number in the =2

L-class of (a, b) at
stage s.

If a <L b then a <L f (a, b) <L b: notice that we have
a ≤L f (a, b) ≤L b for free as a ≤L b. As f is well defined on
=2

L-class, we may assume that ⟨a, b⟩ is least among the pairs
in the =2

L-class of (a, b). So we never use Clause 1 to define
f (a, b).
If a <L f (a, b) <L b does not hold then time will come when
Clause 2 would force a =L b, a contradiction. □



Lindenbaum lattices of sentences, I

Definition A lattice of sentences is a positive lattice LC,T , where T
is a (classical or intuitionistic) formal system; the universe C is
presented by a c.e. set of sentences identified with ω, with
operations induced by the propositional connectives ∨ and ∧; the
pre-ordering relation ≤LC,T is induced by →T :

α ≤LC,T β if T ⊢ α→ β,

α <LC,T β if T ⊢ α→ β but T ̸⊢ β → α;

and its equality relation =LC,T induced by ↔T :

α =LC,T β if T ⊢ α↔ β.

Example (Motivating Example)

T is any classical consistent c.e. extension of Robinson’s Q (or R),
and C = Σn-sentences, for some n ≥ 1, or C=all sentences.



Applications of effective inseparability to lattices of sentences, I

We shall consider positive bounded lattices of sentences LC,T ,
where, via coding, 0LC,T consists of the sentences of C refuted by
T , and 1LC,T30

consists of the sentences of C proved by T .

By the Local Universality Theorem and the Uniform Density
Theorem, one can show that ≤LC,T is locally universal and
uniformly dense by simply showing that the pair (0LC,T , 1LC,T ) is
e.i..

So it is possible to derive, using only computability-theoretic
methods, results on density and uniform density relative to well
known lattices of sentences.

See the paper by [Shavrukov and Visser 2014] for a thorough
investigation of uniform density and lattices of sentences, and the
relevance of this topic to proof theory and logic.



How to prove e.i.-ness

In most cases it is enough to show that for each disjoint pair
(A0,A1) of c.e. sets, we can find “polynomials” s0, s1, t0, t1 such
that, taking

β(x) := ∃y ∃y⃗ ≤ y (s0(x , y⃗) = t0(x , y⃗)

∧ ∀z⃗ ≤ y) (s1(x , z⃗) ̸= t1(x , z⃗)))

we have (A0,A1) ⊆ (X0,X1), where

X0 = {n : T ⊢ β(n)},
X1 = {n : T ⊢ ¬β(n)}.

Since (X0,X1) ≤m (1LT , 0LT ), it is clear that if (A0,A1) was
chosen to be e.i. then the pair (0LT , 1LT ) is e.i..



Applications of effective inseparability to lattices of sentences, II

V. Yu. Shavrukov and A. Visser. Uniform density in Lindenbaum
algebras. Notre Dame J. Form. Log., 55(4):569–582, 2014

D. Pianigiani and A. Sorbi. A note on uniform density in weak
arithmetical theories. Arch. Math. Logic, 2021



Local universality and uniform density for lattices of sentences LC,T , known cases I

Already known examples:

1 the lattice LC,T is known already to be locally universal and
uniformly dense if LC,T is an e.i. Boolean algebra:
for instance if T is a consistent c.e. extension of Q or R, and
C = ∆n, with n ≥ 2, or C=all sentences.

For local universality see [Montagna and S.]; for uniform
density [Shavrukov and Visser].

2 =LC,T is uniformly dense if =LC,T is a precomplete ceer: for
instance if T is a consistent c.e. extension of I∆0 + exp and
C = Σn with n ≥ 1.

See [Shavrukov and Visser].



Local universality and uniform density, known cases II

Precompleteness is a stronger notion than u.f.p.: an equivalence
relation E is precomplete if there exists a computable function
f (e, x) such that

(∀e, x) [φe(x) ↓⇒ φe(x) E f (e, x)] .

If T is a consistent c.e. extension of I∆0 + exp and n ≥ 1 then
LΣn,T is precomplete because T has a truth predicate for the Σn

formulas.



Local universality and uniform density, new cases I

New examples using effective inseparability of (0LL , 1LL)

In addition to local universality also for the previous examples
when not already known notice:

1 If T is any consistent c.e. extension of Q or R and C = Σn

with n ≥ 1, then
LC,T is locally universal and uniformly dense.

This was open, since Shavrukov and Visser’s proof for
I∆0 + exp, based on prencompleteness, cannot be applied,
because it is still an open problem whether equality of LΣ1,Q is
precomplete.

2 If T is any consistent c.e. extension of Buss’s weak system of
arithmetic S1

2 , then L∃Σb
1 ,T

is locally universal, and (solving a

problem in [Shavrukov and Visser]) uniformly dense.



Local universality and uniform density, new cases II

How about lattices of sentences of the form LC,T , where T is an
intuitionistic consistent c.e. extension of iQ or iR?

Of course Heyting Arithmetic LHA is locally universal and
uniformly dense, being an e.i. lattice.

For classes of sentences, The problem here is that it does not make
too much sense to talk about C being Σn, because this class is not
closed, modulo provable equivalence, under connectives.

We must look at different hierarchies of formulas, for example at
Burr’s hierarchies, and choose among the classes C of sentences
which are closed under connectives.

Of course,



Local universality and uniform density, V

For instance if C = Φn with n ≥ 3, or C = Θn with n ≥ 2 (these
classes refer to Burr’s hierarchies of formulas) then LC,T is locally
universal and uniformly dense.

Φ0 := ∆0

Φ1 := Σ1

Φ2 := Π2

for n ≥ 2, let Φn+1 be inductively defined by
Φn ⊆ Φn+1

if φ ∈ Φn, ψ ∈ Φn+1 then φ→ ψ ∈ Φn+1

if φ ∈ Φn+1 then (∀x)φ ∈ Φn+1

if φ,ψ ∈ Φn+1 then φ ∧ ψ,φ ∨ ψ ∈ Φn+1

if φ ∈ Φn−1 then (∃x)φ ∈ Φn+1.

Θ0 = ∆0

Θ1 = Σ1

For n ≥ 1
Θn ⊆ Θn+1

Θn+1 is closed under ∧,∨, ∃, ∀
if φ ∈ Θn and ψ ∈ Θn+1 then

φ→ ψ ∈ Θn+1.

W. Burr. The intuitionistic arithmetical hierarchy. In Logic
Colloquium ’99, volume 17 of Lect. Notes Log., pages 51–59.
Assoc. Symbol. Logic, Urbana, IL, 2004



Disappointments and Problems

We know that all e.i. Boolean algebras are computably isomorphic,
but nothing like this holds of lattices.

We have that LΣ1,PA is not computably isomorphic with LΣn,PA, for
any n > 1 (in fact there is no isomorphism at all). This is true
because PA is Σ1-valid, and then the top element of LΣ1,PA is
join-irreducible, whereas if n > 1 then the top element of LΣn,PA is
join-reducible.

Problem [[Shavrukov-Visser]] Are all the e.i. lattices LΣn,PA

computably isomorphic with each other for all n > 1?

Notice however:
Theorem [[Montagna and S.]] For n > 1 these lattices LΣ1,PA are
universal with respect to the class of of positive bounded
distributive lattices.

Problem Can effective inseparability help to provide more
embedding results of positive lattices (and not only positive
preorderings) into e.i. lattices?



Thanks

Thanks to Andrew and the organizers for this delightful and
precious meeting . . .

. . . and thanks, Ted, for everything!


