Computable representations of exchangeable graphs

Nathanael Ackerman

Joint Work With:
Cameron Freer
Rehana Patel

Computability and Combinatorics
May 20, 2023

Algebraic Closure and Definable Closure

Motivation

- Algebraic closure (acl) and definable closure (dcl) provide natural characterizations of a "neighborhood" of a set.
- A structure has trivial dcl when the dcl of every finite set is itself. (This is equivalent to having trivial acl.)
- The property of a structure having trivial dcl has played an important role in combinatorial model theory and descriptive set theory.

Some characterizations in terms of this property:

- universal graphs with forbidden subgraphs (Cherlin-Shelah-Shi, 1999)
- invariant measures concentrated on an isomorphism class (AFP, 2016)
- structurable equivalence relations (Chen-Kechris, 2018)

First Order Definable Closure

Suppose \mathcal{A} is an \mathcal{L}-structure and $A_{0} \subseteq \mathcal{A}$
The first order definable closure of A_{0} is the smallest set $\mathrm{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(A_{0}\right) \subseteq \mathcal{A}$ containing A_{0} such that whenever

- $\varphi(\bar{x} ; \bar{y})$ is a first order \mathcal{L}-formula,
- $\bar{a} \in A_{0}$ is of the same type as \bar{x},
- $|\{\bar{b}: \mathcal{A} \models \varphi(\bar{a} ; \bar{b})\}|=1$, and
- $\mathcal{A} \models \varphi(\bar{a} ; \bar{b})$
then $\bar{b} \subseteq \operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(A_{0}\right)$.
Lemma
$\operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}=\operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(\operatorname{dc|}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(A_{0}\right)\right)$.
In particular $\operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}\left(A_{0}\right)$ is the smallest set containing A_{0} closed under application of $\mathrm{dcl}_{\mathcal{L}, \omega}^{1}(\mathcal{L})$.

Example of First Order Definable Closure

Example

If \mathcal{L} is a language with functions and \mathcal{M} is a \mathcal{L}-structure. Then for any $A_{0} \subseteq M$ we have $\operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(A_{0}\right)$ contains the functional closure of A_{0}.

Example of First Order Definable Closure

Example

If \mathcal{L} is a language with functions and \mathcal{M} is a \mathcal{L}-structure. Then for any $A_{0} \subseteq M$ we have $\operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(A_{0}\right)$ contains the functional closure of A_{0}.

Example

Consider the structure (\mathbb{N}, S) where S is the binary relation which holds precisely on $S(a, a+1)$ for $a \in \mathbb{N}$.

We then have $\operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}(\emptyset)=\mathbb{N}$.

Example of First Order Definable Closure

Example

If \mathcal{L} is a language with functions and \mathcal{M} is a \mathcal{L}-structure. Then for any $A_{0} \subseteq M$ we have $\operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(A_{0}\right)$ contains the functional closure of A_{0}.

Example

Consider the structure (\mathbb{N}, S) where S is the binary relation which holds precisely on $S(a, a+1)$ for $a \in \mathbb{N}$.

We then have $\operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}(\emptyset)=\mathbb{N}$.

Example

Consider the structure (\mathbb{Z}, S) where S is the binary relation which holds precisely on $S(a, a+1)$ for $a \in \mathbb{Z}$.

We then have $\operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}(\emptyset)=\emptyset$ as there is an automorphism taking any a to b in \mathbb{Z}.

Further for any element $z \in \mathbb{Z}, \operatorname{dcl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}(\{z\})=\emptyset$.

First Order Algebraic Closure

Suppose \mathcal{A} is an \mathcal{L}-structure and $A_{0} \subseteq \mathcal{A}$
The first order algebraic closure of A_{0} is the smallest set $\operatorname{acl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(A_{0}\right) \subseteq \mathcal{A}$ containing A_{0} such that whenever

- $\varphi(\bar{x} ; \bar{y})$ is a first order \mathcal{L}-formula,
- $\bar{a} \subseteq A_{0}$ is of the same type as \bar{x},
- $\{\bar{b}: \mathcal{A} \models \varphi(\bar{a} ; \bar{b})\}$ is finite, and
- $\mathcal{A} \models \varphi(\bar{a} ; \bar{b})$
then $\bar{b} \subseteq \operatorname{acl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(A_{0}\right)$.
Lemma
$\operatorname{acl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}=\operatorname{acl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(\operatorname{acl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(A_{0}\right)\right)$.
In particular $\operatorname{acl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}\left(A_{0}\right)$ is the smallest set containing A_{0} closed under application of $\operatorname{acl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}$.

Example of First Order Algebraic Closure

Example

Consider the binary tree

Example of First Order Algebraic Closure

Example

Consider the binary tree

Example
Suppose K is a an algebraicly closed field. Then for any $K_{0} \subseteq K$, $\operatorname{acl}_{\mathcal{L}_{\omega, \omega}(\mathcal{L})}^{1}\left(K_{0}\right)$ is the algebraic closure of K_{0}.

Background

Multi-Sorted Languages

We work with many-sorted languages and structures.
(We could instead encode each sort using a unary relation symbol. This would not affect most of our results, but we are also interested in how model-theoretically complicated the structures we build are, and if we do not allow sorts then our lower bound on the complexity of algebraic closure will not yield an \aleph_{0}-categorical structure.)

Let \mathcal{L} be a (many-sorted) language, let \mathcal{A} be an \mathcal{L}-structure, and suppose that \bar{a} is a tuple of elements of \mathcal{A}. We say that the type of \bar{a} is $\prod_{i \leq n} X_{i}$ when $\bar{a} \in \prod_{i \leq n}\left(X_{i}\right)^{\mathcal{A}}$, where each of X_{0}, \ldots, X_{n-1} is a sort of \mathcal{L}.

The type of a tuple of variables is the product of the sorts of its constituent variables (in order). The type of a relation symbol is defined to be the type of the tuple of its free variables, and similarly for formulas.

Write $(\forall \bar{x}: X)$ and $(\exists \bar{x}: X)$ to quantify over a tuple of variables \bar{x} of type X.

Computable Languages and Structures

Let $\mathcal{L}=\left(\left(X_{j}\right)_{j \in J},\left(R_{i}\right)_{i \in I}\right)$ be a language, where $I, J \in \mathbb{N} \cup\{\mathbb{N}\}$ and $\left(X_{j}\right)_{j \in J}$ and $\left(R_{i}\right)_{i \in I}$ are collections of sorts and relation symbols, respectively.

Let ty $\mathcal{L}_{\mathcal{L}}: I \rightarrow J^{<\omega}$ satisfy $\operatorname{ty}_{\mathcal{L}}(i)=\left(j_{0}, \ldots, j_{n-1}\right)$ for all $i \in I$, where the type of R_{i} is $\prod_{k<n} X_{j_{k}}$.
\mathcal{L} is a computable language when $\mathrm{ty}_{\mathcal{L}}$ is a computable function. For each computable language, we fix a computable encoding of all first-order formulas of the language.
\mathcal{A} is a computable \mathcal{L}-structure when it is an \mathcal{L}-structure with computable underlying set such that the sets $\left\{(a, j): a \in X_{j}^{\mathcal{A}}\right\}$ and $\left\{(\bar{b}, i): \bar{b} \in R_{i}^{\mathcal{A}}\right\}$ are computable subsets of the appropriate domains.

Codes for Computable Languages and Structures

We say $c \in \mathbb{N}$ is a code for a structure if

- $\{c\}(0)$ is a code for a computable language, and
- $\{c\}(1)$ is a code for a computable structure in that language.

In this case, write

- \mathcal{L}_{c} for the language that $\{c\}(0)$ codes,
- \mathcal{M}_{c} for the structure that $\{c\}(1)$ codes, and
- T_{c} for the first-order theory of \mathcal{M}_{c}.

We let CompStr be the collection of $c \in \mathbb{N}$ that are codes for structures.

Formula by formula analysis

Sets encoding 1-step algebraic or definable closure

- $\mathrm{CL}:=\{(c, \varphi(\bar{x} ; \bar{y}), \bar{a}, k): c \in \operatorname{CompStr}, \varphi(\bar{x} ; \bar{y})$ a first-order \mathcal{L}_{c}-formula, $\bar{a} \in \mathcal{M}_{c}$ of the same type as \bar{x}, and $k \in \mathbb{N} \cup\{\infty\}$ with $\left.\left|\mathrm{c}_{\varphi, \mathcal{M}_{c}}(\bar{a})\right|=k\right\}$.
- ACL $:=\{(c, \varphi(\bar{x} ; \bar{y}), \bar{a}):(\exists k \in \mathbb{N})(c, \varphi(\bar{x} ; \bar{y}), \bar{a}, k) \in \mathrm{CL}\}$.
- $\mathrm{DCL}:=\{(c, \varphi(\bar{x} ; \bar{y}), \bar{a}):(c, \varphi(\bar{x} ; \bar{y}), \bar{a}, 1) \in \mathrm{CL}\}$.
- For $Y \in\{C L, A C L, D C L\}$ and $n \in \mathbb{N}$ let
$Y_{n}:=\{t \in Y$: the second coordinate of t is a Boolean combination of Σ_{n}-formulas $\}$.
- For $Y \in\{\mathrm{CL}, \mathrm{ACL}, \mathrm{DCL}\} \cup\left\{\mathrm{CL}_{n}, \mathrm{ACL}_{n}, \mathrm{DCL}_{n}\right\}_{n \in \mathbb{N}}$ and $c \in$ CompStr, let $Y^{c}:=\left\{u:(c)^{\wedge} u \in Y\right\}$, i.e., select those elements of Y whose first coordinate is c, and then remove this first coordinate.

Sets encoding algebraic or definable closure

Let $c \in$ CompStr, Φ be a set of first-order \mathcal{L}_{c}-formulas and $X \subseteq \mathcal{M}_{c}$.
Define $\operatorname{acl}_{\Phi, c}^{n}(X)$ for $n \in \mathbb{N}$ by induction as follows.

- $\operatorname{acl}_{\Phi, c}^{0}(X):=X$,
- $\operatorname{acl}_{\Phi, c}^{1}(X):=X \cup \bigcup\left\{\bar{b} \subseteq \mathcal{M}_{c}:(\exists \varphi(\bar{x} ; \bar{y}) \in \Phi)(\exists \bar{a} \subseteq B)\right.$

$$
\left.\mathcal{M}_{c} \models \varphi(\bar{a} ; \bar{b}) \wedge(c, \varphi(\bar{x} ; \bar{y}), \bar{a}) \in \mathrm{ACL}\right\},
$$

$-\operatorname{acl}_{\Phi, c}^{n+1}(X):=\operatorname{acl}_{\Phi, c}^{1}\left(\operatorname{acl}_{\Phi, c}^{n}(X)\right)$.
Let $\operatorname{acl}_{\Phi, c}(X):=\bigcup_{i \in \mathbb{N}} \operatorname{acl}_{\Phi, c}^{i}(X)$.
Define $\operatorname{dcl}_{\Phi, c}^{n}(X)$ for $n \in \mathbb{N}$ by induction as follows.

- $\mathrm{dcl}_{\Phi, c}^{0}(X):=X$,
- $\operatorname{dcl}_{\Phi, c}^{1}(X):=X \cup \bigcup\left\{\bar{b} \subseteq \mathcal{M}_{c}:(\exists \varphi(\bar{x} ; \bar{y}) \in \Phi)(\exists \bar{a} \subseteq X)\right.$

$$
\left.\mathcal{M}_{c} \models \varphi(\bar{a} ; \bar{b}) \wedge(c, \varphi(\bar{x} ; \bar{y}), \bar{a}) \in \mathrm{DCL}\right\},
$$

- $\mathrm{dcl}_{\Phi, c}^{n+1}(X):=\mathrm{dcl}_{\Phi, c}^{1}\left(\mathrm{dcl}_{\Phi, c}^{n}(X)\right)$.

Let $\operatorname{dcl}_{\Phi, c}(X):=\bigcup_{i \in \mathbb{N}} \mathrm{dcl}_{\Phi, c}^{i}(X)$.

In order to study the computability-theoretic content of the algebraic and definable closure operators, we will consider the following encodings of their respective graphs.

Definition

Let $c \in$ CompStr and let Φ be a set of first-order \mathcal{L}_{c}-formulas. Define

$$
\begin{aligned}
\operatorname{acl}_{\Phi, c} & :=\left\{(a, A): a \in \operatorname{acl}_{\Phi, c}(A) \text { and } A \text { is a finite subset of } \mathcal{M}_{c}\right\} \\
\operatorname{dcl}_{\Phi, c}: & :=\left\{(a, A): a \in \operatorname{dcl}_{\Phi, c}(A) \text { and } A \text { is a finite subset of } \mathcal{M}_{c}\right\}
\end{aligned}
$$

Complexity of Algebraic and Definable

Closure

The complexity of $C L, A C L$, and $D C L$

CompStr is a Π_{2}^{0} class.
Therefore the sets $\mathrm{CL}, \mathrm{ACL}$, DCL must be computability-theoretically complicated.

We therefore instead consider how complex $\mathrm{CL}^{c}, \mathrm{ACL}^{c}, \mathrm{DCL}^{c}$ can be, when $c \in$ CompStr.

Relationships Between $\mathrm{CL}^{c}, \mathrm{ACL}^{c}$ and DCL^{c}

Lemma
Uniformly in $c \in$ CompStr and $n \in \mathbb{N}$, the set

$$
\left\{(\varphi(\bar{x} ; \bar{y}), \bar{a}, k) \in \mathrm{CL}_{n}^{c}: k \in \mathbb{N}, k \geq 1\right\}
$$

is computably enumerable from $\mathrm{DCL}_{n}{ }^{c}$.

Relationships Between $\mathrm{CL}^{c}, \mathrm{ACL}^{c}$ and DCL^{c}

Lemma
Uniformly in $c \in$ CompStr and $n \in \mathbb{N}$, the set

$$
\left\{(\varphi(\bar{x} ; \bar{y}), \bar{a}, k) \in \mathrm{CL}_{n}^{c}: k \in \mathbb{N}, k \geq 1\right\}
$$

is computably enumerable from $\mathrm{DCL}_{n}{ }^{c}$.
Lemma
Uniformly in $c \in$ CompStr and $n \in \mathbb{N}$, the set

$$
\left\{(\varphi(\bar{x} ; \bar{y}), \bar{a}, k) \in \mathrm{CL}_{n}^{c}: k=0\right\}
$$

is computably enumerable from $\mathrm{DCL}_{n}{ }^{c}$.

Relationships Between $\mathrm{CL}^{c}, \mathrm{ACL}^{c}$ and DCL^{c}

Lemma

Uniformly in $c \in$ CompStr and $n \in \mathbb{N}$, the set

$$
\left\{(\varphi(\bar{x} ; \bar{y}), \bar{a}, k) \in \mathrm{CL}_{n}^{c}: k \in \mathbb{N}, k \geq 1\right\}
$$

is computably enumerable from $\mathrm{DCL}_{n}{ }^{c}$.
Lemma
Uniformly in $c \in$ CompStr and $n \in \mathbb{N}$, the set

$$
\left\{(\varphi(\bar{x} ; \bar{y}), \bar{a}, k) \in \mathrm{CL}_{n}^{c}: k=0\right\}
$$

is computably enumerable from $\mathrm{DCL}_{n}{ }^{c}$.
Lemma
Uniformly in $c \in \operatorname{CompStr}$ and $n \in \mathbb{N}$, there are computable reductions in both directions between $\mathrm{ACL}_{n}^{c} \amalg \mathrm{DCL}_{n}^{c}$ and CL_{n}^{c}.

Relationships Between ACL^{c} and $\mathrm{acl}_{\Phi, c}$

Proposition

Uniformly in the parameter $c \in$ CompStr and an encoding of a computable set Φ of Σ_{n} first-order \mathcal{L}_{c}-formulas, the set acl $l_{, c}$ is Σ_{1}^{0} in ACL_{0}^{c}.

Proof Sketch.
Let $A \subseteq \mathcal{M}_{c}$ be a finite set. Note that $b \in \operatorname{acl}_{\Phi, c}(A)$ if and only if there is a finite sequence $b_{0}, \ldots, b_{n-1} \in \mathcal{M}_{c}$ where $b=b_{n-1}$ such that for each $i<n$, there exists a formula $\varphi_{i}(\bar{x} ; \bar{y}) \in \Phi$, a tuple \bar{a}_{i} with entries from $A \cup\left\{b_{j}\right\}_{j<i}$, and a tuple $\mathbf{d}_{i} \in \mathcal{M}_{c}$ satisfying

- $\left(\varphi_{i}(\bar{x} ; \bar{y}), \bar{a}_{i}\right) \in \mathrm{ACL}_{n}^{c}$,
- $\mathcal{M}_{c}=\varphi_{i}\left(\bar{a}_{i} ; \mathbf{d}_{i}\right)$, and
- $b_{i} \in \mathbf{d}_{i}$.

Hence, uniformly in c, the set $\operatorname{acl}_{\Phi, c}$ is Σ_{1}^{0} in ACL_{n}^{c}.

Relationships Between DCL^{c} and $\mathrm{dcl}_{\Phi, c}$

Proposition

Uniformly in the parameter $c \in$ CompStr and an encoding of a computable set Φ of Σ_{n} first-order \mathcal{L}_{c}-formulas, the set $\mathrm{dcl}_{\Phi, c}$ is Σ_{1}^{0} in DCL_{0}^{c}.

Proof.
Let $A \subseteq \mathcal{M}_{c}$ be a finite set. Note that $b \in \operatorname{dcl}_{\Phi, c}(A)$ if and only if there is a finite sequence $b_{0}, \ldots, b_{n-1} \in \mathcal{M}_{c}$ where $b=b_{n-1}$ such that for each $i<n$, there exists a formula $\varphi_{i}(\bar{x} ; \bar{y}) \in \Phi$, a tuple \bar{a}_{i} with entries from $A \cup\left\{b_{j}\right\}_{j<i}$, and a tuple $\mathbf{d}_{i} \in \mathcal{M}_{c}$ satisfying

- $\left(\varphi_{i}(\bar{x} ; \bar{y}), \bar{a}_{i}\right) \in \mathrm{DCL}_{n}^{c}$,
- $\mathcal{M}_{c}=\varphi_{i}\left(\bar{a}_{i} ; \mathbf{d}_{i}\right)$, and
- $b_{i} \in \mathbf{d}_{i}$.

Hence, uniformly in c, the set dcl ${ }_{\Phi, c}$ is Σ_{1}^{0} in DCL_{n}^{c}.

Bounds For Quantifier-Free Formulas

Upper bounds for quantifier-free formulas

There are straightforward upper bounds on the complexity of ACL_{0}^{c} and DCL_{0}^{c} for $c \in$ CompStr:

Proposition

Uniformly in $c \in$ CompStr, the set ACL_{0}^{c} is a Σ_{2}^{0} class.
Corollary
Uniformly in $c \in$ CompStr and in a computable collection Φ of quantifier-free \mathcal{L}_{c}-formulas, acl ${ }_{\Phi, c}$ is a \sum_{2}^{0}-class.

Proposition

Uniformly in $c \in$ CompStr, the set DCL_{0}^{c} is the intersection of a Π_{1}^{0} and a Σ_{1}^{0} class (in particular, it is a Δ_{2}^{0} class).
As a consequence, DCL_{0}^{c} is computable from 0^{\prime}.
Corollary
Uniformly in $c \in$ CompStr and in a computable collection Φ of quantifier-free \mathcal{L}_{c}-formulas, $\mathrm{dcl}_{\Phi, c}$ is a Σ_{2}^{0}-class.

Lower bounds for quantifier-free formulas: ACL_{0}

These upper bounds are tight - further, via structures that have nice model-theoretic properties:

Proposition

There is a parameter $c \in$ CompStr such that the following hold.
(a) \mathcal{L}_{c} has no relation symbols, i.e., \mathcal{L}_{c} consists only of sorts.
(b) For each ordinal α, the theory T_{c} has $\left(|\alpha+1|^{\omega}\right)$-many models of size \aleph_{α}. In particular, T_{c} is \aleph_{0}-categorical.
(c) $A C L_{0}^{c} \equiv_{1}$ Fin. In particular, ACL_{0}^{c} is a \sum_{2}^{0}-complete set.

Lower bounds for quantifier-free formulas: ACL_{0}

Proof.

Let $\left(\left(e_{i}, n_{i}\right)\right)_{i \in \mathbb{N}}$ be a computable enumeration without repetition of $\{(e, n): e, n \in \mathbb{N}$ and $\{e\}(n) \downarrow\}$.

Let $c \in$ CompStr be such that

- \mathcal{L}_{c} consists of infinitely many sorts $\left(X_{i}\right)_{i \in \mathbb{N}}$ and no relation symbols,
- the underlying set of \mathcal{M}_{c} is \mathbb{N}, and
- for each $i \in \mathbb{N}$, the element i is of sort $X_{e_{i}}$ in \mathcal{M}_{c}.

A model of T_{c} is determined up to isomorphism by the number of elements in the instantiation of each sort.
ACL_{0}^{c} is 1-equivalent to $\left\{e:\left(X_{e}\right)^{\mathcal{M}_{c}}\right.$ is finite $\}$.

Lower bounds for quantifier-free formulas: DCL_{0}

Proposition

There is a parameter $c \in$ CompStr such that the following hold.
(a) The language \mathcal{L}_{c} has one sort and a single binary relation symbol E.
(b) The structure \mathcal{M}_{c} is a countable saturated model of T_{c} with underlying set \mathbb{N}.
(c) For each ordinal α, the theory T_{c} has $(|\alpha+\omega|)$-many models of size \aleph_{α}, and has finite Morley rank.
(d) There is a computable array $\left(U_{k, \ell}\right)_{k, \ell \in \mathbb{N}}$ of subsets of \mathbb{N} such that every countable model of T_{c} is isomorphic to the restriction of \mathcal{M}_{c} to underlying set $U_{k, \ell}$ for exactly one pair (k, ℓ).
(e) The set $\left\{a:(E(x ; y), a) \in \mathrm{DCL}_{0}^{c}\right\}$ has Turing degree $\mathbf{0}^{\prime}$.

Lower bounds for quantifier-free formulas: acl and dcl

Proposition

There is an a \in CompStr and a computable set \equiv of quantifier-free first-order \mathcal{L}_{a}-formulas such that we can compute Fin from acl $\mathrm{E}, \mathrm{a}^{\text {via a }}$ 1-reduction.

In particular, the set acl \equiv, a is Σ_{2}^{0}-complete.

Proposition

There is a parameter $d \in$ CompStr such that \mathcal{L}_{d} contains a ternary relation symbol F and, letting $\Gamma:=\{F(x, y ; z)\}$, we can compute Fin from $\mathrm{dcl}_{\Gamma, d}$ via a 1-reduction.

In particular, the set $\mathrm{dcl}_{\Gamma, d}$ is Σ_{2}^{0}-complete.

Relationship between $\mathrm{ACL}_{0}, \mathrm{DCL}_{0}$ and acl, dcl.

We have upper bounds on the difficulty of computing acl ${ }_{\Phi, c}$ from ACL_{0}^{c}, and of computing $\mathrm{dcl}_{\Phi, c}$ from DCL_{0}^{c}, for Φ a computable set of quantifier-free first-order \mathcal{L}_{c}-formulas.

In general though, merely knowing $\mathrm{acl}_{\Phi, c}$ and $\mathrm{dcl}_{\Phi, c}$ does not lower the difficulty of computing even the Φ-fiber of ACL_{0}^{c} or DCL_{0}^{c}.

Relationship between $\mathrm{ACL}_{0}, \mathrm{DCL}_{0}$ and acl, dcl.

Proposition

There are $c_{0}, c_{1} \in$ CompStr such that the following hold.
(a) The (one-sorted) language $\mathcal{L}_{c_{0}}=\mathcal{L}_{c_{1}}$ contains a ternary relation symbol F and a unary relation symbol U.
(b) $\mathcal{M}_{c_{0}}$ and $\mathcal{M}_{c_{1}}$ have the same underlying set M and agree on all unary relations.
(c) Let $\psi(x, y, z):=F(x, y, z) \wedge \neg F(x, z, y)$, and write $\psi=\{\psi(x, y ; z)\}$. For any $A \subseteq M$,

$$
\operatorname{acl} \Psi_{\Psi, c_{0}}(A)=\left.\operatorname{dc|}\right|_{\Psi, c_{1}}(A)= \begin{cases}M & \text { if } A \cap U \neq \emptyset, \text { and } \\ \emptyset & \text { if } A \cap U=\emptyset .\end{cases}
$$

(d) The set Fin is 1 -reducible to $\mathrm{ACL}_{0}^{c_{0}}$, and so $\mathrm{ACL}_{0}^{c_{0}}$ is a Σ_{2}^{0}-complete set.
(e) $\mathrm{DCL}_{0}^{\boldsymbol{c}_{1}}$ is Turing equivalent to $\mathbf{0}^{\prime}$.

Full Bounds

Computable Morleyization

Lemma

Let \mathcal{L} be a computable language and \mathcal{A} a computable \mathcal{L}-structure. For each $n \in \mathbb{N}$ there is a computable language \mathcal{L}_{n} and a $0^{(n)}$-computable \mathcal{L}_{n}-structure \mathcal{A}_{n} such that

- $\mathcal{L} \subseteq \mathcal{L}_{n} \subseteq \mathcal{L}_{n+1}$,
- \mathcal{A} is the reduct of \mathcal{A}_{n} to the language \mathcal{L},
- for each first-order \mathcal{L}_{n}-formula φ there is a first-order \mathcal{L}-formula ψ_{φ} (of the same type as φ) such that

$$
\mathcal{A}_{n} \models\left(\forall x_{0}, \ldots, x_{k-1}\right) \varphi\left(x_{0}, \ldots, x_{k-1}\right) \leftrightarrow \psi_{\varphi}\left(x_{0}, \ldots, x_{k-1}\right),
$$

where k is the number of free variables of φ, and

- for each first-order \mathcal{L}-formula ψ that is a Boolean combination of Σ_{n}-formulas, there is a first-order quantifier-free \mathcal{L}_{n}-formula φ_{ψ} (of the same type as ψ) such that

$$
\mathcal{A}_{n}=\left(\forall x_{0}, \ldots, x_{k-1}\right) \psi\left(x_{0}, \ldots, x_{k-1}\right) \leftrightarrow \varphi_{\psi}\left(x_{0}, \ldots, x_{k-1}\right),
$$

where k is the number of free variables of ψ.

Upper bounds for Boolean combinations of Σ_{n}-formulas

Let $n \in \mathbb{N}$. Uniformly in $c \in$ CompStr, we have that

- ACL_{n}^{c} is a \sum_{n+2}^{0} set, and
- DCL_{n}^{c} is a Δ_{n+2}^{0} set.

Further, uniformly in $c \in$ CompStr and in a computable collection Φ of first-order \mathcal{L}_{c}-formulas of quantifier rank at most n, we have that

- acl ${ }_{\Phi, c}$ is a Σ_{n+2}^{0} set, and
- dcl $\Phi_{\Phi, c}$ is a Σ_{n+2}^{0} set.

Proof.

By the computable Morleyization, ACL_{n} is equivalent to the relativization of $A C L_{0}$ to the class of structures computable in $0^{(n)}$, and $D C L_{n}$ is equivalent to the relativization of DCL_{0} to the class of structures computable in $\mathbf{0}^{(n)}$.

Therefore by the quantifier-free upper bounds, ACL_{n}^{c} is a $\Sigma_{2}^{0}\left(\mathbf{0}^{(n)}\right)$ class and DCL_{n}^{c} is a $\Delta_{2}^{0}\left(\mathbf{O}^{(n)}\right)$ class. As acl $\Phi_{, c}$ is Σ_{1}^{0} in ACL_{n}^{c} we have acl $l_{\phi, c}$ is also a $\Sigma_{2}^{0}\left(0^{(n)}\right)$ set. As dcl $l_{\phi, c}$ is Σ_{1}^{0} in DCL_{n}^{c} we have dcl $l_{\phi, c}$ is also a $\Sigma_{2}^{0}\left(0^{(n)}\right)$ set.

Directed \mathbb{N}-chains

Let \mathcal{L} be a language containing a sort N and a relation symbol S of type $N \times N$. Let \mathcal{A} be an \mathcal{L}-structure.

Call $\left(N^{\mathcal{A}}, S^{\mathcal{A}}\right)$ a directed \mathbb{N}-chain when it is isomorphic to a single-sorted structure with underlying set \mathbb{N} and language $\{S\}$, in which $S(k, \ell)$ holds precisely when $\ell=k+1$.

In other words, $\left(N^{\mathcal{A}}, S^{\mathcal{A}}\right)$ is a directed \mathbb{N}-chain if there is a (necessarily unique) isomorphism between it and \mathbb{N} with its successor function viewed as a directed graph; write $\widehat{\ell}$ to denote the corresponding element of $N^{\mathcal{A}}$.

Directed \mathbb{N}-chains

Lemma

Let \mathcal{L} be a language containing a sort N and a relation symbol S of type $N \times N$ (and possibly other sorts and relation symbols). Let \mathcal{A} be an \mathcal{L}-structure such that $\left(N^{\mathcal{A}}, S^{\mathcal{A}}\right)$ is a directed \mathbb{N}-chain. Let $k \in \mathbb{N}$ and let $h(\bar{x}, m)$ be an \mathcal{L}-formula that is a Boolean combination of Σ_{k}-formulas, where \bar{x} is of some type X, and m has sort N. Suppose that

$$
\mathcal{A} \models(\forall \bar{x}: X)\left(\exists^{\leq 1} m: N\right)(\exists p: N) S(m, p) \wedge(h(\bar{x}, m) \leftrightarrow \neg h(\bar{x}, p))
$$

Let $H: X^{\mathcal{A}} \times \mathbb{N} \rightarrow\{$ True, False $\}$ be the function where $H(\bar{a}, \ell)=$ True if and only if $\mathcal{A} \models h(\bar{a}, \widehat{\ell})$. Note that $\lim _{\ell \rightarrow \infty} H(\bar{a}, \ell)$ exists for all $\bar{a} \in X^{\mathcal{A}}$. There is an \mathcal{L}-formula $h^{\prime}(\bar{x})$, where \bar{x} is of type X, such that h^{\prime} is a Boolean combination of Σ_{k+1}-formulas and for all $\bar{a} \in X^{\mathcal{A}}$,

$$
\mathcal{A}=h^{\prime}(\bar{a}) \quad \text { if and only if } \quad \lim _{m \rightarrow \infty} H(\bar{a}, m)=\text { True. }
$$

Lower bounds for Boolean combinations of Σ_{n}-formulas

Proposition

Let $n \in \mathbb{N}$ and let \mathcal{L} be a language containing a sort N and a relation symbol S of type $N \times N$ (and possibly other sorts and relation symbols). Suppose \mathcal{A} is an \mathcal{L}-structure that is computable in $\mathbf{0}^{(n)}$ and such that $\left(N^{\mathcal{A}}, S^{\mathcal{A}}\right)$ is a computable directed \mathbb{N}-chain. Then there is a computable language \mathcal{L}^{+}and a computable \mathcal{L}^{+}-structure \mathcal{A}^{+}such that for every relation symbol $R \in \mathcal{L}$ other than S, there is an \mathcal{L}^{+}-formula φ_{R} that is a Boolean combination of Σ_{n}-formulas for which $R^{\mathcal{A}}=\left(\varphi_{R}\right)^{\mathcal{A}^{+}}$.

Proof.

Define \mathcal{L}^{+}to have the same sorts as \mathcal{L}, and such that for each relation symbol $R \in \mathcal{L}$ other than S, there is a relation symbol $R^{+} \in \mathcal{L}^{+}$of type $X \times N^{n}$, where X is the type of R.

For each $R \in \mathcal{L}$ other than S, each tuple $\bar{a} \in X^{\mathcal{A}^{+}}$where X is the type of R, and any $\ell_{0}, \ldots, \ell_{n-1} \in \mathbb{N}$, code n-fold limits of a computable function into whether $\mathcal{A}^{+} \models R^{+}\left(\bar{a}, \widehat{\ell_{0}}, \ldots, \widehat{\ell_{n-1}}\right)$ holds.

Apply the Lemma repeatedly (n times) to obtain the desired formula.

Lower bounds for Boolean combinations of Σ_{n}-formulas

Theorem

For each $n \in \mathbb{N}$, the following hold.
(a) There exists $a \in C o m p S t r$ such that ACL_{n}^{a} is a Σ_{n+2}^{0}-complete set.
(b) There exists $b \in$ CompStr such that $\mathrm{DCL}_{n}^{b} \equiv_{\mathrm{T}} \mathbf{0}^{(n+1)}$.
(c) There exists $c \in C o m p S t r ~ a n d ~ a ~ c o m p u t a b l e ~ s e t ~ \$ ~ o f ~ f i r s t-o r d e r ~$ \mathcal{L}_{c}-formulas, all of quantifier rank at most n such that acl ${ }_{\Phi, c}$ is a Σ_{n+2}^{0}-complete set.
(d) There exists $d \in$ CompStr and a computable set Θ of first-order \mathcal{L}_{d}-formulas, all of quantifier rank at most n, such that dcl $_{\ominus, d}$ is a Σ_{n+2}^{0}-complete set.

Lower bounds for Boolean combinations of Σ_{n}-formulas

Proof Sketch.

Let \mathcal{P} be the structure constructed in the proof of the quantifier-free lower bound on ACL , relativized to the oracle $\mathbf{0}^{(n)}$, i.e., so that \mathcal{P} is computable from $\mathbf{0}^{(n)}$. Let the structure \mathcal{P}^{*} be \mathcal{P} augmented with a sort N (instantiated on a new set of elements) along with a relation symbol S of type $N \times N$, such that $\left(N^{\mathcal{P}^{*}}, S^{\mathcal{P}^{*}}\right)$ is a computable directed \mathbb{N}-chain.

Part (a) then follows by applying the previous proposition to \mathcal{P}^{*} to obtain some computable structure, namely \mathcal{M}_{a} for some $a \in \operatorname{CompStr}$. Then ACL_{n}^{a} is a $\Sigma_{2}^{0}\left(0^{(n)}\right)$-complete set.

Parts (b) - (d) are similar.

Thank You！

4ロ〉4吕〉4 三〉4 三〉

