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Algebraic Closure and Definable Closure



Motivation

I Algebraic closure (acl) and definable closure (dcl) provide natural
characterizations of a “neighborhood” of a set.

I A structure has trivial dcl when the dcl of every finite set is itself.
(This is equivalent to having trivial acl.)

I The property of a structure having trivial dcl has played an important
role in combinatorial model theory and descriptive set theory.

Some characterizations in terms of this property:
◦ universal graphs with forbidden subgraphs (Cherlin–Shelah–Shi, 1999)
◦ invariant measures concentrated on an isomorphism class (AFP, 2016)
◦ structurable equivalence relations (Chen–Kechris, 2018)



First Order Definable Closure

Suppose A is an L-structure and A0 ⊆ A

The first order definable closure of A0 is the smallest set
dcl1Lω,ω(L)(A0) ⊆ A containing A0 such that whenever

I ϕ(x ; y) is a first order L-formula,

I a ∈ A0 is of the same type as x ,

I |{b : A |= ϕ(a; b)}| = 1, and

I A |= ϕ(a; b)

then b ⊆ dcl1Lω,ω(L)(A0).

Lemma
dcl1Lω,ω(L) = dcl1Lω,ω(L)(dcl1Lω,ω(L)(A0)).

In particular dclLω,ω(L)(A0) is the smallest set containing A0 closed under
application of dcl1Lω,ω(L).



Example of First Order Definable Closure

Example
If L is a language with functions andM is a L-structure. Then for any
A0 ⊆ M we have dcl1Lω,ω(L)(A0) contains the functional closure of A0.

Example
Consider the structure (N,S) where S is the binary relation which holds
precisely on S(a, a + 1) for a ∈ N.

We then have dcl1Lω,ω(L)(∅) = N.

Example
Consider the structure (Z,S) where S is the binary relation which holds
precisely on S(a, a + 1) for a ∈ Z.

We then have dcl1Lω,ω(L)(∅) = ∅ as there is an automorphism taking any a
to b in Z.

Further for any element z ∈ Z, dcl1Lω,ω(L)({z}) = ∅.
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First Order Algebraic Closure

Suppose A is an L-structure and A0 ⊆ A

The first order algebraic closure of A0 is the smallest set
acl1Lω,ω(L)(A0) ⊆ A containing A0 such that whenever

I ϕ(x ; y) is a first order L-formula,

I a ⊆ A0 is of the same type as x ,

I {b : A |= ϕ(a; b)} is finite, and

I A |= ϕ(a; b)

then b ⊆ acl1Lω,ω(L)(A0).

Lemma
acl1Lω,ω(L) = acl1Lω,ω(L)(acl1Lω,ω(L)(A0)).

In particular aclLω,ω(L)(A0) is the smallest set containing A0 closed under
application of acl1Lω,ω(L).



Example of First Order Algebraic Closure

Example
Consider the binary tree
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Example
Suppose K is a an algebraicly closed field. Then for any K0 ⊆ K ,
acl1Lω,ω(L)(K0) is the algebraic closure of K0.



Example of First Order Algebraic Closure

Example
Consider the binary tree

•

•

•

• •

•

• •

•

•

• •

•

• •

Example
Suppose K is a an algebraicly closed field. Then for any K0 ⊆ K ,
acl1Lω,ω(L)(K0) is the algebraic closure of K0.



Background



Multi-Sorted Languages

We work with many-sorted languages and structures.

(We could instead encode each sort using a unary relation symbol. This
would not affect most of our results, but we are also interested in how
model-theoretically complicated the structures we build are, and if we do
not allow sorts then our lower bound on the complexity of algebraic closure
will not yield an ℵ0-categorical structure.)

Let L be a (many-sorted) language, let A be an L-structure, and suppose
that a is a tuple of elements of A. We say that the type of a is

∏
i≤n Xi

when a ∈
∏

i≤n(Xi )
A, where each of X0, . . . ,Xn−1 is a sort of L.

The type of a tuple of variables is the product of the sorts of its
constituent variables (in order). The type of a relation symbol is defined to
be the type of the tuple of its free variables, and similarly for formulas.

Write (∀x : X ) and (∃x : X ) to quantify over a tuple of variables x of
type X .



Computable Languages and Structures

Let L =
(
(Xj)j∈J , (Ri )i∈I ) be a language, where I , J ∈ N ∪ {N} and

(Xj)j∈J and (Ri )i∈I are collections of sorts and relation symbols,
respectively.

Let tyL : I → J<ω satisfy tyL(i) = (j0, . . . , jn−1) for all i ∈ I , where the
type of Ri is

∏
k<n Xjk .

L is a computable language when tyL is a computable function. For
each computable language, we fix a computable encoding of all first-order
formulas of the language.

A is a computable L-structure when it is an L-structure with
computable underlying set such that the sets {(a, j) : a ∈ XAj } and
{(b, i) : b ∈ RAi } are computable subsets of the appropriate domains.



Codes for Computable Languages and Structures

We say c ∈ N is a code for a structure if
I {c}(0) is a code for a computable language, and
I {c}(1) is a code for a computable structure in that language.

In this case, write
I Lc for the language that {c}(0) codes,
I Mc for the structure that {c}(1) codes, and
I Tc for the first-order theory ofMc .

We let CompStr be the collection of c ∈ N that are codes for structures.



Formula by formula analysis



Sets encoding 1-step algebraic or definable closure

I CL :=
{

(c , ϕ(x ; y), a, k) : c ∈ CompStr, ϕ(x ; y) a first-order
Lc -formula, a ∈Mc of the same type as x , and k ∈ N ∪ {∞} with
| clϕ,Mc (a)| = k

}
.

I ACL :=
{

(c , ϕ(x ; y), a) : (∃k ∈ N) (c , ϕ(x ; y), a, k) ∈ CL
}
.

I DCL :=
{

(c , ϕ(x ; y), a) : (c , ϕ(x ; y), a, 1) ∈ CL
}
.

I For Y ∈ {CL,ACL,DCL} and n ∈ N let

Yn := {t ∈ Y : the second coordinate of t is a Boolean combination
of Σn-formulas}.

I For Y ∈ {CL,ACL,DCL} ∪ {CLn,ACLn,DCLn}n∈N and
c ∈ CompStr, let Y c := {u : (c)∧u ∈ Y }, i.e., select those elements
of Y whose first coordinate is c , and then remove this first coordinate.



Sets encoding algebraic or definable closure
Let c ∈ CompStr, Φ be a set of first-order Lc -formulas and X ⊆Mc .

Define aclnΦ,c(X ) for n ∈ N by induction as follows.

I acl0Φ,c(X ) := X ,

I acl1Φ,c(X ) := X ∪
⋃{

b ⊆Mc : (∃ϕ(x ; y) ∈ Φ)(∃a ⊆ B)

Mc |= ϕ(a; b) ∧ (c , ϕ(x ; y), a) ∈ ACL},
I acln+1

Φ,c (X ) := acl1Φ,c
(
aclnΦ,c(X )

)
.

Let aclΦ,c(X ) :=
⋃

i∈N acliΦ,c(X ).

Define dclnΦ,c(X ) for n ∈ N by induction as follows.

I dcl0Φ,c(X ) := X ,

I dcl1Φ,c(X ) := X ∪
⋃{

b ⊆Mc : (∃ϕ(x ; y) ∈ Φ)(∃a ⊆ X )

Mc |= ϕ(a; b) ∧ (c , ϕ(x ; y), a) ∈ DCL},
I dcln+1

Φ,c (X ) := dcl1Φ,c
(
dclnΦ,c(X )

)
.

Let dclΦ,c(X ) :=
⋃

i∈N dcliΦ,c(X ).



In order to study the computability-theoretic content of the algebraic and
definable closure operators, we will consider the following encodings of
their respective graphs.

Definition
Let c ∈ CompStr and let Φ be a set of first-order Lc -formulas. Define

aclΦ,c := {(a,A) : a ∈ aclΦ,c(A) and A is a finite subset of Mc}

dclΦ,c := {(a,A) : a ∈ dclΦ,c(A) and A is a finite subset of Mc}



Complexity of Algebraic and Definable

Closure



The complexity of CL, ACL, and DCL

CompStr is a Π0
2 class.

Therefore the sets CL,ACL,DCL must be computability-theoretically
complicated.

We therefore instead consider how complex CLc ,ACLc ,DCLc can be,
when c ∈ CompStr.



Relationships Between CLc , ACLc and DCLc

Lemma
Uniformly in c ∈ CompStr and n ∈ N, the set

{(ϕ(x ; y), a, k) ∈ CLc
n : k ∈ N, k ≥ 1}

is computably enumerable from DCLc
n.

Lemma
Uniformly in c ∈ CompStr and n ∈ N, the set{(

ϕ(x ; y), a, k
)
∈ CLc

n : k = 0
}

is computably enumerable from DCLc
n.

Lemma
Uniformly in c ∈ CompStr and n ∈ N, there are computable reductions in
both directions between ACLc

n

∐
DCLc

n and CLc
n.
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Relationships Between ACLc and aclΦ,c

Proposition
Uniformly in the parameter c ∈ CompStr and an encoding of a computable
set Φ of Σn first-order Lc -formulas, the set aclΦ,c is Σ0

1 in ACLc
0.

Proof Sketch.
Let A ⊆Mc be a finite set. Note that b ∈ aclΦ,c(A) if and only if there is
a finite sequence b0, . . . , bn−1 ∈Mc where b = bn−1 such that for each
i < n, there exists a formula ϕi (x ; y) ∈ Φ, a tuple ai with entries from
A ∪ {bj}j<i , and a tuple di ∈Mc satisfying
I (ϕi (x ; y), ai ) ∈ ACLc

n,
I Mc |= ϕi (ai ;di ), and
I bi ∈ di .

Hence, uniformly in c , the set aclΦ,c is Σ0
1 in ACLc

n.



Relationships Between DCLc and dclΦ,c

Proposition
Uniformly in the parameter c ∈ CompStr and an encoding of a computable
set Φ of Σn first-order Lc -formulas, the set dclΦ,c is Σ0

1 in DCLc
0.

Proof.
Let A ⊆Mc be a finite set. Note that b ∈ dclΦ,c(A) if and only if there is
a finite sequence b0, . . . , bn−1 ∈Mc where b = bn−1 such that for each
i < n, there exists a formula ϕi (x ; y) ∈ Φ, a tuple ai with entries from
A ∪ {bj}j<i , and a tuple di ∈Mc satisfying
I (ϕi (x ; y), ai ) ∈ DCLc

n,
I Mc |= ϕi (ai ;di ), and
I bi ∈ di .

Hence, uniformly in c , the set dclΦ,c is Σ0
1 in DCLc

n.



Bounds For Quantifier-Free Formulas



Upper bounds for quantifier-free formulas

There are straightforward upper bounds on the complexity of ACLc
0 and

DCLc
0 for c ∈ CompStr:

Proposition
Uniformly in c ∈ CompStr, the set ACLc

0 is a Σ0
2 class.

Corollary
Uniformly in c ∈ CompStr and in a computable collection Φ of
quantifier-free Lc -formulas, aclΦ,c is a Σ0

2-class.

Proposition
Uniformly in c ∈ CompStr, the set DCLc

0 is the intersection of a Π0
1 and a

Σ0
1 class (in particular, it is a ∆0

2 class).
As a consequence, DCLc

0 is computable from 000′.

Corollary
Uniformly in c ∈ CompStr and in a computable collection Φ of
quantifier-free Lc -formulas, dclΦ,c is a Σ0

2-class.



Lower bounds for quantifier-free formulas: ACL0

These upper bounds are tight — further, via structures that have nice
model-theoretic properties:

Proposition
There is a parameter c ∈ CompStr such that the following hold.
(a) Lc has no relation symbols, i.e., Lc consists only of sorts.

(b) For each ordinal α, the theory Tc has (|α + 1|ω)-many models of size
ℵα. In particular, Tc is ℵ0-categorical.

(c) ACLc
0 ≡1 Fin. In particular, ACLc

0 is a Σ0
2-complete set.



Lower bounds for quantifier-free formulas: ACL0

Proof.
Let

(
(ei , ni )

)
i∈N be a computable enumeration without repetition of

{(e, n) : e, n ∈ N and {e}(n)↓}.

Let c ∈ CompStr be such that
I Lc consists of infinitely many sorts (Xi )i∈N and no relation symbols,
I the underlying set ofMc is N, and
I for each i ∈ N, the element i is of sort Xei inMc .

A model of Tc is determined up to isomorphism by the number of
elements in the instantiation of each sort.

ACLc
0 is 1-equivalent to {e : (Xe)Mc is finite}.



Lower bounds for quantifier-free formulas: DCL0

Proposition
There is a parameter c ∈ CompStr such that the following hold.
(a) The language Lc has one sort and a single binary relation symbol E .
(b) The structureMc is a countable saturated model of Tc with

underlying set N.
(c) For each ordinal α, the theory Tc has (|α + ω|)-many models of size
ℵα, and has finite Morley rank.

(d) There is a computable array
(
Uk,`

)
k,`∈N of subsets of N such that

every countable model of Tc is isomorphic to the restriction ofMc to
underlying set Uk,` for exactly one pair (k , `).

(e) The set {a : (E (x ; y), a) ∈ DCLc
0} has Turing degree 000′.



Lower bounds for quantifier-free formulas: acl and dcl

Proposition
There is an a ∈ CompStr and a computable set Ξ of quantifier-free
first-order La-formulas such that we can compute Fin from aclΞ,a via a
1-reduction.

In particular, the set aclΞ,a is Σ0
2-complete.

Proposition
There is a parameter d ∈ CompStr such that Ld contains a ternary
relation symbol F and, letting Γ := {F (x , y ; z)}, we can compute Fin
from dclΓ,d via a 1-reduction.

In particular, the set dclΓ,d is Σ0
2-complete.



Relationship between ACL0, DCL0 and acl, dcl.

We have upper bounds on the difficulty of computing aclΦ,c from ACLc
0,

and of computing dclΦ,c from DCLc
0, for Φ a computable set of

quantifier-free first-order Lc -formulas.

In general though, merely knowing aclΦ,c and dclΦ,c does not lower the
difficulty of computing even the Φ-fiber of ACLc

0 or DCLc
0.



Relationship between ACL0, DCL0 and acl, dcl.

Proposition
There are c0, c1 ∈ CompStr such that the following hold.
(a) The (one-sorted) language Lc0 = Lc1 contains a ternary relation

symbol F and a unary relation symbol U.
(b) Mc0 andMc1 have the same underlying set M and agree on all

unary relations.
(c) Let ψ(x , y , z) := F (x , y , z) ∧ ¬F (x , z , y), and write

Ψ = {ψ(x , y ; z)}. For any A ⊆ M,

aclΨ,c0(A) = dclΨ,c1(A) =

{
M if A ∩ U 6= ∅, and
∅ if A ∩ U = ∅.

(d) The set Fin is 1-reducible to ACLc0
0 , and so ACLc0

0 is a Σ0
2-complete

set.
(e) DCLc1

0 is Turing equivalent to 000′.



Full Bounds



Computable Morleyization
Lemma
Let L be a computable language and A a computable L-structure. For
each n ∈ N there is a computable language Ln and a 000(n)-computable
Ln-structure An such that
I L ⊆ Ln ⊆ Ln+1,
I A is the reduct of An to the language L,
I for each first-order Ln-formula ϕ there is a first-order L-formula ψϕ

(of the same type as ϕ) such that

An |= (∀x0, . . . , xk−1) ϕ(x0, . . . , xk−1)↔ ψϕ(x0, . . . , xk−1),

where k is the number of free variables of ϕ, and
I for each first-order L-formula ψ that is a Boolean combination of

Σn-formulas, there is a first-order quantifier-free Ln-formula ϕψ (of
the same type as ψ) such that

An |= (∀x0, . . . , xk−1) ψ(x0, . . . , xk−1)↔ ϕψ(x0, . . . , xk−1),

where k is the number of free variables of ψ.



Upper bounds for Boolean combinations of Σn-formulas
Let n ∈ N. Uniformly in c ∈ CompStr, we have that
I ACLc

n is a Σ0
n+2 set, and

I DCLc
n is a ∆0

n+2 set.
Further, uniformly in c ∈ CompStr and in a computable collection Φ of
first-order Lc -formulas of quantifier rank at most n, we have that
I aclΦ,c is a Σ0

n+2 set, and
I dclΦ,c is a Σ0

n+2 set.

Proof.
By the computable Morleyization, ACLn is equivalent to the relativization
of ACL0 to the class of structures computable in 000(n), and DCLn is
equivalent to the relativization of DCL0 to the class of structures
computable in 000(n).

Therefore by the quantifier-free upper bounds, ACLc
n is a Σ0

2(000(n)) class
and DCLc

n is a ∆0
2(000(n)) class. As aclΦ,c is Σ0

1 in ACLc
n we have aclΦ,c is

also a Σ0
2(000(n)) set. As dclΦ,c is Σ0

1 in DCLc
n we have dclΦ,c is also a

Σ0
2(000(n)) set.



Directed N-chains

Let L be a language containing a sort N and a relation symbol S of type
N × N. Let A be an L-structure.

Call (NA,SA) a directed N-chain when it is isomorphic to a
single-sorted structure with underlying set N and language {S}, in which
S(k, `) holds precisely when ` = k + 1.

In other words, (NA,SA) is a directed N-chain if there is a (necessarily
unique) isomorphism between it and N with its successor function viewed
as a directed graph; write ̂̀ to denote the corresponding element of NA.



Directed N-chains

Lemma
Let L be a language containing a sort N and a relation symbol S of type
N × N (and possibly other sorts and relation symbols). Let A be an
L-structure such that (NA,SA) is a directed N-chain. Let k ∈ N and let
h(x ,m) be an L-formula that is a Boolean combination of Σk -formulas,
where x is of some type X , and m has sort N. Suppose that

A |= (∀x : X )(∃≤1m : N)(∃p : N) S(m, p) ∧
(
h(x ,m)↔ ¬h(x , p)

)
.

Let H : XA × N→ {True,False} be the function where H(a, `) = True if
and only if A |= h(a, ̂̀). Note that lim`→∞ H(a, `) exists for all a ∈ XA.
There is an L-formula h′(x), where x is of type X , such that h′ is a
Boolean combination of Σk+1-formulas and for all a ∈ XA,

A |= h′(a) if and only if lim
m→∞

H(a,m) = True.



Lower bounds for Boolean combinations of Σn-formulas

Proposition
Let n ∈ N and let L be a language containing a sort N and a relation
symbol S of type N × N (and possibly other sorts and relation symbols).
Suppose A is an L-structure that is computable in 000(n) and such that
(NA,SA) is a computable directed N-chain. Then there is a computable
language L+ and a computable L+-structure A+ such that for every
relation symbol R ∈ L other than S , there is an L+-formula ϕR that is a
Boolean combination of Σn-formulas for which RA = (ϕR)A

+

.

Proof.
Define L+ to have the same sorts as L, and such that for each relation
symbol R ∈ L other than S , there is a relation symbol R+ ∈ L+ of type
X × Nn, where X is the type of R.

For each R ∈ L other than S , each tuple a ∈ XA
+

where X is the type of
R, and any `0, . . . , `n−1 ∈ N, code n-fold limits of a computable function
into whether A+ |= R+(a, ̂̀0, . . . , `̂n−1) holds.

Apply the Lemma repeatedly (n times) to obtain the desired formula.



Lower bounds for Boolean combinations of Σn-formulas

Theorem
For each n ∈ N, the following hold.

(a) There exists a ∈ CompStr such that ACLa
n is a Σ0

n+2-complete set.

(b) There exists b ∈ CompStr such that DCLb
n ≡T 000(n+1).

(c) There exists c ∈ CompStr and a computable set Φ of first-order
Lc -formulas, all of quantifier rank at most n such that aclΦ,c is a
Σ0

n+2-complete set.

(d) There exists d ∈ CompStr and a computable set Θ of first-order
Ld -formulas, all of quantifier rank at most n, such that dclΘ,d is a
Σ0

n+2-complete set.



Lower bounds for Boolean combinations of Σn-formulas

Proof Sketch.
Let P be the structure constructed in the proof of the quantifier-free lower
bound on ACL, relativized to the oracle 000(n), i.e., so that P is computable
from 000(n). Let the structure P∗ be P augmented with a sort N
(instantiated on a new set of elements) along with a relation symbol S of
type N × N, such that (NP

∗
,SP

∗
) is a computable directed N-chain.

Part (a) then follows by applying the previous proposition to P∗ to obtain
some computable structure, namelyMa for some a ∈ CompStr. Then
ACLa

n is a Σ0
2(000(n))-complete set.

Parts (b) - (d) are similar.



Thank You!


