Computable representations of exchangeable graphs

Nathanael Ackerman

Joint Work With: Cameron Freer Rehana Patel

Computability and Combinatorics May 20, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algebraic Closure and Definable Closure

Motivation

- Algebraic closure (acl) and definable closure (dcl) provide natural characterizations of a "neighborhood" of a set.
- A structure has trivial dcl when the dcl of every finite set is itself. (This is equivalent to having trivial acl.)
- The property of a structure having trivial dcl has played an important role in combinatorial model theory and descriptive set theory.

Some characterizations in terms of this property:

- o universal graphs with forbidden subgraphs (Cherlin-Shelah-Shi, 1999)
- invariant measures concentrated on an isomorphism class (AFP, 2016)

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

• structurable equivalence relations (Chen–Kechris, 2018)

First Order Definable Closure

Suppose $\mathcal A$ is an $\mathcal L\text{-structure}$ and $A_0\subseteq \mathcal A$

The first order definable closure of A_0 is the smallest set $dcl^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(A_0) \subseteq \mathcal{A}$ containing A_0 such that whenever

•
$$\varphi(\overline{x};\overline{y})$$
 is a first order \mathcal{L} -formula,

• $\overline{a} \in A_0$ is of the same type as \overline{x} ,

$$\blacktriangleright |\{\overline{b} : \mathcal{A} \models \varphi(\overline{a}; \overline{b})\}| = 1, \text{ and }$$

$$\blacktriangleright \mathcal{A} \models \varphi(\overline{a}; \overline{b})$$

then $\overline{b} \subseteq \operatorname{dcl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(A_0).$

Lemma

$$\mathsf{dcl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})} = \mathsf{dcl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(\mathsf{dcl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(\mathcal{A}_0)).$$

In particular dcl_{$\mathcal{L}_{\omega,\omega}(\mathcal{L})$}(A_0) is the smallest set containing A_0 closed under application of dcl¹_{$\mathcal{L}_{\omega,\omega}(\mathcal{L})$}.

Example of First Order Definable Closure

Example

If \mathcal{L} is a language with functions and \mathcal{M} is a \mathcal{L} -structure. Then for any $A_0 \subseteq M$ we have $dcl^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(A_0)$ contains the functional closure of A_0 .

Example of First Order Definable Closure

Example

If \mathcal{L} is a language with functions and \mathcal{M} is a \mathcal{L} -structure. Then for any $A_0 \subseteq M$ we have $\operatorname{dcl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(A_0)$ contains the functional closure of A_0 .

Example

Consider the structure (\mathbb{N}, S) where S is the binary relation which holds precisely on S(a, a + 1) for $a \in \mathbb{N}$.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

We then have $dcl^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(\emptyset) = \mathbb{N}.$

Example of First Order Definable Closure

Example

If \mathcal{L} is a language with functions and \mathcal{M} is a \mathcal{L} -structure. Then for any $A_0 \subseteq M$ we have $\operatorname{dcl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(A_0)$ contains the functional closure of A_0 .

Example

Consider the structure (\mathbb{N}, S) where S is the binary relation which holds precisely on S(a, a + 1) for $a \in \mathbb{N}$.

We then have $\mathsf{dcl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(\emptyset) = \mathbb{N}.$

Example

Consider the structure (\mathbb{Z}, S) where S is the binary relation which holds precisely on S(a, a + 1) for $a \in \mathbb{Z}$.

We then have $dcl^{1}_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(\emptyset) = \emptyset$ as there is an automorphism taking any *a* to *b* in \mathbb{Z} .

Further for any element $z \in \mathbb{Z}$, $dcl^{1}_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(\{z\}) = \emptyset$.

First Order Algebraic Closure

Suppose $\mathcal A$ is an $\mathcal L\text{-structure}$ and $A_0\subseteq \mathcal A$

The **first order algebraic closure** of A_0 is the smallest set $\operatorname{acl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(A_0) \subseteq \mathcal{A}$ containing A_0 such that whenever

•
$$\varphi(\overline{x};\overline{y})$$
 is a first order \mathcal{L} -formula,

• $\overline{a} \subseteq A_0$ is of the same type as \overline{x} ,

•
$$\{\overline{b} : \mathcal{A} \models \varphi(\overline{a}; \overline{b})\}$$
 is finite, and

$$\blacktriangleright \mathcal{A} \models \varphi(\overline{a}; \overline{b})$$

then $\overline{b} \subseteq \operatorname{acl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(A_0).$

Lemma

$$\mathsf{acl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})} = \mathsf{acl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(\mathsf{acl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(\mathcal{A}_0)).$$

In particular $\operatorname{acl}_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(\mathcal{A}_0)$ is the smallest set containing \mathcal{A}_0 closed under application of $\operatorname{acl}^{1}_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}$.

Example of First Order Algebraic Closure

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Example of First Order Algebraic Closure

Example

Suppose K is a an algebraicly closed field. Then for any $K_0 \subseteq K$, $\operatorname{acl}^1_{\mathcal{L}_{\omega,\omega}(\mathcal{L})}(K_0)$ is the algebraic closure of K_0 .

イロト 不得 トイヨト イヨト

э

Background

Multi-Sorted Languages

We work with many-sorted languages and structures.

(We could instead encode each sort using a unary relation symbol. This would not affect most of our results, but we are also interested in how model-theoretically complicated the structures we build are, and if we do not allow sorts then our lower bound on the complexity of algebraic closure will not yield an \aleph_0 -categorical structure.)

Let \mathcal{L} be a (many-sorted) language, let \mathcal{A} be an \mathcal{L} -structure, and suppose that \overline{a} is a tuple of elements of \mathcal{A} . We say that the **type** of \overline{a} is $\prod_{i \leq n} X_i$ when $\overline{a} \in \prod_{i < n} (X_i)^{\mathcal{A}}$, where each of X_0, \ldots, X_{n-1} is a sort of \mathcal{L} .

The type of a tuple of variables is the product of the sorts of its constituent variables (in order). The type of a relation symbol is defined to be the type of the tuple of its free variables, and similarly for formulas.

Write $(\forall \overline{x} : X)$ and $(\exists \overline{x} : X)$ to quantify over a tuple of variables \overline{x} of type X.

Computable Languages and Structures

Let $\mathcal{L} = ((X_j)_{j \in J}, (R_i)_{i \in I})$ be a language, where $I, J \in \mathbb{N} \cup \{\mathbb{N}\}$ and $(X_j)_{j \in J}$ and $(R_i)_{i \in I}$ are collections of sorts and relation symbols, respectively.

Let $\operatorname{ty}_{\mathcal{L}}: I \to J^{<\omega}$ satisfy $\operatorname{ty}_{\mathcal{L}}(i) = (j_0, \ldots, j_{n-1})$ for all $i \in I$, where the type of R_i is $\prod_{k < n} X_{j_k}$.

 $\mathcal L$ is a **computable language** when $\mathrm{ty}_{\mathcal L}$ is a computable function. For each computable language, we fix a computable encoding of all first-order formulas of the language.

 \mathcal{A} is a **computable** \mathcal{L} -structure when it is an \mathcal{L} -structure with computable underlying set such that the sets $\{(a, j) : a \in X_j^{\mathcal{A}}\}$ and $\{(\overline{b}, i) : \overline{b} \in R_i^{\mathcal{A}}\}$ are computable subsets of the appropriate domains.

Codes for Computable Languages and Structures

We say $c \in \mathbb{N}$ is a **code for a structure** if

- $\{c\}(0)$ is a code for a computable language, and
- $\{c\}(1)$ is a code for a computable structure in that language.

In this case, write

- \mathcal{L}_c for the language that $\{c\}(0)$ codes,
- \mathcal{M}_c for the structure that $\{c\}(1)$ codes, and
- T_c for the first-order theory of \mathcal{M}_c .

We let CompStr be the collection of $c \in \mathbb{N}$ that are codes for structures.

Formula by formula analysis

Sets encoding 1-step algebraic or definable closure

- $\blacktriangleright \ \mathsf{DCL} := \big\{ (c, \varphi(\overline{x}; \overline{y}), \overline{a}) : (c, \varphi(\overline{x}; \overline{y}), \overline{a}, 1) \in \mathsf{CL} \big\}.$
- ▶ For $Y \in \{CL, ACL, DCL\}$ and $n \in \mathbb{N}$ let

 $Y_n := \{t \in Y : \text{the second coordinate of } t \text{ is a Boolean combination}$ of Σ_n -formulas $\}$.

For Y ∈ {CL, ACL, DCL} ∪ {CL_n, ACL_n, DCL_n}_{n∈ℕ} and c ∈ CompStr, let Y^c := {u : (c)[∧]u ∈ Y}, i.e., select those elements of Y whose first coordinate is c, and then remove this first coordinate.

Sets encoding algebraic or definable closure

Let $c \in \text{CompStr}$, Φ be a set of first-order \mathcal{L}_c -formulas and $X \subseteq \mathcal{M}_c$.

Define $\operatorname{acl}_{\Phi,c}^n(X)$ for $n \in \mathbb{N}$ by induction as follows.

Define $dcl_{\Phi,c}^n(X)$ for $n \in \mathbb{N}$ by induction as follows.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In order to study the computability-theoretic content of the algebraic and definable closure operators, we will consider the following encodings of their respective graphs.

Definition

Let $c \in \text{CompStr}$ and let Φ be a set of first-order \mathcal{L}_c -formulas. Define

 $\operatorname{\mathsf{acl}}_{\Phi,c} := \{(a,A) : a \in \operatorname{\mathsf{acl}}_{\Phi,c}(A) \text{ and } A \text{ is a finite subset of } \mathcal{M}_c\}$

 $\mathsf{dcl}_{\Phi,c} := \{(a,A) : a \in \mathsf{dcl}_{\Phi,c}(A) \text{ and } A \text{ is a finite subset of } \mathcal{M}_c\}$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Complexity of Algebraic and Definable Closure

(ロ)、(型)、(E)、(E)、 E) のQ()

The complexity of CL, ACL, and DCL

CompStr is a Π_2^0 class.

Therefore the sets CL, ACL, DCL must be computability-theoretically complicated.

We therefore instead consider how complex CL^c , ACL^c , DCL^c can be, when $c \in CompStr$.

Relationships Between CL^c , ACL^c and DCL^c

Lemma Uniformly in $c \in \text{CompStr and } n \in \mathbb{N}$, the set

 $\{(\varphi(\overline{x};\overline{y}),\overline{a},k)\in\mathsf{CL}_n^c: k\in\mathbb{N}, k\geq 1\}$

is computably enumerable from DCL_n^c .

Relationships Between CL^c , ACL^c and DCL^c

Lemma Uniformly in $c \in \text{CompStr and } n \in \mathbb{N}$, the set

 $\{(\varphi(\overline{x};\overline{y}),\overline{a},k)\in\mathsf{CL}_n^c\,:\,k\in\mathbb{N},\,\,k\geq 1\}$

is computably enumerable from DCL^c_n.

Lemma

Uniformly in $c \in \mathsf{CompStr}$ and $n \in \mathbb{N}$, the set

$$\left\{\left(\varphi(\overline{x};\overline{y}),\overline{a},k\right)\in\mathsf{CL}_n^c\,:\,k=0
ight\}$$

is computably enumerable from DCL_n^c .

Relationships Between CL^c , ACL^c and DCL^c

Lemma Uniformly in $c \in \text{CompStr and } n \in \mathbb{N}$, the set

```
\{(\varphi(\overline{x};\overline{y}),\overline{a},k)\in\mathsf{CL}_n^c:\ k\in\mathbb{N},\ k\geq 1\}
```

is computably enumerable from DCL^c_n.

Lemma

Uniformly in $c \in \text{CompStr}$ and $n \in \mathbb{N}$, the set

$$\left\{\left(\varphi(\overline{x};\overline{y}),\overline{a},k\right)\in\mathsf{CL}_n^c\,:\,k=0
ight\}$$

is computably enumerable from DCL^c_n.

Lemma

Uniformly in $c \in \text{CompStr}$ and $n \in \mathbb{N}$, there are computable reductions in both directions between $\text{ACL}_n^c \coprod \text{DCL}_n^c$ and CL_n^c .

Relationships Between ACL^c and acl_{ϕ,c}

Proposition

Uniformly in the parameter $c \in \text{CompStr and an encoding of a computable}$ set Φ of Σ_n first-order \mathcal{L}_c -formulas, the set $\operatorname{acl}_{\Phi,c}$ is Σ_1^0 in ACL_0^c .

Proof Sketch.

Let $A \subseteq \mathcal{M}_c$ be a finite set. Note that $b \in \operatorname{acl}_{\Phi,c}(A)$ if and only if there is a finite sequence $b_0, \ldots, b_{n-1} \in \mathcal{M}_c$ where $b = b_{n-1}$ such that for each i < n, there exists a formula $\varphi_i(\overline{x}; \overline{y}) \in \Phi$, a tuple \overline{a}_i with entries from $A \cup \{b_j\}_{j < i}$, and a tuple $\mathbf{d}_i \in \mathcal{M}_c$ satisfying

A D > 4 回 > 4 回 > 4 回 > 1 回

$$\blacktriangleright (\varphi_i(\overline{x};\overline{y}),\overline{a}_i) \in \mathsf{ACL}_n^c$$

•
$$\mathcal{M}_{c} \models \varphi_{i}(\overline{a}_{i}; \mathbf{d}_{i})$$
, and

$$\blacktriangleright b_i \in \mathbf{d}_i.$$

Hence, uniformly in c, the set $\operatorname{acl}_{\Phi,c}$ is Σ_1^0 in ACL_n^c .

Relationships Between DCL^c and $dcl_{\Phi,c}$

Proposition

Uniformly in the parameter $c \in \text{CompStr and an encoding of a computable}$ set Φ of Σ_n first-order \mathcal{L}_c -formulas, the set $dcl_{\Phi,c}$ is Σ_1^0 in DCL_0^c .

Proof.

Let $A \subseteq \mathcal{M}_c$ be a finite set. Note that $b \in \operatorname{dcl}_{\Phi,c}(A)$ if and only if there is a finite sequence $b_0, \ldots, b_{n-1} \in \mathcal{M}_c$ where $b = b_{n-1}$ such that for each i < n, there exists a formula $\varphi_i(\overline{x}; \overline{y}) \in \Phi$, a tuple \overline{a}_i with entries from $A \cup \{b_j\}_{j < i}$, and a tuple $\mathbf{d}_i \in \mathcal{M}_c$ satisfying

A D > 4 回 > 4 回 > 4 回 > 1 回

$$\blacktriangleright (\varphi_i(\overline{x};\overline{y}),\overline{a}_i) \in \mathsf{DCL}_n^c,$$

•
$$\mathcal{M}_{c} \models \varphi_{i}(\overline{a}_{i}; \mathbf{d}_{i})$$
, and

$$\blacktriangleright b_i \in \mathbf{d}_i.$$

Hence, uniformly in c, the set $dcl_{\Phi,c}$ is Σ_1^0 in DCL_n^c .

Bounds For Quantifier-Free Formulas

・ロト・4日ト・4日ト・4日・9000

Upper bounds for quantifier-free formulas

There are straightforward upper bounds on the complexity of ACL_0^c and DCL_0^c for $c \in CompStr$:

Proposition

Uniformly in $c \in \text{CompStr}$, the set ACL_0^c is a Σ_2^0 class.

Corollary

Uniformly in $c \in \text{CompStr}$ and in a computable collection Φ of quantifier-free \mathcal{L}_c -formulas, $\operatorname{acl}_{\Phi,c}$ is a Σ_2^0 -class.

Proposition

Uniformly in $c \in \text{CompStr}$, the set DCL_0^c is the intersection of a Π_1^0 and a Σ_1^0 class (in particular, it is a Δ_2^0 class).

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

As a consequence, DCL_0^c is computable from **0**'.

Corollary

Uniformly in $c \in \text{CompStr}$ and in a computable collection Φ of quantifier-free \mathcal{L}_c -formulas, $dcl_{\Phi,c}$ is a Σ_2^0 -class.

Lower bounds for quantifier-free formulas: ACL0

These upper bounds are tight — further, via structures that have nice model-theoretic properties:

Proposition

There is a parameter $c \in CompStr$ such that the following hold.

- (a) \mathcal{L}_c has no relation symbols, i.e., \mathcal{L}_c consists only of sorts.
- (b) For each ordinal α , the theory T_c has $(|\alpha + 1|^{\omega})$ -many models of size \aleph_{α} . In particular, T_c is \aleph_0 -categorical.

(c) $ACL_0^c \equiv_1 Fin$. In particular, ACL_0^c is a Σ_2^0 -complete set.

Lower bounds for quantifier-free formulas: ACL0

Proof.

Let $((e_i, n_i))_{i \in \mathbb{N}}$ be a computable enumeration without repetition of $\{(e, n) : e, n \in \mathbb{N} \text{ and } \{e\}(n)\downarrow\}.$

Let $c \in \mathsf{CompStr}$ be such that

▶ \mathcal{L}_c consists of infinitely many sorts $(X_i)_{i \in \mathbb{N}}$ and no relation symbols,

- the underlying set of \mathcal{M}_c is \mathbb{N} , and
- ▶ for each $i \in \mathbb{N}$, the element *i* is of sort X_{e_i} in \mathcal{M}_c .

A model of T_c is determined up to isomorphism by the number of elements in the instantiation of each sort.

ACL^c₀ is 1-equivalent to $\{e : (X_e)^{\mathcal{M}_c} \text{ is finite}\}.$

Lower bounds for quantifier-free formulas: DCL0

Proposition

There is a parameter $c \in CompStr$ such that the following hold.

- (a) The language \mathcal{L}_c has one sort and a single binary relation symbol E.
- (b) The structure \mathcal{M}_c is a countable saturated model of T_c with underlying set \mathbb{N} .
- (c) For each ordinal α , the theory T_c has $(|\alpha + \omega|)$ -many models of size \aleph_{α} , and has finite Morley rank.
- (d) There is a computable array $(U_{k,\ell})_{k,\ell\in\mathbb{N}}$ of subsets of \mathbb{N} such that every countable model of T_c is isomorphic to the restriction of \mathcal{M}_c to underlying set $U_{k,\ell}$ for exactly one pair (k,ℓ) .

(e) The set $\{a : (E(x; y), a) \in DCL_0^c\}$ has Turing degree $\mathbf{0}'$.

Lower bounds for quantifier-free formulas: acl and dcl

Proposition

There is an $a \in \text{CompStr}$ and a computable set Ξ of quantifier-free first-order \mathcal{L}_a -formulas such that we can compute Fin from $\operatorname{acl}_{\Xi,a}$ via a 1-reduction.

In particular, the set $\operatorname{acl}_{\Xi,a}$ is Σ_2^0 -complete.

Proposition

There is a parameter $d \in \text{CompStr}$ such that \mathcal{L}_d contains a ternary relation symbol F and, letting $\Gamma := \{F(x, y; z)\}$, we can compute Fin from $dcl_{\Gamma,d}$ via a 1-reduction.

In particular, the set $dcl_{\Gamma,d}$ is Σ_2^0 -complete.

Relationship between ACL_0 , DCL_0 and acl, dcl.

We have upper bounds on the difficulty of computing $\operatorname{acl}_{\Phi,c}$ from $\operatorname{ACL}_{0}^{c}$, and of computing $\operatorname{dcl}_{\Phi,c}$ from $\operatorname{DCL}_{0}^{c}$, for Φ a computable set of quantifier-free first-order \mathcal{L}_{c} -formulas.

In general though, merely knowing $\operatorname{acl}_{\Phi,c}$ and $\operatorname{dcl}_{\Phi,c}$ does not lower the difficulty of computing even the Φ -fiber of ACL_0^c or DCL_0^c .

Relationship between ACL₀, DCL₀ and acl, dcl.

Proposition

There are $c_0, c_1 \in \text{CompStr such that the following hold.}$

- (a) The (one-sorted) language $\mathcal{L}_{c_0} = \mathcal{L}_{c_1}$ contains a ternary relation symbol F and a unary relation symbol U.
- (b) \mathcal{M}_{c_0} and \mathcal{M}_{c_1} have the same underlying set M and agree on all unary relations.
- (c) Let $\psi(x, y, z) := F(x, y, z) \land \neg F(x, z, y)$, and write $\Psi = \{\psi(x, y; z)\}$. For any $A \subseteq M$, $\operatorname{acl}_{\Psi, c_0}(A) = \operatorname{dcl}_{\Psi, c_1}(A) = \begin{cases} M & \text{if } A \cap U \neq \emptyset, \text{ and} \\ \emptyset & \text{if } A \cap U = \emptyset. \end{cases}$
- (d) The set Fin is 1-reducible to ACL^{co}₀, and so ACL^{co}₀ is a Σ⁰₂-complete set.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

(e) $DCL_0^{c_1}$ is Turing equivalent to $\mathbf{0}'$.

Full Bounds

Computable Morleyization

Lemma

Let \mathcal{L} be a computable language and \mathcal{A} a computable \mathcal{L} -structure. For each $n \in \mathbb{N}$ there is a computable language \mathcal{L}_n and a $\mathbf{0}^{(n)}$ -computable \mathcal{L}_n -structure \mathcal{A}_n such that

- $\blacktriangleright \mathcal{L} \subseteq \mathcal{L}_n \subseteq \mathcal{L}_{n+1},$
- \mathcal{A} is the reduct of \mathcal{A}_n to the language \mathcal{L}_n ,
- for each first-order L_n-formula φ there is a first-order L-formula ψ_φ (of the same type as φ) such that

$$\mathcal{A}_n \models (\forall x_0, \ldots, x_{k-1}) \varphi(x_0, \ldots, x_{k-1}) \leftrightarrow \psi_{\varphi}(x_0, \ldots, x_{k-1}),$$

where k is the number of free variables of φ , and

for each first-order *L*-formula ψ that is a Boolean combination of Σ_n-formulas, there is a first-order quantifier-free *L*_n-formula φ_ψ (of the same type as ψ) such that

$$\mathcal{A}_n \models (\forall x_0, \ldots, x_{k-1}) \ \psi(x_0, \ldots, x_{k-1}) \leftrightarrow \varphi_{\psi}(x_0, \ldots, x_{k-1}),$$

where k is the number of free variables of ψ .

Upper bounds for Boolean combinations of Σ_n -formulas

Let $n \in \mathbb{N}$. Uniformly in $c \in \text{CompStr}$, we have that

- ► ACL^c_n is a Σ_{n+2}^{0} set, and
- ► DCL^{*c*}_{*n*} is a Δ_{n+2}^0 set.

Further, uniformly in $c \in \text{CompStr}$ and in a computable collection Φ of first-order \mathcal{L}_c -formulas of quantifier rank at most n, we have that

• $\operatorname{acl}_{\Phi,c}$ is a \sum_{n+2}^{0} set, and • $\operatorname{dcl}_{\Phi,c}$ is a \sum_{n+2}^{0} set.

Proof.

By the computable Morleyization, ACL_n is equivalent to the relativization of ACL_0 to the class of structures computable in $\mathbf{0}^{(n)}$, and DCL_n is equivalent to the relativization of DCL_0 to the class of structures computable in $\mathbf{0}^{(n)}$.

Therefore by the quantifier-free upper bounds, ACL_n^c is a $\Sigma_2^0(\mathbf{0}^{(n)})$ class and DCL_n^c is a $\Delta_2^0(\mathbf{0}^{(n)})$ class. As $acl_{\Phi,c}$ is Σ_1^0 in ACL_n^c we have $acl_{\Phi,c}$ is also a $\Sigma_2^0(\mathbf{0}^{(n)})$ set. As $dcl_{\Phi,c}$ is Σ_1^0 in DCL_n^c we have $dcl_{\Phi,c}$ is also a $\Sigma_2^0(\mathbf{0}^{(n)})$ set. Let \mathcal{L} be a language containing a sort N and a relation symbol S of type $N \times N$. Let \mathcal{A} be an \mathcal{L} -structure.

Call $(N^{\mathcal{A}}, S^{\mathcal{A}})$ a **directed** \mathbb{N} -**chain** when it is isomorphic to a single-sorted structure with underlying set \mathbb{N} and language $\{S\}$, in which $S(k, \ell)$ holds precisely when $\ell = k + 1$.

In other words, $(N^{\mathcal{A}}, S^{\mathcal{A}})$ is a directed \mathbb{N} -chain if there is a (necessarily unique) isomorphism between it and \mathbb{N} with its successor function viewed as a directed graph; write $\hat{\ell}$ to denote the corresponding element of $N^{\mathcal{A}}$.

Directed \mathbb{N} -chains

Lemma

Let \mathcal{L} be a language containing a sort N and a relation symbol S of type $N \times N$ (and possibly other sorts and relation symbols). Let \mathcal{A} be an \mathcal{L} -structure such that $(N^{\mathcal{A}}, S^{\mathcal{A}})$ is a directed \mathbb{N} -chain. Let $k \in \mathbb{N}$ and let $h(\overline{x}, m)$ be an \mathcal{L} -formula that is a Boolean combination of Σ_k -formulas, where \overline{x} is of some type X, and m has sort N. Suppose that

$$\mathcal{A} \models (\forall \overline{x} : X)(\exists^{\leq 1}m : N)(\exists p : N) \ S(m, p) \land (h(\overline{x}, m) \leftrightarrow \neg h(\overline{x}, p)).$$

Let $H: X^{\mathcal{A}} \times \mathbb{N} \to \{\text{True, False}\}\ be the function where <math>H(\overline{a}, \ell) = \text{True if}\ and only if \mathcal{A} \models h(\overline{a}, \widehat{\ell}).$ Note that $\lim_{\ell \to \infty} H(\overline{a}, \ell)$ exists for all $\overline{a} \in X^{\mathcal{A}}$. There is an \mathcal{L} -formula $h'(\overline{x})$, where \overline{x} is of type X, such that h' is a Boolean combination of Σ_{k+1} -formulas and for all $\overline{a} \in X^{\mathcal{A}}$,

$$\mathcal{A} \models h'(\overline{a})$$
 if and only if $\lim_{m \to \infty} H(\overline{a}, m) = \text{True}.$

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Lower bounds for Boolean combinations of Σ_n -formulas

Proposition

Let $n \in \mathbb{N}$ and let \mathcal{L} be a language containing a sort N and a relation symbol S of type $N \times N$ (and possibly other sorts and relation symbols). Suppose \mathcal{A} is an \mathcal{L} -structure that is computable in $\mathbf{0}^{(n)}$ and such that $(N^{\mathcal{A}}, S^{\mathcal{A}})$ is a computable directed \mathbb{N} -chain. Then there is a computable language \mathcal{L}^+ and a computable \mathcal{L}^+ -structure \mathcal{A}^+ such that for every relation symbol $R \in \mathcal{L}$ other than S, there is an \mathcal{L}^+ -formula φ_R that is a Boolean combination of Σ_n -formulas for which $R^{\mathcal{A}} = (\varphi_R)^{\mathcal{A}^+}$.

Proof.

Define \mathcal{L}^+ to have the same sorts as \mathcal{L} , and such that for each relation symbol $R \in \mathcal{L}$ other than S, there is a relation symbol $R^+ \in \mathcal{L}^+$ of type $X \times N^n$, where X is the type of R.

For each $R \in \mathcal{L}$ other than S, each tuple $\overline{a} \in X^{\mathcal{A}^+}$ where X is the type of R, and any $\ell_0, \ldots, \ell_{n-1} \in \mathbb{N}$, code *n*-fold limits of a computable function into whether $\mathcal{A}^+ \models R^+(\overline{a}, \widehat{\ell_0}, \ldots, \widehat{\ell_{n-1}})$ holds.

Apply the Lemma repeatedly (*n* times) to obtain the desired formula. \Box

Lower bounds for Boolean combinations of Σ_n -formulas

Theorem

For each $n \in \mathbb{N}$, the following hold.

- (a) There exists $a \in \text{CompStr such that ACL}_n^a$ is a \sum_{n+2}^0 -complete set.
- (b) There exists $b \in \text{CompStr such that } \text{DCL}_n^b \equiv_T \mathbf{0}^{(n+1)}$.
- (c) There exists $c \in \text{CompStr}$ and a computable set Φ of first-order \mathcal{L}_c -formulas, all of quantifier rank at most n such that $\operatorname{acl}_{\Phi,c}$ is a Σ^0_{n+2} -complete set.
- (d) There exists $d \in \text{CompStr}$ and a computable set Θ of first-order \mathcal{L}_d -formulas, all of quantifier rank at most n, such that $dcl_{\Theta,d}$ is a Σ_{n+2}^0 -complete set.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Lower bounds for Boolean combinations of Σ_n -formulas

Proof Sketch.

Let \mathcal{P} be the structure constructed in the proof of the quantifier-free lower bound on ACL, relativized to the oracle $\mathbf{0}^{(n)}$, i.e., so that \mathcal{P} is computable from $\mathbf{0}^{(n)}$. Let the structure \mathcal{P}^* be \mathcal{P} augmented with a sort N(instantiated on a new set of elements) along with a relation symbol S of type $N \times N$, such that $(N^{\mathcal{P}^*}, S^{\mathcal{P}^*})$ is a computable directed \mathbb{N} -chain.

Part (a) then follows by applying the previous proposition to \mathcal{P}^* to obtain some computable structure, namely \mathcal{M}_a for some $a \in \text{CompStr.}$ Then ACL_n^a is a $\Sigma_2^0(\mathbf{0}^{(n)})$ -complete set.

Parts (b) - (d) are similar.

Thank You!