The Computability of the Tree Antichain Theorem

Chris Conidis

College of Staten Island

May 20, 2023

Chris Conidis The Computability of the Tree Antichain Theorem

イロト イボト イヨト イヨト

SQR

Э

A computable ring is a computable subset $A \subseteq \mathbb{N}$ equipped with two computable binary operations + and \cdot on A, together with elements $0, 1 \in A$ such that $R = (A, 0, 1, +, \cdot)$ is a ring.

- (目) - (日) - (日)

A computable ring is a computable subset $A \subseteq \mathbb{N}$ equipped with two computable binary operations + and \cdot on A, together with elements $0, 1 \in A$ such that $R = (A, 0, 1, +, \cdot)$ is a ring.

All rings will be countable, commutative, with an identity element.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let R be a ring containing proper ideals $P, Q \subsetneq R$.

Chris Conidis The Computability of the Tree Antichain Theorem

・ロト ・ 四ト ・ 日ト ・ 日

SQC

Let R be a ring containing proper ideals $P, Q \subsetneq R$. Recall that $P + Q = \{p + q : p \in P, q \in Q\} \subseteq R$ is an ideal.

Chris Conidis The Computability of the Tree Antichain Theorem

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ の () ()

Let R be a ring containing proper ideals $P, Q \subsetneq R$. Recall that $P + Q = \{p + q : p \in P, q \in Q\} \subseteq R$ is an ideal.

Definition

We say that *P* is *prime* if either $a \in P$ or $b \in P$ whenever the product $a \cdot b \in P$.

Let R be a ring containing proper ideals $P, Q \subsetneq R$. Recall that $P + Q = \{p + q : p \in P, q \in Q\} \subseteq R$ is an ideal.

Definition

We say that *P* is *prime* if either $a \in P$ or $b \in P$ whenever the product $a \cdot b \in P$.

Definition

R is *Noetherian* if every infinite ascending chain of R-ideals eventually stabilizes-i.e. if R satisfies the ascending chain condition (on its ideals).

- 4 同 1 4 三 1 4 三 1

Let R be a ring containing proper ideals $P, Q \subsetneq R$. Recall that $P + Q = \{p + q : p \in P, q \in Q\} \subseteq R$ is an ideal.

Definition

We say that *P* is *prime* if either $a \in P$ or $b \in P$ whenever the product $a \cdot b \in P$.

Definition

R is *Noetherian* if every infinite ascending chain of R-ideals eventually stabilizes-i.e. if R satisfies the ascending chain condition (on its ideals).

Definition

P is a *minimal prime ideal* if it does not properly contain a prime ideal.

< ロ > < 同 > < 回 > < 回 >

Primary Decomposition Lemma

If R is Noetherian, then R contains only finitely many minimal prime ideals.

< 回 > < 回 > < 回 >

DQ P

Primary Decomposition Lemma

If R is Noetherian, then R contains only finitely many minimal prime ideals.

Primary Decomposition Lemma

If *R* contains infinitely many minimal prime ideals, then *R* is not Noetherian, i.e. *R* contains an infinite strictly ascending chain of ideals

$$I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_n \subset \cdots \subset R, \ n \in \mathbb{N}.$$

Assume that R contains infinitely many distinct minimal primes.

イロト イポト イヨト イヨト 三日

Sac

Classical Proof of the Lemma

Assume that R contains infinitely many distinct minimal primes. Need to construct an infinite strictly ascending chain

 $I_0 \subset I_1 \subset I_2 \subset \cdots \in I_n \subset \cdots \subset R.$

イロト 不得 トイヨト イヨト 二日

Assume that R contains infinitely many distinct minimal primes. Need to construct an infinite strictly ascending chain

 $I_0 \subset I_1 \subset I_2 \subset \cdots \in I_n \subset \cdots \subset R.$

Let $l_0 = \langle 0 \rangle_R \subset R$. Since R contains infinitely many minimal primes, $\langle 0 \rangle_R \subset R$ is not a prime ideal. Therefore there exist $a_1, b_1 \in R$ such that $a_1, b_1 \notin l_0$ but $a_1b_1 = 0 \in l_0$. Now, either a_1 or b_1 is contained in infinitely many minimal primes; add it to l_0 to get $l_1 \supset l_0$.

イロト イポト イヨト イヨト 三日

Assume that R contains infinitely many distinct minimal primes. Need to construct an infinite strictly ascending chain

 $I_0 \subset I_1 \subset I_2 \subset \cdots \cup I_n \subset \cdots \subset R.$

Let $l_0 = \langle 0 \rangle_R \subset R$. Since R contains infinitely many minimal primes, $\langle 0 \rangle_R \subset R$ is not a prime ideal. Therefore there exist $a_1, b_1 \in R$ such that $a_1, b_1 \notin l_0$ but $a_1b_1 = 0 \in l_0$. Now, either a_1 or b_1 is contained in infinitely many minimal primes; add it to l_0 to get $l_1 \supset l_0$. Repeat with the invariant that

$$I_k = \langle c_1, c_2, \cdots, c_k \rangle_R \subset R, \ k \in \mathbb{N},$$

is contained in infinitely many minimal primes, and therefore is not prime itself. Uses \emptyset'' .

・ロト ・ 四ト ・ 日ト ・ 日

- RCA₀ : Recursive Comprehension Axiom
- WKL₀ : Weak König's Lemma
- ACA₀ : Arithmetic Comprehension Axiom
- ATR₀ : Arithmetic Transfinite Recursion
- $\Pi_1^1{-}\mathsf{CA}_0:\Pi_1^1{-}\mathsf{Comprehension}$ Axiom

イロト イヨト イヨト

- RCA₀ : Recursive Comprehension Axiom
- WKL₀ : Weak König's Lemma
- ACA₀ : Arithmetic Comprehension Axiom
- ATR₀ : Arithmetic Transfinite Recursion
- $\Pi_1^1{-}\mathsf{CA}_0:\Pi_1^1{-}\mathsf{Comprehension}$ Axiom

• ADS : Ascending-Descending Chain Principle

イロト イヨト イヨト

- RCA₀ : Recursive Comprehension Axiom
- WKL₀ : Weak König's Lemma
- ACA₀ : Arithmetic Comprehension Axiom
- ATR₀ : Arithmetic Transfinite Recursion
- $\Pi_1^1{-}\mathsf{CA}_0:\Pi_1^1{-}\mathsf{Comprehension}$ Axiom

- ADS : Ascending-Descending Chain Principle
- 2 MLR : Existence of 2-Random sets

イロト 人間ト イヨト イヨト

- RCA₀ : Recursive Comprehension Axiom
- WKL₀ : Weak König's Lemma
- ACA₀ : Arithmetic Comprehension Axiom
- ATR₀ : Arithmetic Transfinite Recursion
- $\Pi_1^1{-}\mathsf{CA}_0:\Pi_1^1{-}\mathsf{Comprehension}$ Axiom

- ADS : Ascending-Descending Chain Principle
- 2 MLR : Existence of 2-Random sets
- COH : Cohesive set principle

・ロト ・ 一 ト ・ 日 ト ・ 日 ト

- RCA₀ : Recursive Comprehension Axiom
- WKL₀ : Weak König's Lemma
- ACA₀ : Arithmetic Comprehension Axiom
- ATR₀ : Arithmetic Transfinite Recursion
- $\Pi_1^1{-}\mathsf{CA}_0:\Pi_1^1{-}\mathsf{Comprehension}$ Axiom

- ADS : Ascending-Descending Chain Principle
- 2 MLR : Existence of 2-Random sets
- COH : Cohesive set principle
- AMT : Atomic Model Theorem

イロト イポト イヨト イヨト

Let $T \subseteq 2^{<\mathbb{N}}$ be a tree. We say that T is completely branching if for all $\sigma \in T$, $\sigma^+ = \{\sigma 0, \sigma 1\} \subset 2^{<\mathbb{N}}$, either $\sigma^+ \subset T$ or $\sigma^+ \cap T = \emptyset$.

- 4 同 ト 4 回 ト - - 回

SQA

Let $T \subseteq 2^{<\mathbb{N}}$ be a tree. We say that T is completely branching if for all $\sigma \in T$, $\sigma^+ = \{\sigma 0, \sigma 1\} \subset 2^{<\mathbb{N}}$, either

$$\sigma^+ \subset T \quad \text{or} \quad \sigma^+ \cap T = \emptyset.$$

TAC (Tree Antichain Theorem)

Every infinite completely branching computably enumerable tree $T \subseteq 2^{<\mathbb{N}}$ contains an infinite antichain.

< 同 > < 国 > < 国 >

Let $T \subseteq 2^{<\mathbb{N}}$ be a tree. We say that T is completely branching if for all $\sigma \in T$, $\sigma^+ = \{\sigma 0, \sigma 1\} \subset 2^{<\mathbb{N}}$, either

$$\sigma^+ \subset T \quad \text{or} \quad \sigma^+ \cap T = \emptyset.$$

TAC (Tree Antichain Theorem)

Every infinite completely branching computably enumerable tree $T \subseteq 2^{<\mathbb{N}}$ contains an infinite antichain.

TAC (Tree Antichain Theorem-Equivalent Version)

Every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with no terminal nodes and infinitely many splittings has an infinite antichain.

イロト イボト イヨト イヨト

Fact (RCA₀)

TAC follows from each of 2-MLR and ADS (individually).

Fact (RCA₀)

TAC is restricted Π_2^1 .

Fact (RCA₀)

TAC does not follow from WKL

Corollary

TAC is not equivalent to any other "known" subsystem of Second-Order Arithmetic.

イロト イボト イヨト イヨト

Definition

Let *R* be a ring with multiplicative identity 1_R .

• We say that ideals $I, J \subseteq R$ are coprime whenever I + J = R, i.e. $1_R \in I + J$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let *R* be a ring with multiplicative identity 1_R .

- We say that ideals $I, J \subseteq R$ are coprime whenever I + J = R, i.e. $1_R \in I + J$.
- We say that ideals $I, J \subseteq R$ are uniformly coprime if for all $x \in I \cap J$ there exist $y \in I$, $z \in \overline{J}$, and $a, b \in R$ such that x = yz and $ay + bz = 1_R$.

- 4 同 ト 4 ヨ ト

Definition

Let *R* be a ring with multiplicative identity 1_R .

- We say that ideals $I, J \subseteq R$ are coprime whenever I + J = R, i.e. $1_R \in I + J$.
- We say that ideals $I, J \subseteq R$ are uniformly coprime if for all $x \in I \cap J$ there exist $y \in I$, $z \in \overline{J}$, and $a, b \in R$ such that x = yz and $ay + bz = 1_R$.

- 4 同 ト 4 ヨ ト

Definition

Let *R* be a ring with multiplicative identity 1_R .

- We say that ideals $I, J \subseteq R$ are coprime whenever I + J = R, i.e. $1_R \in I + J$.
- We say that ideals $I, J \subseteq R$ are uniformly coprime if for all $x \in I \cap J$ there exist $y \in I$, $z \in \overline{J}$, and $a, b \in R$ such that x = yz and $ay + bz = 1_R$.

Theorem A

If R has infinitely many coprime minimal primes, then R is not Noetherian.

Theorem B

If *R* has infinitely many uniformly coprime minimal primes, then *R* is not Noetherian.

< ロ > < 同 > < 回 > < 回 >

Э

nar

Theorem (RCA₀ + B Σ_2)

Theorem B is equivalent to TAC.

Chris Conidis The Computability of the Tree Antichain Theorem

Э

SQR

Theorem $(RCA_0 + B\Sigma_2)$

Theorem B is equivalent to TAC.

Conjecture (RCA₀ + B Σ_2)

Theorem A is equivalent to TAC.

(4 同 ト 4 ヨ ト 4 ヨ ト

Given *R* with infinitely many minimal primes, construct $T = T_R \subseteq 2^{<\mathbb{N}}$ such that:

• every $\sigma \in T$ corresponds to some (zero-divisor) $x_{\sigma} \in R$;

イロト イポト イヨト イヨト 三日

SQR

Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{<\mathbb{N}}$ such that:

• every $\sigma \in T$ corresponds to some (zero-divisor) $x_{\sigma} \in R$;

•
$$\prod_{\sigma \in S} x_{\sigma} = 0_R$$
 whenever *S* covers $2^{\mathbb{N}}$;

イロト イポト イヨト イヨト 三日

SQR

Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{<\mathbb{N}}$ such that:

• every $\sigma \in T$ corresponds to some (zero-divisor) $x_{\sigma} \in R$;

•
$$\prod_{\sigma \in S} x_{\sigma} = 0_R$$
 whenever *S* covers $2^{\mathbb{N}}$;

• paths in T correspond to annihilator ideals;

イロト イポト イヨト イヨト 三日

Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{<\mathbb{N}}$ such that:

• every $\sigma \in T$ corresponds to some (zero-divisor) $x_{\sigma} \in R$;

•
$$\prod_{\sigma \in S} x_{\sigma} = 0_R$$
 whenever *S* covers $2^{\mathbb{N}}$;

- paths in T correspond to annihilator ideals;
- maximal paths correspond to maximal annihilator (hence minimal prime) ideals.

イロト イポト イヨト イヨト 二日

Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{<\mathbb{N}}$ such that:

• every $\sigma \in T$ corresponds to some (zero-divisor) $x_{\sigma} \in R$;

•
$$\prod_{\sigma \in S} x_{\sigma} = 0_R$$
 whenever *S* covers $2^{\mathbb{N}}$;

- paths in T correspond to annihilator ideals;
- maximal paths correspond to maximal annihilator (hence minimal prime) ideals.

イロト イポト イヨト イヨト 二日

Given R with infinitely many minimal primes, construct $T = T_R \subseteq 2^{<\mathbb{N}}$ such that:

• every $\sigma \in T$ corresponds to some (zero-divisor) $x_{\sigma} \in R$;

•
$$\prod_{\sigma \in S} x_{\sigma} = 0_R$$
 whenever *S* covers $2^{\mathbb{N}}$;

- paths in T correspond to annihilator ideals;
- maximal paths correspond to maximal annihilator (hence minimal prime) ideals.

If $\{\alpha_i : i \in \mathbb{N}\}$ is an infinite *T*-antichain, and

$$I_N = Ann(\prod_{i=1}^N x_{\alpha_i}),$$

then

$$I_0 \subset I_1 \subset I_2 \cdots \subset I_N \subset \cdots$$

イロト イポト イヨト イヨト 二日

~ ~ ~ ~

Given infinite Σ_1^0 completely branching $T \subseteq 2^{<\mathbb{N}}$. Construct *R* via:

• *R* is a quotient of $\mathbb{Q}[X_{\sigma} : \sigma \in T]$ such that

イロト イポト イヨト イヨト 二日

• *R* is a quotient of $\mathbb{Q}[X_{\sigma} : \sigma \in T]$ such that

•
$$X_{\emptyset} = 0 \in R$$
,

イロト イポト イヨト イヨト 二日

• *R* is a quotient of $\mathbb{Q}[X_{\sigma} : \sigma \in T]$ such that

•
$$X_{\emptyset} = 0 \in R$$
,

• $X_{\sigma 0}X_{\sigma 1}=X_{\sigma}$, and

イロト 不得 トイヨト イヨト 二日

- *R* is a quotient of $\mathbb{Q}[X_{\sigma} : \sigma \in T]$ such that
 - $X_{\emptyset} = 0 \in R$,
 - $X_{\sigma 0}X_{\sigma 1}=X_{\sigma}$, and
 - inverses for all polynomials such that the intersection of the partial−2^N−coverings yielded by the monomials is empty.

イロト イポト イヨト イヨト 二日

- *R* is a quotient of $\mathbb{Q}[X_{\sigma} : \sigma \in T]$ such that
 - $X_{\emptyset} = 0 \in R$,
 - $X_{\sigma 0}X_{\sigma 1}=X_{\sigma}$, and
 - inverses for all polynomials such that the intersection of the partial-2^ℕ-coverings yielded by the monomials is empty.
- *R* is a PIR; every ideal $I \subset R$ is generated by a monomial.

化口压 化闭压 化压压 化压压

- *R* is a quotient of $\mathbb{Q}[X_{\sigma} : \sigma \in T]$ such that
 - $X_{\emptyset} = 0 \in R$,
 - $X_{\sigma 0}X_{\sigma 1}=X_{\sigma}$, and
 - inverses for all polynomials such that the intersection of the partial-2^ℕ-coverings yielded by the monomials is empty.
- R is a PIR; every ideal $I \subset R$ is generated by a monomial.
- Given an infinite strictly ascending *R*-chain, one can effectively find a principle generator for each ideal in the chain and use BΣ₂ along with the sequence of exponents of these generators to build an infinite antichain of *T* in the context.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Over RCA_0 we have that $\mathsf{TAC} \to \mathsf{Theorem}~\mathsf{B}.$

Chris Conidis The Computability of the Tree Antichain Theorem

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●

Over RCA_0 we have that TAC \rightarrow Theorem B. The converse follows from RCA_0+B $\Sigma_2.$

イロト イポト イヨト イヨト 二日

SQC

Over RCA_0 we have that $\mathsf{TAC} \to \mathsf{Theorem}~\mathsf{B}.$ The converse follows from $\mathsf{RCA}_0{+}\mathsf{B}\Sigma_2.$

Definition (RCA₀)

For each $n \in \mathbb{N}$, let n-TAC be the principle that says "for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \to \mathbb{N}$ such that:

< 同 ▶ < ∃ ▶ < ∃ ▶

Over RCA_0 we have that $\mathsf{TAC} \to \mathsf{Theorem}~\mathsf{B}.$ The converse follows from $\mathsf{RCA}_0{+}\mathsf{B}\Sigma_2.$

Definition (RCA₀)

For each $n \in \mathbb{N}$, let n-TAC be the principle that says "for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \to \mathbb{N}$ such that:

•
$$f(\emptyset) = n;$$

• there exist infinitely many $\sigma \in \mathcal{T}$ and $i_{\sigma} \in \{0,1\}$ such that:

 $f(\sigma) > f(\sigma i_{\sigma}).$

・ロト ・ 一 マ ・ コ ト ・ 日 ト

Over RCA_0 we have that $\mathsf{TAC} \to \mathsf{Theorem}~\mathsf{B}.$ The converse follows from $\mathsf{RCA}_0{+}\mathsf{B}\Sigma_2.$

Definition (RCA₀)

For each $n \in \mathbb{N}$, let n-TAC be the principle that says "for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \to \mathbb{N}$ such that:

- $f(\emptyset) = n;$
- there exist infinitely many $\sigma \in T$ and $i_{\sigma} \in \{0,1\}$ such that:

 $f(\sigma) > f(\sigma i_{\sigma}).$

TAC is equivalent to 1-TAC.

Over RCA_0 we have that $\mathsf{TAC} \to \mathsf{Theorem}~\mathsf{B}.$ The converse follows from $\mathsf{RCA}_0{+}\mathsf{B}\Sigma_2.$

Definition (RCA₀)

For each $n \in \mathbb{N}$, let n-TAC be the principle that says "for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \to \mathbb{N}$ such that:

- $f(\emptyset) = n;$
- there exist infinitely many $\sigma \in T$ and $i_{\sigma} \in \{0,1\}$ such that:

 $f(\sigma) > f(\sigma i_{\sigma}).$

TAC is equivalent to 1-TAC. Let WTAC be n-TAC without the n.

・ロト ・ 雪 ト ・ ヨ ト ・

Over RCA_0 we have that $\mathsf{TAC} \to \mathsf{Theorem}~\mathsf{B}.$ The converse follows from $\mathsf{RCA}_0{+}\mathsf{B}\Sigma_2.$

Definition (RCA₀)

For each $n \in \mathbb{N}$, let n-TAC be the principle that says "for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \to \mathbb{N}$ such that:

- $f(\emptyset) = n;$
- there exist infinitely many $\sigma \in T$ and $i_{\sigma} \in \{0,1\}$ such that:

 $f(\sigma) > f(\sigma i_{\sigma}).$

TAC is equivalent to 1-TAC. Let WTAC be n-TAC without the n.

TAC \longrightarrow Theorem B \longrightarrow WTAC, over RCA₀.

イロト イポト イヨト イヨト 二日

Over RCA_0 we have that $\mathsf{TAC} \to \mathsf{Theorem}~\mathsf{B}.$ The converse follows from $\mathsf{RCA}_0{+}\mathsf{B}\Sigma_2.$

Definition (RCA₀)

For each $n \in \mathbb{N}$, let n-TAC be the principle that says "for every infinite tree $T \subseteq 2^{<\mathbb{N}}$ with infinitely many splittings, there is a (path-)nonincreasing $f_T : T \to \mathbb{N}$ such that:

- $f(\emptyset) = n;$
- there exist infinitely many $\sigma \in T$ and $i_{\sigma} \in \{0,1\}$ such that:

 $f(\sigma) > f(\sigma i_{\sigma}).$

TAC is equivalent to 1-TAC. Let WTAC be n-TAC without the n.

TAC \longrightarrow Theorem B \longrightarrow WTAC, over RCA₀.

 $\mathsf{TAC} \longleftrightarrow \mathsf{Theorem}\ \mathsf{A}/\mathsf{B} \longleftrightarrow \mathsf{WTAC}\text{, over }\mathsf{RCA}_0{+}\mathsf{B}\Sigma_2.$

イロト 不得 トイヨト イヨト 二日

We need to use infinite combinatorial structures (graphs) that are more general than trees and include (undirected) cycles.

イロト 人間ト イヨト イヨト

3

SQA

We need to use infinite combinatorial structures (graphs) that are more general than trees and include (undirected) cycles.

Theorem

The Primary Decomposition Lemma follows from CAC+WKL₀.

イロト イヨト イヨト

We need to use infinite combinatorial structures (graphs) that are more general than trees and include (undirected) cycles.

Theorem

The Primary Decomposition Lemma follows from CAC+WKL₀.

Question (RCA₀)

- Does PDL follow from some measure-theoretic principle (randomness)?
- Π_1^1 -conservativity for (n-)TAC, PDL?

・ロト ・ 一 マ ・ コ ト ・ 日 ト

Thank You!

Chris Conidis The Computability of the Tree Antichain Theorem

<ロト < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ