THE STRENGTH OF THE EXISTENCE OF POSITIVE, FRIEDBERG AND MINIMAL NUMBERINGS

Marta Fiori Carones

(Joint work with Nikolay Bazhenov and Manat Mustafa)

Sobolev Institute of Mathematics Computability and Combinatorics, 21.05.2023

Numberings

Let S be at most countable family of subsets of \mathbb{N} . A numbering of S is a surjective map $\nu : \mathbb{N} \to S$.

Numberings

Let S be at most countable family of subsets of \mathbb{N} . A numbering of S is a surjective map $\nu : \mathbb{N} \to S$.

Elements of \mathcal{S} could be:

- formulae of first order arithmetic (Gödel)
- partial computable functions
- recursive models
- finite sets
- \blacksquare tuples of \mathbb{N}^n

Generalised approach of Goncharov and Sorbi

Consider families of objects which admits a constructive description in a certain formal language. Elements of $\mathcal S$ could be:

- Σ_n^0 -formulae of first order arithmetic
- partial Σ_n^0 -computable functions
- $\bullet \ \Delta_{\rm n}^0 \text{-recursive models}$

Generalised approach of Goncharov and Sorbi

Consider families of objects which admits a constructive description in a certain formal language. Elements of S could be:

- Σ_n^0 -formulae of first order arithmetic
- partial Σ_n^0 -computable functions
- Δ_n^0 -recursive models

Let \mathcal{S} be at most countable family of Σ_n^0 -subsets of \mathbb{N} .

A numbering of $\nu \colon \mathbb{N} \to \mathcal{S}$ is Σ^0_n -computable if $\{ \langle m, x \rangle \mid x \in \nu(m) \} \in \Sigma^0_n$.

Roger semilattice

Let S be at most countable family of certain (constructible) objects. Let ν and μ be numberings of S.

Roger semilattice

Let S be at most countable family of certain (constructible) objects. Let ν and μ be numberings of S.

 ν is <u>reducible</u> to μ , $\nu \leq \mu$, if there exists a total computable function $f: \mathbb{N} \to \mathbb{N}$ such that $\nu(k) = \mu(f(k))$ for all $k \in \mathbb{N}$.

Numberings ν and μ are equivalent if $\nu \leq \mu$ and $\mu \leq \nu$.

Interesting numberings

A numbering $\nu \colon \mathbb{N} \to S$ is called <u>Friedberg</u> if ν is injective, i.e. $\nu(\mathbf{k}) \neq \nu(\mathbf{l})$ for all $\mathbf{k} \neq \mathbf{l}$.

A numbering $\nu \colon \mathbb{N} \to \mathcal{S}$ is positive if the set $\{\langle k, l \rangle : \nu(k) = \nu(l)\}$ is c.e.

A numbering $\nu \colon \mathbb{N} \to S$ is <u>minimal</u> if for every numbering $\mu \colon \mathbb{N} \to S$ it holds that if $\mu \leq \nu$, then $\mu \equiv \nu$.

Interesting numberings

A numbering $\nu \colon \mathbb{N} \to S$ is called <u>Friedberg</u> if ν is injective, i.e. $\nu(\mathbf{k}) \neq \nu(\mathbf{l})$ for all $\mathbf{k} \neq \mathbf{l}$.

A numbering $\nu \colon \mathbb{N} \to S$ is positive if the set $\{\langle k, l \rangle : \nu(k) = \nu(l)\}$ is c.e.

A numbering $\nu \colon \mathbb{N} \to S$ is <u>minimal</u> if for every numbering $\mu \colon \mathbb{N} \to S$ it holds that if $\mu \leq \nu$, then $\mu \equiv \nu$.

Friedberg \Rightarrow positive \Rightarrow minimal

Wei Li's analysis

Theorem (Li)

 $\mathsf{Over}\ \mathsf{P}\mathsf{A}^- + \mathrm{B}\Sigma_2\text{,}$

 $\mathrm{I}\Sigma_2$ is equivalent to the existence (an index for) a Friedberg numbering for the family of all c.e. sets

Wei Li's analysis

Theorem (Li)

Over $PA^- + B\Sigma_2$,

 $\mathrm{I}\Sigma_2$ is equivalent to the existence (an index for) a Friedberg numbering for the family of all c.e. sets

Let $\langle W_0, W_1, \ldots \rangle$ be an enumeration of all c.e. sets. Use $I\Sigma_2$ to argue that, for each $e \in \mathbb{N}$, there exists the least index i for W_e , that is

 $\forall j < i \, (W_i \neq W_j)$

Define a Friedberg numbering for $\langle \mathsf{W}_0,\mathsf{W}_1,\ldots\rangle$

 Σ^0_{n} -numbering u is coded by a Σ^0_{n} -formula $\psi(\mathsf{x},\mathsf{y})$, that is

 $\nu(\mathbf{x}) = \{\mathbf{y} : \psi(\mathbf{x}, \mathbf{y})\}, \text{ for } \mathbf{x} \in \mathbb{N}.$

Friedberg numberings

Theorem

Let $n \neq 0$. Over RCA₀ the following are equivalent:

- ACA_0
- for any $A \subseteq \mathbb{N}$ and any Σ_n^A -numbering ν there exists a set $B \subseteq \mathbb{N}$ and a Friedberg Σ_n^B -numbering μ such that ν and μ index the same family

• ACA₀ \vdash for any Σ_n^A -numbering ν there exists a Friedberg Σ_n^B -numbering •

Let $\psi(\mathbf{x}, \mathbf{y}, \mathbf{A})$ be a Σ_n^0 -formula encoding $\nu \colon \mathbb{N} \to \mathcal{S}$.

$$X = \{ e : (\forall i < e)(\nu(i) \neq \nu(e)) \} \in \Sigma_n^{A'}$$

By $RCA_0 + I\Sigma_n^0$, let $\pi_X \colon \mathbb{N} \to \mathbb{N}$ be an injective $\Delta_n^{A'}$ -enumeration of X. The Friedberg numbering μ is defined as follows:

$$\xi(\mathsf{x},\mathsf{y},\mathsf{A}') = \exists \mathsf{z}(\pi_{\mathsf{X}}(\mathsf{x}) = \mathsf{z} \land \psi(\mathsf{z},\mathsf{y},\mathsf{A}'))$$

Then μ is a Friedberg $\Sigma_{\rm n}^{\rm A'}\text{-}{\rm numbering}$ of the family ${\cal S}$

• for any Σ_n^A -numbering ν there exists a Friedberg Σ_n^B -numbering $\vdash ACA_0 \bullet$

Let g: $\mathbb{N}\to\mathbb{N}$ be injective. We define a $\Sigma_1^0\text{-numbering }\nu$ of a family $\mathcal S$ as follows:

$$\nu(2\mathsf{x}) = \{2\mathsf{x}\} \cup \{2\mathsf{x}+1 : \exists \mathsf{t} (\mathsf{g}(\mathsf{t})=\mathsf{x})\},\\ \nu(2\mathsf{x}+1) = \{2\mathsf{x}+1\} \cup \{2\mathsf{x} : \exists \mathsf{t} (\mathsf{g}(\mathsf{t})=\mathsf{x})\}.$$

-
$$x \notin \operatorname{range}(g) \Rightarrow \nu(2x) = \{2x\} \text{ and } \nu(2x+1) = \{2x+1\}$$

-
$$\mathbf{x} \in \operatorname{range}(\mathbf{g}) \Rightarrow \nu(2\mathbf{x}) = \nu(2\mathbf{x}+1) = \{2\mathbf{x}, 2\mathbf{x}+1\}$$

Let μ be a Friedberg Σ_1^0 -numbering of \mathcal{S} . Then the set range(g) is Δ_1^0 -definable:

 $\mathsf{x} \not\in \mathrm{range}(\mathsf{g}) \iff \exists \mathsf{i} \exists \mathsf{j} [\mathsf{i} \neq \mathsf{j} \land 2\mathsf{x} \in \mu(\mathsf{i}) \land 2\mathsf{x} + 1 \in \mu(\mathsf{j})]$

Minimal numberings

Let $\mathcal S$ be at most countable family of subsets of $\mathbb N$. Let ν and μ be numberings of $\mathcal S$.

Minimal numberings

Let $\mathcal S$ be at most countable family of subsets of $\mathbb N$. Let ν and μ be numberings of $\mathcal S$.

u is <u>reducible</u> to μ , $\nu \leq \mu$, if there exists an index $\mathbf{e} \in \mathbb{N}$ such that

 $\forall \mathbf{k} \big[\nu(\mathbf{k}) = \mu(\varphi_{\mathbf{e}}(\mathbf{k})) \big]$

Numberings ν and μ are equivalent if $\nu \leq \mu$ and $\mu \leq \nu$.

Minimal numberings

Let $\mathcal S$ be at most countable family of subsets of $\mathbb N$. Let ν and μ be numberings of $\mathcal S$.

u is <u>reducible</u> to μ , $\nu \leq \mu$, if there exists an index $e \in \mathbb{N}$ such that

 $\forall \mathbf{k} \big[\nu(\mathbf{k}) = \mu(\varphi_{\mathbf{e}}(\mathbf{k})) \big]$

Numberings ν and μ are equivalent if $\nu \leq \mu$ and $\mu \leq \nu$.

A Σ_n^0 -numbering $\nu \colon \mathbb{N} \to S$ is <u>minimal</u> if for any Σ_n^0 -numbering μ of S $\mu \le \nu$ implies $\nu \le \mu$.

Theorem

Suppose that $n \geq 2$. Over RCA₀, $I\Sigma_2$ proves the following principle: for any Σ_n^A -numbering ν there exists a minimal Σ_n^A -numbering μ such that ν and μ index the same family.

Theorem

Suppose that $n \geq 2$. Over RCA₀, $I\Sigma_2$ proves the following principle: for any Σ_n^A -numbering ν there exists a minimal Σ_n^A -numbering μ such that ν and μ index the same family.

Theorem (Chong Yang)

Over RCA_0 + $B\Sigma_2$, $I\Sigma_2$ is equivalent to the existence of a maximal Σ_1 -set.

Positive numberings

A Σ_n^0 -numbering $\nu \colon \mathbb{N} \to \mathcal{S}$ is positive if there exists a Σ_1 -formula $\theta(x, y)$ such that:

 $\forall \mathsf{x} \forall \mathsf{y}[\nu(\mathsf{x}) = \nu(\mathsf{y}) \leftrightarrow \theta(\mathsf{x},\mathsf{y})]$

A Σ_n^0 -numbering $\nu \colon \mathbb{N} \to \mathcal{S}$ is positive if there exists a Σ_1 -formula $\theta(x, y)$ such that:

 $\forall \mathsf{x} \forall \mathsf{y}[\nu(\mathsf{x}) = \nu(\mathsf{y}) \leftrightarrow \theta(\mathsf{x},\mathsf{y})]$

Theorem

Let $n \in \mathbb{N}$. Over $RCA_0 + I\Sigma_2$ the following are equivalent:

- ACA₀
- for any $\Sigma_{\rm n}^{\rm A}-{\rm numbering}\;\nu$ there exists a positive $\Sigma_{\rm n}^{\rm B}-{\rm numbering}\;\mu$ such that ν and μ index the same family.

existence of Σ_n^0 -Friedberg

existence of Σ_n^0 -positive

existence of Σ_n^0 -minimal

existence of Σ_n^0 -Friedberg

 ACA_0

existence of $\Sigma^0_{\rm n}\mbox{-}{\rm positive}$

 $\mathsf{RCA}_0 + \mathrm{I}\Sigma_2$

existence of Σ_n^0 -minimal

existence of $\Sigma^0_{\rm n}\mbox{-}{\rm Friedberg}$

 ACA_0

internal properties

existence of Σ_n^0 -positive

 $\mathsf{RCA}_0 + \mathrm{I}\Sigma_2$

existence of Σ^0_n -minimal

global properties

Weihrauch reducibility

A $\Sigma^0_{\rm n}\text{-}{\rm coded}$ numbering is a sequence ${\rm p}\in\omega^\omega$ satisfying the followings:

$$\bullet p = p_1 \oplus p_2,$$

• for each
$$k \in \omega$$
, $p_1(k) = \langle x, y, \sigma \rangle$ for some $x, y \in \omega$ and $\sigma \in \omega^{<\omega}$,

$$\label{eq:angle_states} \blacksquare \mbox{ for any } {\tt x}, {\tt y} \in \omega, \ \exists {\tt k} \ \exists \sigma \ {\tt p}_1({\tt k}) = \langle {\tt x}, {\tt y}, \sigma \rangle \Rightarrow \forall \tau \sqsupseteq \sigma \ \exists {\tt m} \ {\tt p}_1({\tt m}) = \langle {\tt x}, {\tt y}, \tau \rangle,$$

■
$$p_2$$
 is a Δ_n^0 -presentation of a function $g \in \omega^{\omega}$,
i.e. $g(a) = \lim_{s_1} \dots \lim_{s_{n-1}} p_2(\langle a, s_1, \dots, s_{n-1} \rangle)$ for each $a \in \omega$

A numbering ν is represented by a Σ_n^0 -coded numbering $p = p_1 \oplus p_2$ (where p_2 is a Δ_n^0 -presentation of a function g) if and only if for every $x \in \omega$,

$$\nu(\mathbf{x}) = \{\mathbf{y} \in \omega : \exists \mathbf{k} \, \exists \sigma \sqsubset \mathbf{g} \, (\mathbf{p}_1(\mathbf{k}) = \langle \mathbf{x}, \mathbf{y}, \sigma \rangle) \}$$

Friedberg numberings

Let n \geq 1. Then Fried_n: $\subseteq \omega^{\omega}
ightrightarrow \omega^{\omega}$ is the following multi-valued function:

- Input/instance: a Σ_n^0 -coded numbering u of an infinite family,
- Output/solution: a Σ_1^0 -coded Friedberg numbering μ of the same family.

lim: $\omega^{\omega \times \omega} \to \omega^{\omega}$ is the following function.

- Input/instance: An $\mathbf{f}\in\omega^{\omega\times\omega}$ such that $\lim\mathbf{f}$ exists,
- Output/solution: limf.

Friedberg numberings

Let n \geq 1. Then Fried_n: $\subseteq \omega^{\omega}
ightrightarrow \omega^{\omega}$ is the following multi-valued function:

- Input/instance: a Σ^0_n -coded numbering u of an infinite family,
- Output/solution: a Σ^0_1 -coded Friedberg numbering μ of the same family.

lim: $\omega^{\omega \times \omega} \to \omega^{\omega}$ is the following function.

- Input/instance: An f $\in \omega^{\omega \times \omega}$ such that lim f exists,
- Output/solution: limf.

Theorem

 $\mathsf{lim}^{(n-1)} \equiv_{\mathrm{sW}} \mathsf{Fried}_n.$