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Numberings

Let S be at most countable family of subsets of N.
A numbering of S is a surjective map ν : N → S.

Elements of S could be:

■ formulae of first order arithmetic (Gödel)

■ partial computable functions

■ recursive models

■ finite sets

■ tuples of Nn
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Generalised approach of Goncharov and Sorbi

Consider families of objects which admits a constructive description in a certain formal language.
Elements of S could be:

■ Σ0
n -formulae of first order arithmetic

■ partial Σ0
n -computable functions

■ ∆0
n -recursive models

Let S be at most countable family of Σ0
n -subsets of N.

A numbering of ν : N → S is Σ0
n -computable if {⟨m, x⟩ | x ∈ ν(m)} ∈ Σ0

n .
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Roger semilattice

Let S be at most countable family of certain (constructible) objects.

Let ν and µ be numberings of S.

ν is reducible to µ, ν ≤ µ, if there exists a total computable function f : N → N
such that ν(k) = µ(f(k)) for all k ∈ N.

Numberings ν and µ are equivalent if ν ≤ µ and µ ≤ ν.
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Interesting numberings

A numbering ν : N → S is called Friedberg if ν is injective,

i.e. ν(k) ̸= ν(l) for all k ̸= l.

A numbering ν : N → S is positive if the set {⟨k, l⟩ : ν(k) = ν(l)} is c.e.

A numbering ν : N → S is minimal if for every numbering µ : N → S it holds that

if µ ≤ ν, then µ ≡ ν.

Friedberg ⇒ positive ⇒ minimal
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Wei Li’s analysis

Theorem (Li)
Over PA− + BΣ2,

IΣ2 is equivalent to the existence (an index for) a Friedberg numbering for the family of all c.e. sets

Let ⟨W0,W1, . . .⟩ be an enumeration of all c.e. sets.

Use IΣ2 to argue that, for each e ∈ N, there exists the least index i for We, that is

∀j < i (Wi ̸= Wj)

Define a Friedberg numbering for ⟨W0,W1, . . .⟩

Wei Li, Friedberg numbering in fragments of Peano arithmetic and α-recursion theory, 2013
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Numberings in RM

Σ0
n -numbering ν is coded by a Σ0

n -formula ψ(x, y), that is

ν(x) = {y : ψ(x, y)}, for x ∈ N.



Friedberg numberings

Theorem
Let n ̸= 0. Over RCA0 the following are equivalent:

- ACA0

- for any A ⊆ N and any ΣA
n -numbering ν

there exists a set B ⊆ N and a Friedberg ΣB
n-numbering µ

such that ν and µ index the same family



• ACA0 ⊢ for any ΣA
n -numbering ν there exists a Friedberg ΣB

n-numbering •

Let ψ(x, y,A) be a Σ0
n -formula encoding ν : N → S.

X = {e : (∀i < e)(ν(i) ̸= ν(e))} ∈ ΣA′
n

By RCA0 + IΣ0
n , let πX : N → N be an injective ∆A′

n -enumeration of X.

The Friedberg numbering µ is defined as follows:

ξ(x, y,A′) = ∃z(πX(x) = z ∧ ψ(z, y,A′))

Then µ is a Friedberg ΣA′
n -numbering of the family S



• for any ΣA
n -numbering ν there exists a Friedberg ΣB

n-numbering ⊢ ACA0 •

Let g : N → N be injective.
We define a Σ0

1-numbering ν of a family S as follows:

ν(2x) = {2x} ∪ {2x+ 1 : ∃t (g(t) = x)},

ν(2x+ 1) = {2x+ 1} ∪ {2x : ∃t (g(t) = x)}.

- x ̸∈ range(g) ⇒ ν(2x) = {2x} and ν(2x+ 1) = {2x+ 1}

- x ∈ range(g) ⇒ ν(2x) = ν(2x+ 1) = {2x, 2x+ 1}

Let µ be a Friedberg Σ0
1-numbering of S. Then the set range(g) is ∆0

1-definable:

x ̸∈ range(g) ⇔ ∃i∃j[i ̸= j ∧ 2x ∈ µ(i) ∧ 2x+ 1 ∈ µ(j)]



Minimal numberings

Let S be at most countable family of subsets of N.
Let ν and µ be numberings of S.

ν is reducible to µ, ν ≤ µ, if there exists an index e ∈ N such that

∀k
[
ν(k) = µ(φe(k))

]
Numberings ν and µ are equivalent if ν ≤ µ and µ ≤ ν.

A Σ0
n -numbering ν : N → S is minimal if for any Σ0

n -numbering µ of S
µ ≤ ν implies ν ≤ µ.
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Theorem
Suppose that n ≥ 2. Over RCA0, IΣ2 proves the following principle:

for any ΣA
n -numbering ν there exists a minimal ΣA

n -numbering µ
such that ν and µ index the same family.

Theorem (Chong Yang)
Over RCA0 + BΣ2, IΣ2 is equivalent to the existence of a maximal Σ1-set.

Badaev Goncharov, Rogers semilattices of families of arithmetic sets , 2001
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Positive numberings

A Σ0
n -numbering ν : N → S is positive if there exists a Σ1-formula θ(x, y) such that:

∀x∀y[ν(x) = ν(y) ↔ θ(x, y)]

Theorem
Let n ∈ N. Over RCA0 + IΣ2 the following are equivalent:

- ACA0

- for any ΣA
n -numbering ν there exists a positive ΣB

n-numbering µ
such that ν and µ index the same family.
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existence of Σ0
n -positive

existence of Σ0
n -minimal

ACA0

RCA0 + IΣ2

internal properties

global properties
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Weihrauch reducibility

A Σ0
n -coded numbering is a sequence p ∈ ωω satisfying the followings:

■ p = p1 ⊕ p2,

■ for each k ∈ ω, p1(k) = ⟨x, y, σ⟩ for some x, y ∈ ω and σ ∈ ω<ω,

■ for any x, y ∈ ω, ∃k∃σ p1(k) = ⟨x, y, σ⟩ ⇒ ∀τ ⊒ σ ∃mp1(m) = ⟨x, y, τ⟩,

■ p2 is a ∆0
n -presentation of a function g ∈ ωω,

i.e. g(a) = lims1 . . . limsn−1 p2(⟨a, s1, . . . , sn−1⟩) for each a ∈ ω.

A numbering ν is represented by a Σ0
n -coded numbering p = p1 ⊕ p2 (where p2 is a ∆0

n -presentation of a
function g) if and only if for every x ∈ ω,

ν(x) = {y ∈ ω : ∃k ∃σ ⊏ g (p1(k) = ⟨x, y, σ⟩)}



Friedberg numberings

Let n ≥ 1. Then Friedn : ⊆ ωω ⇒ ωω is the following multi-valued function:

- Input/instance: a Σ0
n -coded numbering ν of an infinite family,

- Output/solution: a Σ0
1-coded Friedberg numbering µ of the same family.

lim : ωω×ω → ωω is the following function.

- Input/instance: An f ∈ ωω×ω such that lim f exists,

- Output/solution: lim f.

Theorem
lim(n−1) ≡sW Friedn.
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