THE STRENGTH OF THE EXISTENCE OF POSITIVE, FRIEDBERG AND MINIMAL NUMBERINGS

## Marta Fiori Carones

(Joint work with Nikolay Bazhenov and Manat Mustafa)

## Numberings

Let $\mathcal{S}$ be at most countable family of subsets of $\mathbb{N}$.
A numbering of $\mathcal{S}$ is a surjective map $\nu: \mathbb{N} \rightarrow \mathcal{S}$.

## Numberings

Let $\mathcal{S}$ be at most countable family of subsets of $\mathbb{N}$.
A numbering of $\mathcal{S}$ is a surjective map $\nu: \mathbb{N} \rightarrow \mathcal{S}$.

Elements of $\mathcal{S}$ could be:

- formulae of first order arithmetic (Gödel)
- partial computable functions
- recursive models
- finite sets
- tuples of $\mathbb{N}^{n}$


## Generalised approach of Goncharov and Sorbi

Consider families of objects which admits a constructive description in a certain formal language.
Elements of $\mathcal{S}$ could be:

- $\Sigma_{\mathrm{n}}^{0}$-formulae of first order arithmetic
- partial $\Sigma_{n}^{0}$-computable functions
- $\Delta_{n}^{0}$-recursive models


## Generalised approach of Goncharov and Sorbi

Consider families of objects which admits a constructive description in a certain formal language.
Elements of $\mathcal{S}$ could be:

- $\Sigma_{n}^{0}$-formulae of first order arithmetic
- partial $\Sigma_{\mathrm{n}}^{0}$-computable functions
- $\Delta_{n}^{0}$-recursive models

Let $\mathcal{S}$ be at most countable family of $\Sigma_{n}^{0}$-subsets of $\mathbb{N}$.
A numbering of $\nu: \mathbb{N} \rightarrow \mathcal{S}$ is $\Sigma_{\mathrm{n}}^{0}$-computable if $\{\langle\mathrm{m}, \mathrm{x}\rangle \mid \mathrm{x} \in \nu(\mathrm{m})\} \in \Sigma_{\mathrm{n}}^{0}$.

## Roger semilattice

Let $\mathcal{S}$ be at most countable family of certain (constructible) objects.
Let $\nu$ and $\mu$ be numberings of $\mathcal{S}$.

## Roger semilattice

Let $\mathcal{S}$ be at most countable family of certain (constructible) objects.
Let $\nu$ and $\mu$ be numberings of $\mathcal{S}$.
$\nu$ is reducible to $\mu, \nu \leq \mu$, if there exists a total computable function $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$ such that $\nu(\mathrm{k})=\mu(\mathrm{f}(\mathrm{k}))$ for all $\mathrm{k} \in \mathbb{N}$.
Numberings $\nu$ and $\mu$ are equivalent if $\nu \leq \mu$ and $\mu \leq \nu$.

## Interesting numberings

A numbering $\nu: \mathbb{N} \rightarrow \mathcal{S}$ is called Friedberg if $\nu$ is injective, i.e. $\nu(\mathrm{k}) \neq \nu(\mathrm{l})$ for all $\mathrm{k} \neq \mathrm{I}$.

A numbering $\nu: \mathbb{N} \rightarrow \mathcal{S}$ is positive if the set $\{\langle k, \mathrm{I}\rangle: \nu(\mathrm{k})=\nu(\mathrm{I})\}$ is c.e.

A numbering $\nu: \mathbb{N} \rightarrow \mathcal{S}$ is minimal if for every numbering $\mu: \mathbb{N} \rightarrow \mathcal{S}$ it holds that if $\mu \leq \nu$, then $\mu \equiv \nu$.

## Interesting numberings

A numbering $\nu: \mathbb{N} \rightarrow \mathcal{S}$ is called Friedberg if $\nu$ is injective, i.e. $\nu(\mathrm{k}) \neq \nu(\mathrm{l})$ for all $\mathrm{k} \neq \mathrm{I}$.

A numbering $\nu: \mathbb{N} \rightarrow \mathcal{S}$ is positive if the set $\{\langle k, \mathrm{I}\rangle: \nu(\mathrm{k})=\nu(\mathrm{I})\}$ is c.e.

A numbering $\nu: \mathbb{N} \rightarrow \mathcal{S}$ is minimal if for every numbering $\mu: \mathbb{N} \rightarrow \mathcal{S}$ it holds that if $\mu \leq \nu$, then $\mu \equiv \nu$.

Friedberg $\Rightarrow$ positive $\Rightarrow$ minimal

## Wei Li's analysis

## Theorem (Li)

Over $\mathrm{PA}^{-}+\mathrm{B} \Sigma_{2}$,
$I \Sigma_{2}$ is equivalent to the existence (an index for) a Friedberg numbering for the family of all c.e. sets

## Wei Li's analysis

## Theorem (Li)

Over $\mathrm{PA}^{-}+\mathrm{B} \Sigma_{2}$,
I $\Sigma_{2}$ is equivalent to the existence (an index for) a Friedberg numbering for the family of all c.e. sets

Let $\left\langle W_{0}, W_{1}, \ldots\right\rangle$ be an enumeration of all c.e. sets.
Use $I \Sigma_{2}$ to argue that, for each $\mathrm{e} \in \mathbb{N}$, there exists the least index $i$ for $\mathrm{W}_{\mathrm{e}}$, that is

$$
\forall \mathrm{i}<\mathrm{i}\left(\mathrm{~W}_{\mathrm{i}} \neq \mathrm{W}_{\mathrm{i}}\right)
$$

Define a Friedberg numbering for $\left\langle\mathrm{W}_{0}, \mathrm{~W}_{1}, \ldots\right\rangle$

## Numberings in RM

$\Sigma_{\mathrm{n}}^{0}$-numbering $\nu$ is coded by a $\Sigma_{\mathrm{n}}^{0}$-formula $\psi(\mathrm{x}, \mathrm{y})$, that is

$$
\nu(\mathrm{x})=\{\mathrm{y}: \psi(\mathrm{x}, \mathrm{y})\}, \text { for } \mathrm{x} \in \mathbb{N}
$$

## Friedberg numberings

## Theorem

Let $\mathrm{n} \neq 0$. Over $\mathrm{RCA}_{0}$ the following are equivalent:

- $A^{2} A_{0}$
- for any $\mathrm{A} \subseteq \mathbb{N}$ and any $\Sigma_{\mathrm{n}}^{\mathrm{A}}$-numbering $\nu$ there exists a set $\mathrm{B} \subseteq \mathbb{N}$ and a Friedberg $\Sigma_{\mathrm{n}}^{\mathrm{B}}$-numbering $\mu$ such that $\nu$ and $\mu$ index the same family
- $\mathrm{ACA}_{0} \vdash$ for any $\Sigma_{\mathrm{n}}^{\mathrm{A}}$-numbering $\nu$ there exists a Friedberg $\Sigma_{\mathrm{n}}^{\mathrm{B}}$-numbering $\bullet$

Let $\psi(\mathrm{x}, \mathrm{y}, \mathrm{A})$ be a $\Sigma_{\mathrm{n}}^{0}$-formula encoding $\nu: \mathbb{N} \rightarrow \mathcal{S}$.

$$
\mathrm{X}=\{\mathrm{e}:(\forall \mathrm{i}<\mathrm{e})(\nu(\mathrm{i}) \neq \nu(\mathrm{e}))\} \in \Sigma_{\mathrm{n}}^{\mathrm{A}^{\prime}}
$$

By $\mathrm{RCA}_{0}+\mathrm{I} \Sigma_{\mathrm{n}}^{0}$, let $\pi_{\mathrm{x}}: \mathbb{N} \rightarrow \mathbb{N}$ be an injective $\Delta_{\mathrm{n}}^{\mathrm{A}^{\prime}}$-enumeration of X .
The Friedberg numbering $\mu$ is defined as follows:

$$
\xi\left(\mathrm{x}, \mathrm{y}, \mathrm{~A}^{\prime}\right)=\exists \mathrm{z}\left(\pi_{\mathrm{x}}(\mathrm{x})=\mathrm{z} \wedge \psi\left(\mathrm{z}, \mathrm{y}, \mathrm{~A}^{\prime}\right)\right)
$$

Then $\mu$ is a Friedberg $\Sigma_{n}^{A^{\prime}}$-numbering of the family $\mathcal{S}$

- for any $\Sigma_{\mathrm{n}}^{\mathrm{A}}$-numbering $\nu$ there exists a Friedberg $\Sigma_{\mathrm{n}}^{\mathrm{B}}$-numbering $\vdash \mathrm{ACA}_{0} \bullet$

Let $\mathrm{g}: \mathbb{N} \rightarrow \mathbb{N}$ be injective.
We define a $\Sigma_{1}^{0}$-numbering $\nu$ of a family $\mathcal{S}$ as follows:

$$
\begin{aligned}
\nu(2 x) & =\{2 x\} \cup\{2 x+1: \exists t(g(t)=x)\}, \\
\nu(2 x+1) & =\{2 x+1\} \cup\{2 x: \exists t(g(t)=x)\} .
\end{aligned}
$$

- $\mathrm{x} \notin$ range $(\mathrm{g}) \Rightarrow \nu(2 \mathrm{x})=\{2 \mathrm{x}\}$ and $\nu(2 \mathrm{x}+1)=\{2 \mathrm{x}+1\}$
- $\mathrm{x} \in \operatorname{range}(\mathrm{g}) \Rightarrow \nu(2 \mathrm{x})=\nu(2 \mathrm{x}+1)=\{2 \mathrm{x}, 2 \mathrm{x}+1\}$

Let $\mu$ be a Friedberg $\Sigma_{1}^{0}$-numbering of $\mathcal{S}$. Then the set range( g ) is $\Delta_{1}^{0}$-definable:

$$
x \notin \operatorname{range}(\mathrm{~g}) \Leftrightarrow \exists \mathrm{i} \exists \mathrm{i}[\mathrm{i} \neq \mathrm{i} \wedge 2 \mathrm{x} \in \mu(\mathrm{i}) \wedge 2 \mathrm{x}+1 \in \mu(\mathrm{i})]
$$

## Minimal numberings

Let $\mathcal{S}$ be at most countable family of subsets of $\mathbb{N}$.
Let $\nu$ and $\mu$ be numberings of $\mathcal{S}$.

## Minimal numberings

Let $\mathcal{S}$ be at most countable family of subsets of $\mathbb{N}$.
Let $\nu$ and $\mu$ be numberings of $\mathcal{S}$.
$\nu$ is reducible to $\mu, \nu \leq \mu$, if there exists an index e $\in \mathbb{N}$ such that

$$
\forall \mathrm{k}\left[\nu(\mathrm{k})=\mu\left(\varphi_{\mathrm{e}}(\mathrm{k})\right)\right]
$$

Numberings $\nu$ and $\mu$ are equivalent if $\nu \leq \mu$ and $\mu \leq \nu$.

## Minimal numberings

Let $\mathcal{S}$ be at most countable family of subsets of $\mathbb{N}$.
Let $\nu$ and $\mu$ be numberings of $\mathcal{S}$.
$\nu$ is reducible to $\mu, \nu \leq \mu$, if there exists an index $\mathrm{e} \in \mathbb{N}$ such that

$$
\forall \mathrm{k}\left[\nu(\mathrm{k})=\mu\left(\varphi_{\mathrm{e}}(\mathrm{k})\right)\right]
$$

Numberings $\nu$ and $\mu$ are equivalent if $\nu \leq \mu$ and $\mu \leq \nu$.

A $\Sigma_{\mathrm{n}}^{0}$-numbering $\nu: \mathbb{N} \rightarrow \mathcal{S}$ is minimal if for any $\Sigma_{\mathrm{n}}^{0}$-numbering $\mu$ of $\mathcal{S}$
$\mu \leq \nu$ implies $\nu \leq \mu$.

## Theorem

Suppose that $\mathrm{n} \geq 2$. Over $\mathrm{RCA}_{0}, \mathrm{I} \Sigma_{2}$ proves the following principle: for any $\Sigma_{\mathrm{n}}^{\mathrm{A}}$-numbering $\nu$ there exists a minimal $\Sigma_{\mathrm{n}}^{\mathrm{A}}$-numbering $\mu$ such that $\nu$ and $\mu$ index the same family.

## Theorem

Suppose that $\mathrm{n} \geq 2$. Over $\mathrm{RCA}_{0}, \mathrm{I} \Sigma_{2}$ proves the following principle:
for any $\Sigma_{\mathrm{n}}^{\mathrm{A}}$-numbering $\nu$ there exists a minimal $\Sigma_{\mathrm{n}}^{\mathrm{A}}$-numbering $\mu$ such that $\nu$ and $\mu$ index the same family.

## Theorem (Chong Yang)

Over $\mathrm{RCA}_{0}+\mathrm{B} \Sigma_{2}, \mathrm{I} \Sigma_{2}$ is equivalent to the existence of a maximal $\Sigma_{1}$-set.

## Positive numberings

A $\Sigma_{\mathrm{n}}^{0}$-numbering $\nu: \mathbb{N} \rightarrow \mathcal{S}$ is positive if there exists a $\Sigma_{1}$-formula $\theta(\mathrm{x}, \mathrm{y})$ such that:

$$
\forall x \forall y[\nu(\mathrm{x})=\nu(\mathrm{y}) \leftrightarrow \theta(\mathrm{x}, \mathrm{y})]
$$

## Positive numberings

A $\Sigma_{\mathrm{n}}^{0}$-numbering $\nu: \mathbb{N} \rightarrow \mathcal{S}$ is positive if there exists a $\Sigma_{1}$-formula $\theta(\mathrm{x}, \mathrm{y})$ such that:

$$
\forall x \forall y[\nu(\mathrm{x})=\nu(\mathrm{y}) \leftrightarrow \theta(\mathrm{x}, \mathrm{y})]
$$

## Theorem

Let $\mathrm{n} \in \mathbb{N}$. Over $R C A_{0}+\mathrm{I} \Sigma_{2}$ the following are equivalent:

- $A C A_{0}$
- for any $\Sigma_{\mathrm{n}}^{\mathrm{A}}$-numbering $\nu$ there exists a positive $\Sigma_{\mathrm{n}}^{\mathrm{B}}$-numbering $\mu$ such that $\nu$ and $\mu$ index the same family.
existence of $\Sigma_{n}^{0}$-Friedberg
existence of $\Sigma_{n}^{0}$-positive
existence of $\Sigma_{n}^{0}$-minimal
existence of $\Sigma_{n}^{0}$-Friedberg
$\mathrm{ACA}_{0}$
existence of $\Sigma_{n}^{0}$-positive
$\mathrm{RCA}_{0}+\mathrm{I} \Sigma_{2} \quad$ existence of $\Sigma_{\mathrm{n}}^{0}$-minimal
existence of $\Sigma_{n}^{0}$-Friedberg
$\mathrm{ACA}_{0}$
existence of $\Sigma_{n}^{0}$-positive

$$
\mathrm{RCA}_{0}+\mathrm{I} \Sigma_{2}
$$

existence of $\Sigma_{n}^{0}$-minimal
internal properties
global properties

## Weihrauch reducibility

A $\Sigma_{n}^{0}$-coded numbering is a sequence $p \in \omega^{\omega}$ satisfying the followings:

- $p=p_{1} \oplus p_{2}$,
- for each $k \in \omega, p_{1}(k)=\langle x, y, \sigma\rangle$ for some $x, y \in \omega$ and $\sigma \in \omega^{<\omega}$,

■ for any $\mathrm{x}, \mathrm{y} \in \omega, \exists \mathrm{k} \exists \sigma \mathrm{p}_{1}(\mathrm{k})=\langle\mathrm{x}, \mathrm{y}, \sigma\rangle \Rightarrow \forall \tau \sqsupseteq \sigma \exists \mathrm{m} \mathrm{p}_{1}(\mathrm{~m})=\langle\mathrm{x}, \mathrm{y}, \tau\rangle$,

- $p_{2}$ is a $\Delta_{\mathrm{n}}^{0}$-presentation of a function $\mathrm{g} \in \omega^{\omega}$, i.e. $g(a)=\lim _{s_{1}} \ldots \lim _{s_{n-1}} p_{2}\left(\left\langle a, s_{1}, \ldots, s_{n-1}\right\rangle\right)$ for each $a \in \omega$.

A numbering $\nu$ is represented by a $\Sigma_{\mathrm{n}}^{0}$-coded numbering $\mathrm{p}=\mathrm{p}_{1} \oplus \mathrm{p}_{2}$ (where $\mathrm{p}_{2}$ is a $\Delta_{\mathrm{n}}^{0}$-presentation of a function g ) if and only if for every $\mathrm{x} \in \omega$,

$$
\nu(\mathrm{x})=\left\{\mathrm{y} \in \omega: \exists \mathrm{k} \exists \sigma \sqsubset \mathrm{~g}\left(\mathrm{p}_{1}(\mathrm{k})=\langle\mathrm{x}, \mathrm{y}, \sigma\rangle\right)\right\}
$$

## Friedberg numberings

Let $\mathrm{n} \geq 1$. Then Fried ${ }_{\mathrm{n}}: \quad \subseteq \omega^{\omega} \rightrightarrows \omega^{\omega}$ is the following multi-valued function:

- Input/instance: a $\Sigma_{n}^{0}$-coded numbering $\nu$ of an infinite family,
- Output/solution: a $\Sigma_{1}^{0}$-coded Friedberg numbering $\mu$ of the same family.
$\lim : \omega^{\omega \times \omega} \rightarrow \omega^{\omega}$ is the following function.
- Input/instance: An $f \in \omega^{\omega \times \omega}$ such that limf exists,
- Output/solution: limf.


## Friedberg numberings

Let $\mathrm{n} \geq 1$. Then Fried $\mathrm{n}: ~ \subseteq \omega^{\omega} \rightrightarrows \omega^{\omega}$ is the following multi-valued function:

- Input/instance: a $\Sigma_{n}^{0}$-coded numbering $\nu$ of an infinite family,
- Output/solution: a $\Sigma_{1}^{0}$-coded Friedberg numbering $\mu$ of the same family.
$\lim : \omega^{\omega \times \omega} \rightarrow \omega^{\omega}$ is the following function.
- Input/instance: An $f \in \omega^{\omega \times \omega}$ such that limf exists,
- Output/solution: $\lim \mathrm{f}$.


## Theorem

$\lim ^{(n-1)} \equiv_{\mathrm{sW}}$ Fried $_{\mathrm{n}}$.

