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A numbering of S is a surjective map v: N — S.

Elements of S could be:
m formulae of first order arithmetic (Gédel)
m partial computable functions
m recursive models
m finite sets

m tuples of N"
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Generalised approach of Goncharov and Sorbi

Consider families of objects which admits a constructive description in a certain formal language.
Elements of S could be:

m XC-formulae of first order arithmetic
m partial £2-computable functions

m A%-recursive models

Let S be at most countable family of ©¢-subsets of N.

A numbering of v: N — S is X9-computable if {(m,x) | x € v(m)} € ={.
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Roger semilattice

Let S be at most countable family of certain (constructible) objects.
Let v and p be numberings of S.

v is reducible to u, v < p, if there exists a total computable function f: N — N
such that v(k) = p(f(k)) for all k € N.

Numberings v and p are equivalent if v < pand p < v.



Interesting numberings
A numbering v: N — S is called Friedberg if v is injective,
i.e. v(k) # v(l) forall k #£ 1.
A numbering v: N — S is positive if the set {(k, I} : v(k) = v(I)} is c.e.

A numbering v: N — & is minimal if for every numbering p: N — S it holds that
if u <v,thenpu=v.



Interesting numberings
A numbering v: N — S is called Friedberg if v is injective,
i.e. v(k) # v(l) forall k #£ 1.
A numbering v: N — S is positive if the set {(k, I} : v(k) = v(I)} is c.e.
A numbering v: N — & is minimal if for every numbering p: N — S it holds that

if u <v,thenpu=v.

Friedberg = positive = minimal



Wei Li’s analysis

Theorem (Li)
Over PA™ + BX,,

133, is equivalent to the existence (an index for) a Friedberg numbering for the family of all c.e. sets

Wei Li, Friedberg numbering in fragments of Peano arithmetic and ce-recursion theory, 2013



Wei Li’s analysis

Theorem (Li)
Over PA™ + BX,,

133, is equivalent to the existence (an index for) a Friedberg numbering for the family of all c.e. sets

Let (Wo, W1, ...) be an enumeration of all c.e. sets.

Use I3, to argue that, for each e € N, there exists the least index i for We, that is

Vi < i(Wi £ W)

Define a Friedberg numbering for (Wo, W1, .. .)

Wei Li, Friedberg numbering in fragments of Peano arithmetic and ce-recursion theory, 2013



Numberings in RM

%0-numbering v is coded by a X0-formula % (x, y), that is

v(x) ={y:¥(xy)}, forx e N.



Friedberg numberings

Theorem
Let n # 0. Over RCAq the following are equivalent:

- ACAq
- forany A C N and any Z4-numbering v
there exists a set B C N and a Friedberg X8-numbering

such that v and p index the same family



o ACAq + for any SA-numbering v there exists a Friedberg SE-numbering o

Let 1(x,y,A) be a B°-formula encoding v: N — S.

X={e: (Vi<e)(w(i) £v(e)}es¥

By RCAp +IX¢, let mx: N — N be an injective A’n\/—enumeroﬂon of X.
The Friedberg numbering p is defined as follows:

g(x, Y7Al) = HZ(WX(X) =zA 1/’(27 Ys A/))

Then 1 is a Friedberg £4 -numbering of the family S



o for any Xh-numbering v there exists a Friedberg X8-numbering + ACAq o

Let g: N — N be injective.
We define a 29-numbering v of a family S as follows:

v(2x) = {2x} U{2x + 1 : 3t (g(t) = x)},
v(2x+1) = {2x+ 1} U {2x: 3t (g(t) = x)}.

- x € range(g) = v(2x) = {2x} and v(2x+ 1) = {2x + 1}
- x € range(g) = v(2x) = v(2x + 1) = {2x,2x + 1}
Let 14 be a Friedberg X9-numbering of S. Then the set range(g) is A-definable:

x & range(g) < JiFj[i #jA2x € u(i) A2x+1 € pu(j)]
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Minimal numberings

Let S be at most countable family of subsets of N.

Let v and v be numberings of S.

v is reducible to p, v < p, if there exists an index e € N such that
W u (k) = (e (k)]
Numberings v and p are equivalent if v < pand p < v.

A X8-numbering v: N — S is minimal if for any £¢-numbering p of S

u < vimpliesv < p.



Theorem
Suppose that n > 2. Over RCAq, IX; proves the following principle:
for any =A-numbering v there exists a minimal ZA-numbering

such that v and p index the same family.

Badaev Goncharov, Rogers semilattices of families of arithmetic sets , 2001



Theorem
Suppose that n > 2. Over RCAq, IX; proves the following principle:
for any =A-numbering v there exists a minimal ZA-numbering

such that v and p index the same family.

Theorem (Chong Yang)

Over RCAp + BX,, I3, is equivalent to the existence of a maximal X1 -set.

Badaev Goncharov, Rogers semilattices of families of arithmetic sets , 2001



Positive numberings

A 28-numbering v: N — S is positive if there exists a X1 -formula 0(x, y) such that:

VxWy[v(x) = v(y) <> 0(x,y)]



Positive numberings

A 28-numbering v: N — S is positive if there exists a X1 -formula 0(x, y) such that:

VxWy[v(x) = v(y) <> 0(x,y)]

Theorem
Let n € N. Over RCAg + I3, the following are equivalent:

- ACAq

- for any ¥A-numbering v there exists a positive X8-numbering p
such that v and u index the same family.



existence of £2-Friedberg

existence of L.0-positive

existence of £2-minimal



existence of £2-Friedberg

ACAq

existence of L.0-positive

RCAy + I3, existence of £2-minimal



existence of £2-Friedberg

ACAq internal properties

existence of L.0-positive

RCAo + 1%, existence of £2-minimal global properties



Weihrauch reducibility

A 3%-coded numbering is a sequence p € w* satisfying the followings:
B p=p1Dp2,
m foreach k € w, p1(k) = (x,y, o) for some x,y € w and o € W<¥,
m forany x,y € w, 3kJop1(k) = (x,y,0) = V7 T o Impi(m) = (x,y, 7),

m po is a Al-presentation of a function g € w®,
i.e. g(a) = limy, ...lims, , p2({a,s1,...,sn—1)) foreach a € w.

A numbering v is represented by a X¢-coded numbering p = p1 @ pa (where pa is a A2-presentation of a

function g) if and only if for every x € w,

v(x) ={y € w:3kIo Cg(pi(k) = (xy,0))}



Friedberg numberings

Let n > 1. Then Fried,: C w* = w is the following multi-valued function:
- Input/instance: a X8-coded numbering v of an infinite family,

- Output/solution: a X9-coded Friedberg numbering p of the same family.

w X w

lim: w — w" is the following function.

w X w

- Input/instance: An f € w such that lim f exists,

- Output/solution: limf.



Friedberg numberings

Let n > 1. Then Fried,: C w* = w is the following multi-valued function:
- Input/instance: a X8-coded numbering v of an infinite family,

- Output/solution: a X9-coded Friedberg numbering p of the same family.

w X w

lim: w — w" is the following function.

w X w

- Input/instance: An f € w such that lim f exists,

- Output/solution: limf.

Theorem

lim(™—1 =.w Fried,.



