Ordinal Suprema and Second Order Arithmetic

Marcia Groszek

joint work with Ben Logsdon and Justin Miller

Dartmouth College
Computability and Combinatorics 2023

Outline

$R C A_{0}^{*}$

Cardinality

Ordinals

Comparing ordinals

Ordinal suprema - uniqueness

Ordinal suprema - existence

Context

Reverse Mathematics: Calibrate logical strength of theorems by set-theoretic existence axioms.
Use a first-order theory of second-order arithmetic.
$R C A: P^{-}$(finitary part of Peano Arithmetic), induction for all formulas, recursive (Δ_{1}^{0}) comprehension axiom.
$R C A_{0}$: Weaken induction to Σ_{1}^{0} formulas.
$R C A_{0}^{*}$: Weaken induction to Δ_{1}^{0} formulas; exponentiation is total.

Models of $R C A_{0}^{*}$

Factorization of polynomials and Σ_{1}^{0} induction
Stephen G. Simpson and Rick L. Smith
1986
Annals of Pure and Applied Logic

A model M of $\mathrm{RCA}_{0}^{*}+\neg / \Sigma_{1}^{0}$ has Σ_{1}^{0}-definable proper cuts.
I is Σ_{1}^{0}-definable but not an element of M.

F is increasing and cofinal with range X.
F and X are elements of M.

M

You can also get this picture by starting with:

- An unbounded set X in M to enumerate in order.
- A definition by primitive recursion of an increasing function F.

Cardinality in $R C A_{0}^{*}$

If I is proper, X is a subcountable infinite set.
Cardinals in M : Numbers, proper Σ_{1}^{0}-definable cuts, ω_{M}. The cardinals are linearly ordered.

Cardinality behaves well with respect to functions between sets, pairwise sums, and pairwise products.

Let I be a Σ_{1}^{0}-definable cut closed under addition.
(There are many in any model of $R C A_{0}^{*}+\neg / \Sigma_{1}^{0}$.)
I is an (additively) indecomposable cardinal:

$$
(\kappa<I) \&(\lambda<I) \Longrightarrow(\kappa+\lambda<I)
$$

If $\kappa<I$ and μ is any cardinal,
$(\operatorname{CARD}(A \cup B)=\mu+I) \&(\operatorname{CARD}(A)=\kappa) \Longrightarrow$

$$
\operatorname{CARD}(B)=\mu+I
$$

Ordinals in $R C A_{0}$

A survey of the reverse mathematics of ordinal arithmetic
Jeffry L. Hirst
2005

Reverse Mathematics 2001 ed. S. G. Simpson

A linear ordering $\langle X, \leq x\rangle$ is ill-founded iff there is (equivalently):

- A nonempty $Y \subseteq X$ with no $\leq x$-least element.
- A Σ_{1}^{0}-definable cut I with a decreasing function $F: I \rightarrow X$.

An ordinal is a well-founded linear ordering $\left\langle\alpha, \leq_{\alpha}\right\rangle$.
The ordinals are closed under pairwise addition.

For any Σ_{1}^{0}-definable cut I we have:

The set X with the usual ordering is an ordinal of order type I :

$$
\alpha_{I}=\langle X, \leq\rangle .
$$

If I is closed under addition, α_{I} is (additively) indecomposable.

Comparing ordinals

For ordinals α and β define
$\alpha \leq_{w} \beta$ iff there is an order-preserving embedding $F: \alpha \rightarrow \beta$, $\alpha<{ }_{w} \beta$ iff $\alpha+1 \leq{ }_{w} \beta$.

Theorem ($R C A_{0}^{*}$)
For ordinals α and β,
$\operatorname{CARD}(\alpha)<\operatorname{CARD}(\beta) \Longrightarrow \alpha<_{w} \beta$.

Theorem ($R C A_{0} ; \mathrm{H}$. Friedman and J. Hirst)
$A T R_{0} \Longleftrightarrow$ all ordinals are \leq_{w}-comparable.

Theorem $\left(R C A_{0}^{*}+\neg / \Sigma_{1}^{0}\right)$
There are ordinals α and β such that

$$
\alpha \mathbb{Z}_{w} \beta \& \beta \not \mathbb{L}_{w} \alpha .
$$

Corollary

Friedman and Hirst's theorem holds over the base theory $R C A_{0}^{*}$.

Theorem $\left(R C A_{0}^{*}+\neg / \Sigma_{1}^{0}\right)$
There are ordinals α and β such that

$$
\alpha \not \mathbb{Z}_{w} \beta \quad \& \quad \beta \not \leq_{w} \alpha
$$

Proof: Let I be a Σ_{1}^{0}-definable cut closed under addition, and b a number bounding l.

That is, $I<b$ as cardinals.
Define ordinals $\alpha=\alpha_{I}+b$ and $\beta=b+\alpha_{I}$.

To show $\alpha \not \mathbb{Z}_{w} \beta$, suppose $F: \alpha \rightarrow \beta$ is an embedding.

To show $\alpha \not \mathbb{Z}_{w} \beta$, suppose $F: \alpha \rightarrow \beta$ is an embedding.

To show $\alpha \not \mathbb{Z}_{w} \beta$, suppose $F: \alpha \rightarrow \beta$ is an embedding.

To show $\alpha \not \mathbb{Z}_{w} \beta$, suppose $F: \alpha \rightarrow \beta$ is an embedding.

To show $\alpha \not \mathbb{Z}_{w} \beta$, suppose $F: \alpha \rightarrow \beta$ is an embedding.

To show $\alpha \not Z_{w} \beta$, suppose $F: \alpha \rightarrow \beta$ is an embedding.

To show $\alpha \not Z_{w} \beta$, suppose $F: \alpha \rightarrow \beta$ is an embedding.

To show $\alpha \not \mathbb{Z}_{w} \beta$, suppose $F: \alpha \rightarrow \beta$ is an embedding.

To show $\alpha \not \mathbb{Z}_{w} \beta$, suppose $F: \alpha \rightarrow \beta$ is an embedding.

This is a contradiction.

To show $\alpha \not Z_{w} \beta$, suppose $F: \alpha \rightarrow \beta$ is an embedding.

This is a contradiction.

The proof $\beta \not \mathbb{L}_{w} \alpha$ is similar.

Ordinal suprema

If $S=\left\langle\beta_{x} \mid x \in \alpha\right\rangle$ is a well-ordered sequence of ordinals, the ordinal γ is:

An upper bound for S if $(\forall x \in \alpha)\left(\beta_{x} \leq_{w} \gamma\right)$.
A minimal upper bound for S if γ is an upper bound and no proper initial segment of γ is an upper bound.

A supremum for S if γ is the unique minimal upper bound up to isomorphism.

Theorem ($R C A_{0}$; J. Hirst)
$A T R_{0}$ iff every well-ordered sequence of ordinals has a supremum.

Show $R C A_{0}^{*}$ suffices as a base theory.
Find a weaker form of "every well-ordered sequence of ordinals has a supremum" that is equivalent to $I \Sigma_{1}^{0}$.

Fact $\left(R C A_{0}^{*}\right)$

If γ is a minimal upper bound for $S=\left\langle\beta_{x} \mid x \in \alpha\right\rangle$, then $\operatorname{CARD}(\gamma)$ is the least cardinal κ such that

$$
(\forall x \in \alpha)\left(\operatorname{CARD}\left(\beta_{x}\right) \leq \kappa\right)
$$

Corollary
Suppose κ is an infinite cardinal, every β_{x} has cardinality less than κ, and the cardinals $\operatorname{CARD}\left(\beta_{\times}\right)$are unbounded in κ.
Then γ is a minimal upper bound for S iff $\operatorname{CARD}(\gamma)=\kappa$ and every proper initial segment of γ has cardinality less than κ.

Corollary
The ordinal γ is a minimal upper bound for $\left\langle n \mid n \in \omega_{M}\right\rangle$ iff γ is countable and every proper initial segment of γ is subcountable.

Theorem ($R C A_{0}^{*}$)
TFAE

1. $A C A_{0}$.
2. Every well-ordered sequence of finite ordinals has a supremum.
3. $\left\langle n \mid n \in \omega_{M}\right\rangle$ has a supremum.

Key to proof: $A C A_{0} \Longleftrightarrow \omega_{M}$ is the unique countable ordinal all of whose proper initial segments are subcountable.

Corollary
The theory $R C A_{0}^{*}$ suffices as the base theory in Hirst's theorem that $A T R_{0}$ holds iff every well-ordered sequence of ordinals has a supremum.

Theorem ($R C A_{0}^{*}$)

TFAE

1. $B \Sigma_{2}^{0}$.
2. Every finite-length sequence of finite ordinals has a supremum.

Key idea for $(2) \Longrightarrow(1)$: By a result of Hirst, if $B \Sigma_{2}^{0}$ fails there is a coloring of ω_{M} in finitely many colors such that each color class is finite. $R C A_{0}^{*}$ suffices to prove this.

The sequence of color classes, each ordered via the natural ordering, has multiple minimal upper bounds: ω_{M}, and any other countable ordinal all of whose proper initial segments are subcountable.

Theorem ($R C A_{0}^{*}$)

TFAE

1. $I \Sigma_{1}^{0}$.
2. Every finite-length sequence of finite ordinals whose sizes have a finite upper bound has a supremum.

Key idea for $(2) \Longrightarrow(1)$: Suppose $I \Sigma_{1}^{0}$ fails, and let I be a non-minimal indecomposable Σ_{1}^{0}-definable cut, $F: I \rightarrow \omega_{M}$ be a function in M, and a be a number bounding l.

Define $S=\left\langle\beta_{k} \mid k<a\right\rangle$ where $\beta_{k}=\{x+m \mid x=F(k) \& m<k\}$ with the natural ordering. The sizes of the β_{k} are bounded by I, and by a.

There are multiple minimal upper bounds for S : α_{l}, and $\alpha_{J}+\alpha_{l}$ for any Σ_{1}^{0}-definable cut $J<I$.

Existence of minimal upper bounds

Theorem ($R C A_{0}$; J. Hirst)
$A T R_{0}$ iff every well-ordered sequence of ordinals has a supremum.

This, as well as the preceding theorems, relies on examples of sequences that do not have suprema because they have multiple minimal upper bounds.

Theorem ($R C A_{0}^{*}$)
If I Σ_{1}^{0} does not hold, there is a (finite) sequence of (subcountable) ordinals with no minimal upper bound.

Proof: Let $/$ be an indecomposable Σ_{1}^{0}-definable cut, and b and d be numbers bounding l.

For $n \leq 2 d$, let $\beta_{n}=n b+\alpha_{I}+(2 d-n) b$, with the natural ordering.

For every n we have $\operatorname{CARD}\left(\beta_{n}\right)=2 d b+I$.
Let $S=\left\langle\beta_{n} \mid n \leq 2 d\right\rangle$.
To show S has no minimal upper bound, suppose γ is a minimal upper bound and derive a contradiction.

By an earlier fact, we must have $\operatorname{CARD}(\gamma)=2 d b+I$.

Embed $2 d b$ into $\gamma . \operatorname{CARD}(\gamma)=2 d b+1$.

This divides γ into intervals. $b \leq \operatorname{CARD}\left(X_{n}\right) \leq b+I$.
We will show $\operatorname{CARD}\left(X_{n} \cup X_{n+1}\right)=2 b+I$ for $0<n<2 d$.

Embed $n b+\alpha_{I}+(2 d-n) b$ into γ.

Embed $n b+\alpha_{I}+(2 d-n) b$ into γ.

$\operatorname{CARD}\left(X_{n} \cup X_{n+1}\right)=2 b+1$.

Now we have partitioned γ into d-many intervals, $Y_{k}=X_{2 k-1} \cup X_{2 k}$ for $1 \leq k \leq d$.
$\operatorname{CARD}\left(Y_{k}\right)=2 b+I>2 b+1$.
Let Z_{k} be the least size- $(2 b+1)$ subset of Y_{k}, and $Z=\bigcup_{k=1}^{d} Z_{k}$.
$\operatorname{CARD}(Z)=2 d b+b>2 d b+I=\operatorname{CARD}(\gamma)$.
This is a contradiction.

Question

How strong is this statement?

Every well-ordered sequence of ordinals has a minimal upper bound with respect to \leq_{w}.

References

Factorization of polynomials and Σ_{1}^{0} induction
Stephen G. Simpson and Rick L. Smith
1986
Annals of Pure and Applied Logic
A survey of the reverse mathematics of ordinal arithmetic Jeffry L. Hirst
2005
Reverse Mathematics 2001 ed. S. G. Simpson

THANK YOU

