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Context

Reverse Mathematics: Calibrate logical strength of theorems by
set-theoretic existence axioms.

Use a first-order theory of second-order arithmetic.

RCA: P~ (finitary part of Peano Arithmetic), induction for all
formulas, recursive (A$) comprehension axiom.

RCAg: Weaken induction to X9 formulas.

RCAj: Weaken induction to A9 formulas; exponentiation is total.



Models of RCA;
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A model M of RCA; + ﬁlZ(l) has Z‘lj—definable proper cuts.
I is ¥9-definable but not an element of M.

o

F is increasing and cofinal with range X.
F and X are elements of M.



o

You can also get this picture by starting with:

» An unbounded set X in M to enumerate in order.

» A definition by primitive recursion of an increasing function F.



Cardinality in RCA;

o

If | is proper, X is a subcountable infinite set.

Cardinals in M: Numbers, proper ¥{-definable cuts, wpy.
The cardinals are linearly ordered.

Cardinality behaves well with respect to functions between sets,
pairwise sums, and pairwise products.



Let / be a X9-definable cut closed under addition.

(There are many in any model of RCA} + —/%9.)

| is an (additively) indecomposable cardinal:

(k<hHh&(A<Il) = (k+A< ).

If K < I and p is any cardinal,

(CARD(AUB) = i+ I) & (CARD(A) = 1) =>
CARD(B) = .+ I.



Ordinals in RCAy

A survey of the reverse mathematics of ordinal arithmetic
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A linear ordering (X, <x) is ill-founded iff there is (equivalently):

> A nonempty Y C X with no <x-least element.
» A Y{-definable cut / with a decreasing function F : | — X.

An ordinal is a well-founded linear ordering (o, <,).

The ordinals are closed under pairwise addition.



For any ¥9-definable cut / we have:

o

The set X with the usual ordering is an ordinal of order type /:
o] = <X, §>

If I is closed under addition, « is (additively) indecomposable.



Comparing ordinals

For ordinals o and (3 define
a <,, B iff there is an order-preserving embedding F : @ — £,

a<y pBiffat+l<, S

Theorem (RCAf)
For ordinals « and (3,

CARD(a) < CARD(B) = a < B.



Theorem (RCAo; H. Friedman and J. Hirst)
ATRy < all ordinals are <,,-comparable.

Theorem (RCA; + —1%9)
There are ordinals o and 3 such that

afw B & BEwa

Corollary
Friedman and Hirst's theorem holds over the base theory RCA}.



Theorem (RCA; + —1%9)

There are ordinals o and (3 such that

afw B & BEwa

Proof: Let | be a Z?—definable cut closed under addition,

and b a number bounding /.
That is, I < b as cardinals.

Define ordinals « = oy + b and 8 = b+ «y.



To show a £, 3, suppose F : a« — 3 is an embedding.
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To show a £, 3, suppose F : a« — 3 is an embedding.
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To show a £, 3, suppose F : a« — 3 is an embedding.

CARD =1 CARD < b-—a
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CARD=a>1 CARD=b-a



To show a £, 3, suppose F : a« — 3 is an embedding.

CARD = | CARD <b—a CARD>a>|
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CARD =a>1 CARD=b-2a



To show a £, 3, suppose F : a« — 3 is an embedding.

CARD = | CARD <b—a CARD>a>|
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To show a £, 3, suppose F : a« — 3 is an embedding.

CARD = | CARD <b—a CARD>a>|

F F F

CARD=a>1 CARD=b-a CARD =1

This is a contradiction.



To show a £, 3, suppose F : a« — 3 is an embedding.

CARD = | CARD <b—a CARD>a>|

F F F

CARD=a>1 CARD=b-a CARD =1

This is a contradiction.

The proof 8 £, « is similar.



Ordinal suprema

If S = (Bx | x € a) is a well-ordered sequence of ordinals, the
ordinal 7 is:

An upper bound for S if (Vx € a) (Bx <w 7).

A minimal upper bound for S if -y is an upper bound and no proper
initial segment of v is an upper bound.

A supremum for S if y is the unique minimal upper bound up to
isomorphism.



Theorem (RCAo; J. Hirst)

ATRy iff every well-ordered sequence of ordinals has a supremum.

Show RCA;j suffices as a base theory.

Find a weaker form of “every well-ordered sequence of ordinals has
a supremum” that is equivalent to /X9.



Fact (RCA})
If v is a minimal upper bound for S = (B« | x € «), then CARD(~)
is the least cardinal k such that

(Vx € a) (CARD(Bx) < k).

Corollary

Suppose k is an infinite cardinal, every By has cardinality less than
Kk, and the cardinals CARD(fx) are unbounded in k.

Then ~y is a minimal upper bound for S iff CARD(v) = x and
every proper initial segment of v has cardinality less than k.

Corollary

The ordinal y is a minimal upper bound for (n | n € wy) iffy is
countable and every proper initial segment of v is subcountable.



Theorem (RCAY)
TFAE
1. ACA.
2. Every well-ordered sequence of finite ordinals has a supremum.

3. (n| n € wpm) has a supremum.

Key to proof: ACAy <= wy is the unique countable ordinal all
of whose proper initial segments are subcountable.

Corollary

The theory RCA suffices as the base theory in Hirst's theorem
that ATRy holds iff every well-ordered sequence of ordinals has a
supremum.



Theorem (RCAY)
TFAE
1. BYY.
2. Every finite-length sequence of finite ordinals has a supremum.

Key idea for (2) == (1): By a result of Hirst, if B fails there is
a coloring of wyy in finitely many colors such that each color class
is finite. RCA( suffices to prove this.

The sequence of color classes, each ordered via the natural
ordering, has multiple minimal upper bounds: wp, and any other
countable ordinal all of whose proper initial segments are
subcountable.



Theorem (RCAS)
TFAE
119,

2. Every finite-length sequence of finite ordinals whose sizes have
a finite upper bound has a supremum.

Key idea for (2) = (1): Suppose /X9 fails, and let / be a
non-minimal indecomposable Z?—definable cut, F: |l — wpy be a
function in M, and a be a number bounding /.

Define S = (Bk | k < a) where By = {x+m| x = F(k) & m < k}
with the natural ordering. The sizes of the §x are bounded by /,
and by a.

There are multiple minimal upper bounds for S: «y, and ay + «ay
for any Z(l)—definable cut J < I.



Existence of minimal upper bounds

Theorem (RCAo; J. Hirst)
ATRy iff every well-ordered sequence of ordinals has a supremum.

This, as well as the preceding theorems, relies on examples of
sequences that do not have suprema because they have multiple
minimal upper bounds.

Theorem (RCAY)

If IZ9 does not hold, there is a (finite) sequence of (subcountable)
ordinals with no minimal upper bound.



Proof: Let | be an indecomposable Z?—definable cut, and b and d
be numbers bounding /.

For n < 2d, let 8, = nb+ oy + (2d — n)b, with the natural
ordering.

For every n we have CARD(f3,) = 2db + 1.
Let S = (8, | n < 2d).

To show S has no minimal upper bound, suppose 7y is a minimal
upper bound and derive a contradiction.

By an earlier fact, we must have CARD(y) = 2db + I.



Embed 2db into v. CARD(vy) =2db+ I.
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This divides ~ into intervals. b < CARD(X,) < b+ I.

We will show CARD(X, U Xp41) =2b+ 1 for 0 < n < 2d.



Embed nb+ oy + (2d — n)b into .

pb b 7 b qgb

XU UXp_q X,,UX,H_l Xn+2U~"UX2d




Embed nb+ oy + (2d — n)b into .

pb b 7 b qgb

XU UXp_q X,,UX,H_l Xn+2U~"UX2d

<pb+1 <2b+1 <gb+1



Embed nb+ oy + (2d — n)b into .

pb b 7 b qgb

XU UXp_q X,,UX,H_l Xn+2U~"UX2d

<pb+1 <2b+1 <gb+1



Embed nb+ ay + (2d — n)b into ~.
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Embed nb+ ay + (2d — n)b into ~.
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Embed nb+ ay + (2d — n)b into ~.
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Embed nb+ ay + (2d — n)b into ~.

pb b 7 b qgb

a _ c
J (2b—(a+c))+1 S
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Embed nb+ ay + (2d — n)b into ~.

pb b 7 b qgb
a _ C
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XU UXp_q XnUXn_H Xn+2U~-'UX2d

<pb+1 <2b+1 <gb+1



Embed nb+ ay + (2d — n)b into ~.

pb b Q) b gb
a _ c
S A R

X1U---UXp1 Xn U Xing1 Xnp2 U+ U Xog

<pb+1 <2b+1 <gb+1

CARD(Xp, U Xnt1) =2b+ 1.



Now we have partitioned « into d-many intervals,
Yi=Xo_1 UXo, for 1 < k <d.

CARD(Yy) =2b+ 1 >2b+1.

d
Let Zx be the least size-(2b + 1) subset of Y}, and Z = U Z.
k=1

CARD(Z) = 2db + b > 2db + | = CARD(y).

This is a contradiction.



Question

How strong is this statement?

Every well-ordered sequence of ordinals has a minimal up-
per bound with respect to <,,.
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