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Context

Reverse Mathematics: Calibrate logical strength of theorems by
set-theoretic existence axioms.

Use a first-order theory of second-order arithmetic.

RCA: P− (finitary part of Peano Arithmetic), induction for all
formulas, recursive (∆0

1) comprehension axiom.

RCA0: Weaken induction to Σ0
1 formulas.

RCA∗
0: Weaken induction to ∆0

1 formulas; exponentiation is total.



Models of RCA∗0

Factorization of polynomials and Σ0
1 induction

Stephen G. Simpson and Rick L. Smith

1986

Annals of Pure and Applied Logic



A model M of RCA∗
0 + ¬IΣ0

1 has Σ0
1-definable proper cuts.

I is Σ0
1-definable but not an element of M.

M
I

F

X

F is increasing and cofinal with range X .

F and X are elements of M.



M
I

F

X

You can also get this picture by starting with:

I An unbounded set X in M to enumerate in order.

I A definition by primitive recursion of an increasing function F .



Cardinality in RCA∗0

M
I

F

X

If I is proper, X is a subcountable infinite set.

Cardinals in M: Numbers, proper Σ0
1-definable cuts, ωM .

The cardinals are linearly ordered.

Cardinality behaves well with respect to functions between sets,
pairwise sums, and pairwise products.



Let I be a Σ0
1-definable cut closed under addition.

(There are many in any model of RCA∗
0 + ¬IΣ0

1.)

I is an (additively) indecomposable cardinal:

(κ < I ) & (λ < I ) =⇒ (κ+ λ < I ).

If κ < I and µ is any cardinal,

(CARD(A ∪ B) = µ+ I ) & (CARD(A) = κ) =⇒

CARD(B) = µ+ I .



Ordinals in RCA0

A survey of the reverse mathematics of ordinal arithmetic

Jeffry L. Hirst

2005

Reverse Mathematics 2001 ed. S. G. Simpson



A linear ordering 〈X ,≤X 〉 is ill-founded iff there is (equivalently):

I A nonempty Y ⊆ X with no ≤X -least element.

I A Σ0
1-definable cut I with a decreasing function F : I → X .

An ordinal is a well-founded linear ordering 〈α,≤α〉.

The ordinals are closed under pairwise addition.



For any Σ0
1-definable cut I we have:

M
I

F

X

The set X with the usual ordering is an ordinal of order type I :

αI = 〈X ,≤〉.

If I is closed under addition, αI is (additively) indecomposable.



Comparing ordinals

For ordinals α and β define

α ≤w β iff there is an order-preserving embedding F : α→ β,

α <w β iff α + 1 ≤w β.

Theorem (RCA∗
0)

For ordinals α and β,

CARD(α) < CARD(β) =⇒ α <w β.



Theorem (RCA0; H. Friedman and J. Hirst)

ATR0 ⇐⇒ all ordinals are ≤w -comparable.

Theorem (RCA∗
0 + ¬IΣ0

1)

There are ordinals α and β such that

α 6≤w β & β 6≤w α.

Corollary

Friedman and Hirst’s theorem holds over the base theory RCA∗
0.



Theorem (RCA∗
0 + ¬IΣ0

1)

There are ordinals α and β such that

α 6≤w β & β 6≤w α.

Proof: Let I be a Σ0
1-definable cut closed under addition,

and b a number bounding I .

That is, I < b as cardinals.

Define ordinals α = αI + b and β = b + αI .



To show α 6≤w β, suppose F : α→ β is an embedding.

F F F

CARD = I

CARD = a > I CARD = b − a

CARD ≤ b − a CARD ≥ a > I

CARD = I

This is a contradiction.

The proof β 6≤w α is similar.



To show α 6≤w β, suppose F : α→ β is an embedding.

F F F

CARD = I

CARD = a > I CARD = b − a

CARD ≤ b − a CARD ≥ a > I

CARD = I

This is a contradiction.

The proof β 6≤w α is similar.



To show α 6≤w β, suppose F : α→ β is an embedding.

F F F

CARD = I

CARD = a > I CARD = b − a

CARD ≤ b − a CARD ≥ a > I

CARD = I

This is a contradiction.

The proof β 6≤w α is similar.



To show α 6≤w β, suppose F : α→ β is an embedding.

F F F

CARD = I

CARD = a > I

CARD = b − a

CARD ≤ b − a CARD ≥ a > I

CARD = I

This is a contradiction.

The proof β 6≤w α is similar.



To show α 6≤w β, suppose F : α→ β is an embedding.

F F F

CARD = I

CARD = a > I CARD = b − a

CARD ≤ b − a CARD ≥ a > I

CARD = I

This is a contradiction.

The proof β 6≤w α is similar.



To show α 6≤w β, suppose F : α→ β is an embedding.

F F F

CARD = I

CARD = a > I CARD = b − a

CARD ≤ b − a

CARD ≥ a > I

CARD = I

This is a contradiction.

The proof β 6≤w α is similar.



To show α 6≤w β, suppose F : α→ β is an embedding.

F F F

CARD = I

CARD = a > I CARD = b − a

CARD ≤ b − a CARD ≥ a > I

CARD = I

This is a contradiction.

The proof β 6≤w α is similar.



To show α 6≤w β, suppose F : α→ β is an embedding.

F F F

CARD = I

CARD = a > I CARD = b − a

CARD ≤ b − a CARD ≥ a > I

CARD = I

This is a contradiction.

The proof β 6≤w α is similar.



To show α 6≤w β, suppose F : α→ β is an embedding.

F F F

CARD = I

CARD = a > I CARD = b − a

CARD ≤ b − a CARD ≥ a > I

CARD = I

This is a contradiction.

The proof β 6≤w α is similar.



To show α 6≤w β, suppose F : α→ β is an embedding.

F F F

CARD = I

CARD = a > I CARD = b − a

CARD ≤ b − a CARD ≥ a > I

CARD = I

This is a contradiction.

The proof β 6≤w α is similar.



Ordinal suprema

If S = 〈βx | x ∈ α〉 is a well-ordered sequence of ordinals, the
ordinal γ is:

An upper bound for S if (∀x ∈ α) (βx ≤w γ).

A minimal upper bound for S if γ is an upper bound and no proper
initial segment of γ is an upper bound.

A supremum for S if γ is the unique minimal upper bound up to
isomorphism.



Theorem (RCA0; J. Hirst)

ATR0 iff every well-ordered sequence of ordinals has a supremum.

Show RCA∗
0 suffices as a base theory.

Find a weaker form of “every well-ordered sequence of ordinals has
a supremum” that is equivalent to IΣ0

1.



Fact (RCA∗
0)

If γ is a minimal upper bound for S = 〈βx | x ∈ α〉, then CARD(γ)
is the least cardinal κ such that

(∀x ∈ α) (CARD(βx) ≤ κ).

Corollary

Suppose κ is an infinite cardinal, every βx has cardinality less than
κ, and the cardinals CARD(βx) are unbounded in κ.

Then γ is a minimal upper bound for S iff CARD(γ) = κ and
every proper initial segment of γ has cardinality less than κ.

Corollary

The ordinal γ is a minimal upper bound for 〈n | n ∈ ωM〉 iff γ is
countable and every proper initial segment of γ is subcountable.



Theorem (RCA∗
0)

TFAE

1. ACA0.

2. Every well-ordered sequence of finite ordinals has a supremum.

3. 〈n | n ∈ ωM〉 has a supremum.

Key to proof: ACA0 ⇐⇒ ωM is the unique countable ordinal all
of whose proper initial segments are subcountable.

Corollary

The theory RCA∗
0 suffices as the base theory in Hirst’s theorem

that ATR0 holds iff every well-ordered sequence of ordinals has a
supremum.



Theorem (RCA∗
0)

TFAE

1. BΣ0
2.

2. Every finite-length sequence of finite ordinals has a supremum.

Key idea for (2) =⇒ (1): By a result of Hirst, if BΣ0
2 fails there is

a coloring of ωM in finitely many colors such that each color class
is finite. RCA∗

0 suffices to prove this.

The sequence of color classes, each ordered via the natural
ordering, has multiple minimal upper bounds: ωM , and any other
countable ordinal all of whose proper initial segments are
subcountable.



Theorem (RCA∗
0)

TFAE

1. IΣ0
1.

2. Every finite-length sequence of finite ordinals whose sizes have
a finite upper bound has a supremum.

Key idea for (2) =⇒ (1): Suppose IΣ0
1 fails, and let I be a

non-minimal indecomposable Σ0
1-definable cut, F : I → ωM be a

function in M, and a be a number bounding I .

Define S = 〈βk | k < a〉 where βk = {x + m | x = F (k) & m < k}
with the natural ordering. The sizes of the βk are bounded by I ,
and by a.

There are multiple minimal upper bounds for S : αI , and αJ + αI

for any Σ0
1-definable cut J < I .



Existence of minimal upper bounds

Theorem (RCA0; J. Hirst)

ATR0 iff every well-ordered sequence of ordinals has a supremum.

This, as well as the preceding theorems, relies on examples of
sequences that do not have suprema because they have multiple
minimal upper bounds.

Theorem (RCA∗
0)

If IΣ0
1 does not hold, there is a (finite) sequence of (subcountable)

ordinals with no minimal upper bound.



Proof: Let I be an indecomposable Σ0
1-definable cut, and b and d

be numbers bounding I .

For n ≤ 2d , let βn = nb + αI + (2d − n)b, with the natural
ordering.

For every n we have CARD(βn) = 2db + I .

Let S = 〈βn | n ≤ 2d〉.

To show S has no minimal upper bound, suppose γ is a minimal
upper bound and derive a contradiction.

By an earlier fact, we must have CARD(γ) = 2db + I .



Embed 2db into γ. CARD(γ) = 2db + I .

b 2b (2d − 1)b

X1 X2 X3 X2d

This divides γ into intervals. b ≤ CARD(Xn) ≤ b + I .

We will show CARD(Xn ∪ Xn+1) = 2b + I for 0 < n < 2d .



Embed nb + αI + (2d − n)b into γ.

pb b αI b qb

Xn ∪ Xn+1X1 ∪ · · · ∪ Xn−1 Xn+2 ∪ · · · ∪ X2d

≤ pb + I ≤ 2b + I ≤ qb + I

a c(2b − (a + c)) + I
< I < I= 2b + I

CARD(Xn ∪ Xn+1) = 2b + I .



Embed nb + αI + (2d − n)b into γ.

pb b αI b qb

Xn ∪ Xn+1X1 ∪ · · · ∪ Xn−1 Xn+2 ∪ · · · ∪ X2d

≤ pb + I ≤ 2b + I ≤ qb + I

a c(2b − (a + c)) + I
< I < I= 2b + I

CARD(Xn ∪ Xn+1) = 2b + I .



Embed nb + αI + (2d − n)b into γ.

pb b αI b qb

Xn ∪ Xn+1X1 ∪ · · · ∪ Xn−1 Xn+2 ∪ · · · ∪ X2d

≤ pb + I ≤ 2b + I ≤ qb + I

a c(2b − (a + c)) + I
< I < I= 2b + I

CARD(Xn ∪ Xn+1) = 2b + I .



Embed nb + αI + (2d − n)b into γ.

pb b αI b qb

Xn ∪ Xn+1X1 ∪ · · · ∪ Xn−1 Xn+2 ∪ · · · ∪ X2d

≤ pb + I ≤ 2b + I ≤ qb + I

a c

(2b − (a + c)) + I
< I < I= 2b + I

CARD(Xn ∪ Xn+1) = 2b + I .



Embed nb + αI + (2d − n)b into γ.

pb b αI b qb

Xn ∪ Xn+1X1 ∪ · · · ∪ Xn−1 Xn+2 ∪ · · · ∪ X2d

≤ pb + I ≤ 2b + I ≤ qb + I

a c(2b − (a + c)) + I

< I < I= 2b + I

CARD(Xn ∪ Xn+1) = 2b + I .



Embed nb + αI + (2d − n)b into γ.

pb b αI b qb

Xn ∪ Xn+1X1 ∪ · · · ∪ Xn−1 Xn+2 ∪ · · · ∪ X2d

≤ pb + I ≤ 2b + I ≤ qb + I

a c(2b − (a + c)) + I
< I

< I= 2b + I

CARD(Xn ∪ Xn+1) = 2b + I .



Embed nb + αI + (2d − n)b into γ.

pb b αI b qb

Xn ∪ Xn+1X1 ∪ · · · ∪ Xn−1 Xn+2 ∪ · · · ∪ X2d

≤ pb + I ≤ 2b + I ≤ qb + I

a c(2b − (a + c)) + I
< I < I

= 2b + I

CARD(Xn ∪ Xn+1) = 2b + I .



Embed nb + αI + (2d − n)b into γ.

pb b αI b qb

Xn ∪ Xn+1X1 ∪ · · · ∪ Xn−1 Xn+2 ∪ · · · ∪ X2d

≤ pb + I ≤ 2b + I ≤ qb + I

a c(2b − (a + c)) + I
< I < I= 2b + I

CARD(Xn ∪ Xn+1) = 2b + I .



Embed nb + αI + (2d − n)b into γ.

pb b αI b qb

Xn ∪ Xn+1X1 ∪ · · · ∪ Xn−1 Xn+2 ∪ · · · ∪ X2d

≤ pb + I ≤ 2b + I ≤ qb + I

a c(2b − (a + c)) + I
< I < I= 2b + I

CARD(Xn ∪ Xn+1) = 2b + I .



Now we have partitioned γ into d-many intervals,

Yk = X2k−1 ∪ X2k for 1 ≤ k ≤ d .

CARD(Yk) = 2b + I > 2b + 1.

Let Zk be the least size-(2b + 1) subset of Yk , and Z =
d⋃

k=1

Zk .

CARD(Z ) = 2db + b > 2db + I = CARD(γ).

This is a contradiction.



Question

How strong is this statement?

Every well-ordered sequence of ordinals has a minimal up-
per bound with respect to ≤w .
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