Ordinal Suprema and Second Order Arithmetic

Marcia Groszek

joint work with Ben Logsdon and Justin Miller

Dartmouth College

Computability and Combinatorics 2023

Outline

 RCA_0^*

Cardinality

Ordinals

Comparing ordinals

Ordinal suprema - uniqueness

Ordinal suprema - existence

Context

Reverse Mathematics: Calibrate logical strength of theorems by set-theoretic existence axioms.

Use a first-order theory of second-order arithmetic.

RCA: P^- (finitary part of Peano Arithmetic), induction for all formulas, recursive (Δ_1^0) comprehension axiom.

*RCA*₀: Weaken induction to Σ_1^0 formulas.

 RCA_0^* : Weaken induction to Δ_1^0 formulas; exponentiation is total.

Factorization of polynomials and $\boldsymbol{\Sigma}_1^0$ induction

Stephen G. Simpson and Rick L. Smith

1986

Annals of Pure and Applied Logic

A model *M* of RCA₀^{*} + $\neg I \Sigma_1^0$ has Σ_1^0 -definable proper cuts. *I* is Σ_1^0 -definable but not an element of *M*.

F is increasing and cofinal with range X.

F and X are elements of M.

You can also get this picture by starting with:

- An unbounded set X in M to enumerate in order.
- ► A definition by primitive recursion of an increasing function *F*.

Cardinality in RCA₀*

If I is proper, X is a subcountable infinite set.

Cardinals in *M*: Numbers, proper Σ_1^0 -definable cuts, ω_M . The cardinals are linearly ordered.

Cardinality behaves well with respect to functions between sets, pairwise sums, and pairwise products.

Let I be a Σ_1^0 -definable cut closed under addition. (There are many in any model of $RCA_0^* + \neg I\Sigma_1^0$.)

I is an (additively) indecomposable cardinal:

$$(\kappa < I) \& (\lambda < I) \implies (\kappa + \lambda < I).$$

If $\kappa < I$ and μ is any cardinal,

$$(CARD(A \cup B) = \mu + I) \& (CARD(A) = \kappa) \implies$$

 $CARD(B) = \mu + I.$

A survey of the reverse mathematics of ordinal arithmetic

Jeffry L. Hirst

2005

Reverse Mathematics 2001 ed. S. G. Simpson

A linear ordering $\langle X, \leq_X \rangle$ is ill-founded iff there is (equivalently):

- A nonempty $Y \subseteq X$ with no \leq_X -least element.
- A Σ_1^0 -definable cut I with a decreasing function $F: I \to X$.

An ordinal is a well-founded linear ordering $\langle \alpha, \leq_{\alpha} \rangle$.

The ordinals are closed under pairwise addition.

For any Σ_1^0 -definable cut I we have:

The set X with the usual ordering is an ordinal of order type I:

$$\alpha_I = \langle X, \leq \rangle.$$

If I is closed under addition, α_I is (additively) indecomposable.

Comparing ordinals

For ordinals α and β define

 $\alpha \leq_w \beta$ iff there is an order-preserving embedding $F : \alpha \to \beta$, $\alpha <_w \beta$ iff $\alpha + 1 \leq_w \beta$.

Theorem (RCA_0^*)

For ordinals α and β ,

 $CARD(\alpha) < CARD(\beta) \implies \alpha <_{w} \beta.$

Theorem (*RCA*₀; H. Friedman and J. Hirst) $ATR_0 \iff all \text{ ordinals are } \leq_w \text{-comparable.}$

Theorem $(RCA_0^* + \neg I\Sigma_1^0)$ There are ordinals α and β such that

$$\alpha \not\leq_{w} \beta$$
 & $\beta \not\leq_{w} \alpha$.

Corollary

Friedman and Hirst's theorem holds over the base theory RCA₀^{*}.

Theorem $(RCA_0^* + \neg I\Sigma_1^0)$

There are ordinals α and β such that

$$\alpha \not\leq_{w} \beta \& \beta \not\leq_{w} \alpha.$$

Proof: Let I be a Σ_1^0 -definable cut closed under addition, and b a number bounding I.

That is, I < b as cardinals.

Define ordinals $\alpha = \alpha_I + b$ and $\beta = b + \alpha_I$.

This is a contradiction.

This is a contradiction.

The proof $\beta \not\leq_w \alpha$ is similar.

Ordinal suprema

If $S = \langle \beta_x \mid x \in \alpha \rangle$ is a well-ordered sequence of ordinals, the ordinal γ is:

An upper bound for S if $(\forall x \in \alpha) (\beta_x \leq_w \gamma)$.

A minimal upper bound for S if γ is an upper bound and no proper initial segment of γ is an upper bound.

A supremum for S if γ is the unique minimal upper bound up to isomorphism.

Theorem (*RCA*₀; J. Hirst)

ATR₀ iff every well-ordered sequence of ordinals has a supremum.

Show RCA_0^* suffices as a base theory.

Find a weaker form of "every well-ordered sequence of ordinals has a supremum" that is equivalent to $I\Sigma_1^0$.

Fact (RCA₀^{*})

If γ is a minimal upper bound for $S = \langle \beta_x | x \in \alpha \rangle$, then $CARD(\gamma)$ is the least cardinal κ such that

$$(\forall x \in \alpha) (CARD(\beta_x) \leq \kappa).$$

Corollary

Suppose κ is an infinite cardinal, every β_x has cardinality less than κ , and the cardinals $CARD(\beta_x)$ are unbounded in κ .

Then γ is a minimal upper bound for S iff $CARD(\gamma) = \kappa$ and every proper initial segment of γ has cardinality less than κ .

Corollary

The ordinal γ is a minimal upper bound for $\langle n \mid n \in \omega_M \rangle$ iff γ is countable and every proper initial segment of γ is subcountable.

Theorem (*RCA*^{*}₀) *TFAE*

- 1. ACA₀.
- 2. Every well-ordered sequence of finite ordinals has a supremum.
- 3. $\langle n \mid n \in \omega_M \rangle$ has a supremum.

Key to proof: $ACA_0 \iff \omega_M$ is the unique countable ordinal all of whose proper initial segments are subcountable.

Corollary

The theory RCA_0^* suffices as the base theory in Hirst's theorem that ATR_0 holds iff every well-ordered sequence of ordinals has a supremum.

Theorem (RCA_0^*)

TFAE

- 1. $B\Sigma_2^0$.
- 2. Every finite-length sequence of finite ordinals has a supremum.

Key idea for (2) \implies (1): By a result of Hirst, if $B\Sigma_2^0$ fails there is a coloring of ω_M in finitely many colors such that each color class is finite. RCA_0^{α} suffices to prove this.

The sequence of color classes, each ordered via the natural ordering, has multiple minimal upper bounds: ω_M , and any other countable ordinal all of whose proper initial segments are subcountable.

Theorem (*RCA*^{*}₀) *TFAE*

- 1. $I\Sigma_1^0$.
- 2. Every finite-length sequence of finite ordinals whose sizes have a finite upper bound has a supremum.

Key idea for (2) \implies (1): Suppose $I\Sigma_1^0$ fails, and let I be a non-minimal indecomposable Σ_1^0 -definable cut, $F : I \rightarrow \omega_M$ be a function in M, and a be a number bounding I.

Define $S = \langle \beta_k | k < a \rangle$ where $\beta_k = \{x + m | x = F(k) \& m < k\}$ with the natural ordering. The sizes of the β_k are bounded by *I*, and by *a*.

There are multiple minimal upper bounds for S: α_I , and $\alpha_J + \alpha_I$ for any Σ_1^0 -definable cut J < I.

Existence of minimal upper bounds

Theorem (*RCA*₀; J. Hirst)

ATR₀ iff every well-ordered sequence of ordinals has a supremum.

This, as well as the preceding theorems, relies on examples of sequences that do not have suprema because they have multiple minimal upper bounds.

Theorem (RCA_0^*)

If $I\Sigma_1^0$ does not hold, there is a (finite) sequence of (subcountable) ordinals with no minimal upper bound.

Proof: Let *I* be an indecomposable Σ_1^0 -definable cut, and *b* and *d* be numbers bounding *I*.

For $n \leq 2d$, let $\beta_n = nb + \alpha_I + (2d - n)b$, with the natural ordering.

For every *n* we have $CARD(\beta_n) = 2db + I$.

Let
$$S = \langle \beta_n \mid n \leq 2d \rangle$$
.

To show S has no minimal upper bound, suppose γ is a minimal upper bound and derive a contradiction.

By an earlier fact, we must have $CARD(\gamma) = 2db + I$.

Embed 2*db* into γ . *CARD*(γ) = 2*db* + *I*.

This divides γ into intervals. $b \leq CARD(X_n) \leq b + I$.

We will show $CARD(X_n \cup X_{n+1}) = 2b + I$ for 0 < n < 2d.

 $CARD(X_n \cup X_{n+1}) = 2b + I.$

$$Y_k = X_{2k-1} \cup X_{2k} \text{ for } 1 \le k \le d.$$

$$CARD(Y_k) = 2b + l > 2b + 1.$$
Let Z_k be the least size- $(2b + 1)$ subset of Y_k , and $Z = \bigcup_{k=1}^d Z_k.$

$$CARD(Z) = 2db + b > 2db + I = CARD(\gamma).$$

Now we have northing and a inter d many intervale

This is a contradiction.

How strong is this statement?

Every well-ordered sequence of ordinals has a minimal upper bound with respect to \leq_w .

References

Factorization of polynomials and Σ_1^0 induction Stephen G. Simpson and Rick L. Smith 1986

Annals of Pure and Applied Logic

A survey of the reverse mathematics of ordinal arithmetic Jeffry L. Hirst

2005

Reverse Mathematics 2001 ed. S. G. Simpson

THANK YOU