DMIF, Università di Udine, Italy
Provable better partial orders in reverse mathematics

Alberto Marcone
Joint work with Anton Freund, Fedor Pakhomov and Giovanni Soldà

Computability and Combinatorics 2023
May 19-21, 2023

Outline

(1) WPO and BPO
(2) Finite bpos
(3) Versions of the minimal bad array lemma
(4) Sketch of a proof

WPO and BPO

(1) WPO and BPO

(2) Finite bpos

(3) Versions of the minimal bad array lemma
4. Sketch of a proof

Well partial orders

A partial order $\mathcal{P}=\left(P, \leq_{P}\right)$ is a well partial order (wpo) if for every $f: \mathbb{N} \rightarrow P$ there exists $i<j$ such that $f(i) \leq_{P} f(j)$.
There are many equivalent characterizations of wpos:

- \mathcal{P} is well founded and has no infinite antichains;
- every sequence in P has a weakly increasing subsequence;
- every nonempty subset of P has a finite set of minimal elements;
- all linear extensions of \mathcal{P} are well orders.

The reverse mathematics of these equivalences has been studied in detail starting from a 2004 paper
(Cholak-M-Solomon): all equivalences are provable in
$W_{K L}{ }_{0}+$ CAC.

Some reverse mathematics of wpos

$R C A_{0}$ proves that finite posets and well orders are wpos.

Theorem (Simpson 1988, Clote 1990)

Over RCA_{0}, the following are equivalent:
(1) ACA_{0};
(2) if \mathcal{P} is a wpo then embeddability of finite strings from P is a wpo.

Theorem (Friedman 1985)

ATR $_{0}$ does not prove Kruskal's theorem asserting that embeddability on finite trees is a wpo.

Theorem (Friedman-Robertson-Seymour 1987)

$\Pi_{1}^{1}-\mathrm{CA}_{0}$ does not prove the Graph Minor Theorem asserting that the minor relation on finite graphs is a wpo.

Fraïssé's conjecture

Fraïssé's Conjecture is the statement that embeddability on countable linear orders is a wqo. We keep it distinct from Laver's Theorem, i.e. the stronger statement that embeddability on countable linear orders is a bqo.

Theorem (Montalbán 2017)

$\boldsymbol{\Pi}_{1}^{1}$-CA A_{0} proves Laver's Theorem and hence Fraïssé's Conjecture.
Theorem (Shore 1993)
Over RCA $_{0}$, Fraïssé's Conjecture implies ATR $_{0}$.

Better partial orders

The notion of better partial order (bpo) is a strengthening of wpo due to Nash-Williams (1960's).
The property of being bpo is preserved by more operations than those preserving the property of being wpo.
The general pattern is: if wpos are closed under a finitary operation, bpos are closed under its infinitary generalization.

Theorem (Pouzet, 1972)

If \mathcal{P} is a poset, the following are equivalent:
(1) \mathcal{P} is bpo;
(2) the set of countable transfinite sequences of elements of P is wqo under embeddability;
(3) the set of countable transfinite sequences of elements of P is bqo under embeddability.

Definition of bpo

- If $X \subseteq \mathbb{N}$, we identify elements of $[X]^{<\omega} \cup[X]^{\omega}$ with the strictly increasing sequences enumerating them.
- $s \sqsubset t$ means that s is a proper initial segment of t.
- $s \subset t$ means that s is a proper subset of t (as sets).
- $B \subseteq[\mathbb{N}]^{<\omega}$ is a block if $\bigcup B$ is infinite and each $X \in[\bigcup B]^{\omega}$ admits a unique $s \sqsubset X$ with $s \in B$ (hence B is prefix-free).
- A block B such that $s \subset t$ holds for no $s, t \in B$ is a barrier.
- A \mathcal{P}-array is a function $f: B \rightarrow P$ on some barrier B.
- For $X \subseteq \mathbb{N}$ let $X^{-}:=X \backslash\{\min X\}$.
- $s \triangleleft t$ means that there exists X with $s \sqsubset X$ and $t \sqsubset X^{-}$ (\triangleleft is decidable since it only depends on $s \cup t$).
- A \mathcal{P}-array $f: B \rightarrow P$ is good if there are $s, t \in B$ with $s \triangleleft t$ and $f(s) \leq_{P} f(t)$. Otherwise f is bad.
- \mathcal{P} is bpo if every \mathcal{P}-array is good.

Closure properties of bpos

Fact

RCA_{0} proves that the sum of two bpos is bpo. RCA_{0} proves that well orders are bpos.

Lemma (M 2005)

ATR ${ }_{0}$ proves that the disjoint sum and the product of two bpos are bpos.
Over RCA_{0}, each of these two statements implies ACA_{0}.

Finite bpos

(1) WPO and BPO

(2) Finite bpos

3 Versions of the minimal bad array lemma
4. Sketch of a proof

Finite posets

The notion of bpo is Π_{2}^{1}-complete (M 1993) and thus " \mathcal{P} is bpo" is a Π_{2}^{1} statement even when \mathcal{P} is finite.

Fact

ATR_{0} proves that any finite poset is bpo.
Let n and \bar{n} be the chain and the antichain with n elements.

Lemma (M 2005)

RCA_{0} proves that $\overline{2}$ is bpo.
For any $n \geq 3, \mathrm{RCA}_{0}$ proves that if $\overline{3}$ is bpo then any poset with n elements is bpo.

Question (M 2005, Montalbán 2011)

What is the strength of " $\overline{3}$ is bpo"?

3 is much larger than 2

Theorem (Freund 2022)

Over RCA_{0}, " $\overline{3}$ is bpo" implies ACA_{0}^{+}. RCA_{0} proves that if $\overline{3}$ is bpo then any finite poset is bpo.

Theorem (Freund-M 2022)

ACA_{0}^{+}does not prove that $\overline{3}$ is bpo.
Thus currently we know

$$
\mathrm{ACA}_{0}^{+}<\overline{3} \text { is bpo } \leq \mathrm{ATR}_{0}
$$

Therefore each of the statements "the disjoint sum of two bpos is a bpo" and "the product of two bpos is a bpo" implies ACA_{0}^{+} and is not provable in ACA_{0}^{+}.

A natural question

In the wake of Freund's breakthrough result it is natural to ask: If a theory T does not prove that $\overline{3}$ is bpo then what (finite) posets does T prove to be bpo?

We start with the other posets of cardinality three. Since RCA_{0} proves that well orders are bpo and that the sum of two bpos is bpo, RCA_{0} proves that $3,1+\overline{2}$ and $\overline{2}+1$ are bpos. We still need to consider $1 \oplus 2$.

$1 \oplus 2=\overline{3}$

Theorem (Freund-M-Pakhomov-Soldà 2023)

RCA_{0} proves that $1 \oplus 2$ is bpo if and only if $\overline{3}$ is bpo. Thus ACA_{0}^{+}does not prove that $1 \oplus 2$ is bpo.

Sums of antichains

Proposition (Freund-M-Pakhomov-Soldà 2023)

RCA_{0} proves that a poset \mathcal{P} does not contain $1 \oplus 2$ as a suborder iff it is a linear sum of antichains (i.e. $\mathcal{P}=\sum_{i \in \mathcal{I}} \mathcal{A}_{i}$ where \mathcal{I} is a chain and each \mathcal{A}_{i} is an antichain).

Corollary (Freund-M-Pakhomov-Soldà 2023)

RCA_{0} proves that a poset does not contain $1 \oplus 2$ and $\overline{3}$ as suborders iff it is a linear sum of antichains of size at most two.

Proposition (Freund-M-Pakhomov-Soldà 2023)

RCA_{0} proves that a well-ordered sum of bpos (i.e. $\sum_{i \in \mathcal{I}} \mathcal{P}_{i}$ where \mathcal{I} is a well-order and each \mathcal{P}_{i} is bpo) is a bpo.

Provable finite bpos

Theorem (Freund-M-Pakhomov-Soldà 2023)

Suppose T extends RCA_{0} and does not prove that $\overline{3}$ is bpo.
For any finite poset \mathcal{P}, the following are equivalent:
(1) T proves that \mathcal{P} is bpo;
(2) \mathcal{P} does not contain $1 \oplus 2$ and $\overline{3}$ as suborders;
(3) \mathcal{P} is a linear sum of antichains of size at most two.

Provable bpos

Theorem (Freund-M-Pakhomov-Soldà 2023)

For any countable poset \mathcal{P}, the following are equivalent:
(1) there is a computable presentation of some $\mathcal{P}_{0} \cong \mathcal{P}$ such that ACA_{0} proves that \mathcal{P}_{0} is bpo;
(2) \mathcal{P} is isomorphic to a computably enumerable suborder of $\overline{2} \cdot \gamma$ for some $\gamma<\varepsilon_{0}$ (ε_{0} is represented by a standard notation system).

A similar result holds for any T that does not prove that $\overline{3}$ is bpo: substitute ε_{0} with the proof-theoretic ordinal of T.
Condition 1 is similar to the definition of provable well order. Condition 2 is more complex than in the case of linear orders because in the linear case computability is automatic and the results on provable well orders avoid reference to a standard notation system.

Versions of the minimal bad array lemma

(1) WPO and BPO
(2) Finite bpos
(3) Versions of the minimal bad array lemma
4. Sketch of a proof

\mathcal{P}-arrays as continuous functions

A \mathcal{P}-array $f: B \rightarrow P$ (even when B is a block) can be identified with a continuous function $F:[\bigcup B]^{\omega} \rightarrow P$.
Vice versa, for any continuous $F:[V]^{\omega} \rightarrow P$ with $V \in[\mathbb{N}]^{\omega}$ we can find a \mathcal{P}-array $f: B \rightarrow P$ on a block B with $\bigcup B=V$ inducing it.
We abuse terminology, and call such an F a \mathcal{P}-array.
Such an F is bad if $F(X) \not \leq_{P} F\left(X^{-}\right)$for all $X \in[V]^{\omega}$.
WKL_{0} proves that \mathcal{P} is bpo precisely when there is no bad \mathcal{P}-array in this new sense.

The minimal bad array lemma

Definition $\left(R C A_{0}\right)$

A partial ranking of a poset \mathcal{P} is a well-founded partial order \leq^{\prime} on P such that $p \leq^{\prime} q$ implies $p \leq_{p} q$.
If $F:[V]^{\omega} \rightarrow P$ and $G:[W]^{\omega} \rightarrow P$ are \mathcal{P}-arrays with $V \subseteq W$:
$F \leq^{\prime} G$ iff $F(X) \leq^{\prime} G(X)$ for all $X \in[V]^{\omega}$;
$F<^{\prime} G$ iff $F(X)<^{\prime} G(X)$ for all $X \in[V]^{\omega}$.
A \leq^{\prime}-minimal bad \mathcal{P}-array is a bad \mathcal{P}-array G with no bad \mathcal{P}-array $F<^{\prime} G$.

Every well-founded poset is a partial ranking of itself.
MBA If \leq^{\prime} is a partial ranking of \mathcal{P}, for any bad \mathcal{P}-array H there exists a \leq^{\prime}-minimal bad \mathcal{P}-array $G \leq^{\prime} H$.
MBA- If \mathcal{P} is well-founded and not bpo, there exists a \leq_{p}-minimal bad \mathcal{P}-array.

Minimal bad arrays when there are few bpos

Theorem (Freund-Pakhomov-Soldà 2023)

Over ATR_{0}, the following are equivalent:
(1) $\Pi_{2}^{1}-\mathrm{CA}_{0}$;
(2) MBA;
(3) MBA ${ }^{-}$.

Theorem (Freund-M-Pakhomov-Soldà 2023)
RCA_{0} proves that if $\overline{3}$ is not bpo then MBA ${ }^{-}$holds. Thus MBA- does not imply ATR_{0} over ACA_{0}^{+}.

Theorem (Freund-M-Pakhomov-Soldà 2023)

RCA_{0} proves that MBA implies ACA_{0}.

Sketch of a proof

(1) WPO and BPO

(2) Finite bpos

3 Versions of the minimal bad array lemma
4. Sketch of a proof

Hereditarily finite sets

If \mathcal{P} is a poset we define the poset $H_{f}(\mathcal{P})=\left(H_{f}(P), \leq_{H(\mathcal{P})}\right)$ of the hereditarily finite sets with urelements from P as follows:

- $P \subseteq H_{f}(P)$,
- if $a \subseteq H_{f}(P)$ is finite then $a \in H_{f}(P)$.

$$
\begin{aligned}
p \leq_{H(\mathcal{P})} q & \Leftrightarrow \quad p \leq_{P} q \\
p \leq_{H(\mathcal{P})} a & \Leftrightarrow \quad \exists y \in a p \leq_{H(\mathcal{P})} y \\
a \leq_{H(\mathcal{P})} p & \Leftrightarrow \quad \forall x \in a x \leq_{H(\mathcal{P})} p \\
a \leq_{H(\mathcal{P})} b & \Leftrightarrow \quad \forall x \in a \exists y \in b x \leq_{H(\mathcal{P})} y .
\end{aligned}
$$

The elements of $H_{f}(P)$ can be represented by finite trees with leaf labels from P. This allows to define $H_{f}(\mathcal{P})$ in RCA_{0}.

Theorem (Freund 2022)

RCA_{0} proves that if \mathcal{P} is bpo then $H_{f}(\mathcal{P})$ is bpo.

From $1 \oplus 2$ to $\overline{3}$

We use $H_{f}(1 \oplus 2)$ to show that if $1 \oplus 2$ is bpo then $\overline{3}$ is bpo. $H_{f}(1 \oplus 2)$ contains two interlocked copies of the natural numbers.
Suppose $1 \oplus 2=\{\star\} \cup\{0,1\}$ with $0<1$.
For $n \in \mathbb{N}$ define $\dot{n}, \ddot{n} \in H_{f}(1 \oplus 2)$ recursively by
$\dot{n}=\{\star, 0\} \cup\{\dot{m} \mid m<n\} \quad \ddot{n}=\{\star, 1\} \cup\{\ddot{m} \mid m<n\}$
For $m, n \in \mathbb{N}$ we have

$$
m \leq n \Leftrightarrow \dot{m} \leq_{H(1 \oplus 2)} \dot{n} \Leftrightarrow \ddot{m} \leq_{H(1 \oplus 2)} \ddot{n} \Leftrightarrow \dot{m} \leq_{H(1 \oplus 2)} \ddot{n}
$$

while $\ddot{m} \not \underline{L}_{H(1 \oplus 2)} \dot{n}$.
To see that $\overline{3}$ is a suborder of $H_{f}(1 \oplus 2)$, consider

$$
\{\ddot{0}, \dot{5}\}, \quad\{\ddot{1}, \dot{4}\}, \quad\{\ddot{2}, \dot{3}\}
$$

-

The end The end

The

(2)

(2)
\qquad

Thank you for your attention!
 attention attention

 } \qquad

-

\qquad

