Borel order dimension

Dilip Raghavan (joint work with Ming Xiao)

National University of Singapore

Computability and Combinatorics 2023 University of Connecticut Hartford, CT, USA. May 21, 2023

2 Borel order dimension

3 A dichotomy

Notation

- \leq is a **quasi order on** *P* if \leq is a reflexive and transitive relation on *P*.
- < is a partial order on P if < is an irreflexive and transitive relation on P.
- A quasi order \leq on *P* is **linear** or **total** if for any $x, y \in P$, $x \leq y \lor y \leq x$.
- A partial order < on *P* is **linear** or **total** if for any $x, y \in P$, $x < y \lor y < x \lor x = y$.
- For a quasi order ≤ on P, E_≤ is the equivalence relation on P defined by

$$p E_{\leq} q \iff (p \leq q \land q \leq p).$$

 For a quasi order ≤, x < y means x ≤ y ∧ y ≰ x. < is a partial order. For a partial order <, x ≤ y means x < y ∨ x = y. ≤ is a quasi order with E_≤ ==.

- For a quasi order ≤ on P, < induces a partial order on P/E_≤, also denoted <.
- Example 1: $\mathcal{D} = \langle 2^{\omega}, \leq_T \rangle$, where \leq_T is Turing reducibility.
- Example 2: $\langle \omega^{\omega}, \leq^* \rangle$, where $f \leq^* g$ iff $\forall^{\infty} n \in \omega [f(n) \leq g(n)]$.

э

イロト 不得 トイヨト イヨト

Definition

A quasi order $\mathcal{P} = \langle P, \leq \rangle$ is called a **Borel quasi order** if *P* is a Polish space and \leq is a Borel subset of $P \times P$.

• \mathcal{D} and $\langle \omega^{\omega}, \leq^* \rangle$ are both Borel quasi orders.

Definition

A quasi order $\mathcal{P} = \langle P, \leq \rangle$ is said to be **locally countable** (**locally finite**) if for every $x \in P$, $\{y \in P : y \leq x\}$ is countable (finite).

- \mathcal{D} is locally countable.
- $\langle \omega^{\omega}, \leq^* \rangle$ is not locally countable.

Definition

Suppose \leq_0 and \leq are both quasi orders on P. \leq is said to **extend** \leq_0 if

- $\bigcirc x \leq_0 y \implies x \leq y \text{ and}$
- $2 x E_{\leq_0} y \iff xE_{\leq y},$

for all $x, y \in P$.

If \leq is a linear quasi order which extends \leq_0 , then we say \leq **linearizes** \leq_0 .

≤ extends ≤₀ iff

 (a) P/E_{≤0} = P/E_≤ and
 (b) [x] <₀ [y] ⇒ [x] < [y], for all x, y ∈ P.

Definition

Suppose \leq_0 and \leq are both quasi orders on P. \leq is said to **extend** \leq_0 if

- $\bigcirc x \leq_0 y \implies x \leq y \text{ and}$
- $2 x E_{\leq_0} y \iff x E_{\leq y},$

for all $x, y \in P$.

If \leq is a linear quasi order which extends \leq_0 , then we say \leq **linearizes** \leq_0 .

- \leq extends \leq_0 iff
 - (a) $P/E_{\leq_0} = P/E_{\leq}$ and

(b) $[x] <_0 [y] \implies [x] < [y]$, for all $x, y \in P$.

• If < is a partial order on P/E_{\leq_0} with <_0 \subseteq <, then define \leq on P by

$$x \le y \iff \left(x \le_0 y \lor [x]_{E_{\le_0}} < [y]_{E_{\le_0}} \right)$$

 Then ≤ is a quasi order on P which extends ≤₀ and the partial order induced by ≤ on P/E_{≤0} = P/E_≤ is <.

Definition (Dushnik-Miller [1], 1941)

For a quasi order $\mathcal{P} = \langle P, \leq \rangle$, the **order dimension** (or simply **dimension**) of \mathcal{P} is the smallest cardinality of a collection of linear orders on P/E_{\leq} whose intersection is <.

 $\operatorname{odim}(\mathcal{P})$ will denote the order dimension of \mathcal{P} .

Fact

The order dimension of \mathcal{P} is the minimal κ such that $\langle P/E_{\leq}, \langle \rangle$ embeds into a product of κ many linear orders (with the coordinate wise ordering on the product).

Definition (Dushnik-Miller [1], 1941)

For a quasi order $\mathcal{P} = \langle P, \leq \rangle$, the **order dimension** (or simply **dimension**) of \mathcal{P} is the smallest cardinality of a collection of linear orders on P/E_{\leq} whose intersection is <.

 $\operatorname{odim}(\mathcal{P})$ will denote the order dimension of \mathcal{P} .

Fact

The order dimension of \mathcal{P} is the minimal κ such that $\langle P/E_{\leq}, < \rangle$ embeds into a product of κ many linear orders (with the coordinate wise ordering on the product).

• odim(\mathcal{P}) is the minimal κ such that there is a sequence $\langle \leq_i : i \in \kappa \rangle$ of quasi orders on P extending \leq such that for any $x, y \in P$, if $x \not\leq y$, then $y <_i x$, for some $i \in \kappa$.

- The dimension of a linear order is 1.
- The dimension of an antichain is 2.
- The dimension of a (set-theoretic) tree is 2.
- If \mathcal{P} is an infinite quasi order, then $\operatorname{odim}(\mathcal{P}) \leq |P|$.
- If $\langle P, \leq \rangle$ embeds into $\langle Q, \leq_0 \rangle$, then $\operatorname{odim}(\langle Q, \leq_0 \rangle) \geq \operatorname{odim}(\langle P, \leq \rangle)$.

Locally finite orders

- If \mathcal{P} is locally finite and $|P| = \kappa$, then \mathcal{P} embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim(\mathcal{P}) \leq odim $(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle)$.
- $\operatorname{odim}(\langle [\omega]^{<\aleph_0}, \subseteq \rangle)$ is \aleph_0 .

э

Locally finite orders

- If \mathcal{P} is locally finite and $|P| = \kappa$, then \mathcal{P} embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim(\mathcal{P}) \leq odim $\left(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle \right)$.
- $\operatorname{odim}(\langle [\omega]^{<\aleph_0}, \subseteq \rangle)$ is \aleph_0 .
- $\operatorname{odim}(\langle [\omega_1]^{<\aleph_0}, \subseteq \rangle)$ is ...

Locally finite orders

- If \mathcal{P} is locally finite and $|P| = \kappa$, then \mathcal{P} embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim(\mathcal{P}) \leq odim $\left(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle \right)$.
- $\operatorname{odim}(\langle [\omega]^{<\aleph_0}, \subseteq \rangle)$ is \aleph_0 .
- $\operatorname{odim}(\langle [\omega_1]^{<\aleph_0}, \subseteq \rangle)$ is ... \aleph_0 .
- $\operatorname{odim}(\langle [\omega_2]^{<\aleph_0}, \subseteq \rangle)$ is ...

Locally finite orders

- If \mathcal{P} is locally finite and $|P| = \kappa$, then \mathcal{P} embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim(\mathcal{P}) \leq odim $\left(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle \right)$.
- $\operatorname{odim}(\langle [\omega]^{<\aleph_0}, \subseteq \rangle)$ is \aleph_0 .
- $\operatorname{odim}(\langle [\omega_1]^{<\aleph_0}, \subseteq \rangle)$ is ... \aleph_0 .
- $\operatorname{odim}(\langle [\omega_2]^{<\aleph_0}, \subseteq \rangle)$ is ... \aleph_0 .
- $\operatorname{odim}(\langle [\omega_3]^{<\aleph_0}, \subseteq \rangle)$ is ...

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Locally finite orders

- If \mathcal{P} is locally finite and $|P| = \kappa$, then \mathcal{P} embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim(\mathcal{P}) \leq odim $\left(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle \right)$.
- $\operatorname{odim}(\langle [\omega]^{\langle \aleph_0}, \subseteq \rangle)$ is \aleph_0 .
- $\operatorname{odim}(\langle [\omega_1]^{<\aleph_0}, \subseteq \rangle)$ is ... \aleph_0 .
- $\operatorname{odim}(\langle [\omega_2]^{<\aleph_0}, \subseteq \rangle)$ is ... \aleph_0 .
- $\operatorname{odim}\left(\langle [\omega_3]^{<\aleph_0}, \subseteq \rangle\right)$ is ...
 - if CH and $2^{\aleph_1} = \aleph_2$, then it is \aleph_1 ;
 - 2 else it is \aleph_0 .

ヘロト 人間 ト ヘヨト ヘヨト

Locally finite orders

- If \mathcal{P} is locally finite and $|P| = \kappa$, then \mathcal{P} embeds into $\langle [\kappa]^{<\aleph_0}, \subseteq \rangle$.
- So odim(\mathcal{P}) \leq odim $\left(\langle [\kappa]^{<\aleph_0}, \subseteq \rangle \right)$.
- $\operatorname{odim}(\langle [\omega]^{\langle \aleph_0}, \subseteq \rangle)$ is \aleph_0 .
- $\operatorname{odim}(\langle [\omega_1]^{<\aleph_0}, \subseteq \rangle)$ is ... \aleph_0 .
- $\operatorname{odim}(\langle [\omega_2]^{<\aleph_0}, \subseteq \rangle)$ is ... \aleph_0 .
- $\operatorname{odim}\left(\langle [\omega_3]^{<\aleph_0}, \subseteq \rangle\right)$ is ...
 - if CH and $2^{\aleph_1} = \aleph_2$, then it is \aleph_1 ;
 - 2 else it is \aleph_0 .

Theorem (Kierstead and Milner [5], 1996)

Let $\kappa \ge \omega$ be any cardinal. Then $\operatorname{odim}(\langle [\kappa]^{<\omega}, \subseteq \rangle) = \log_2(\log_2(\kappa))$.

Locally countable orders

Theorem (Higuchi, Lempp, R., and Stephan [3], 2019)

Suppose κ is any cardinal such that $cf(\kappa) > \omega$ and $\mathcal{P} = \langle P, \leq \rangle$ is any locally countable quasi order of size κ^+ . Then \mathcal{P} has dimension at most κ .

Theorem (Kumar and Raghavan [6], 2020)

 $\mathcal{D} = \langle 2^{\omega}, \leq_T \rangle$ has the largest order dimension among all locally countable quasi orders of size 2^{\aleph_0} .

イロト 不得 トイヨト イヨト

Theorem (Kumar and Raghavan [6], 2020)

Each of the following is consistent:

•
$$\aleph_1 < \operatorname{odim}(\mathcal{D}) < 2^{\aleph_0};$$

2
$$\operatorname{odim}(\mathcal{D}) = 2^{\aleph_0}$$
 and 2^{\aleph_0} is weakly inaccessible;

$$odim(\mathcal{D}) = 2^{\aleph_0} = \aleph_{\omega_1}.$$

• odim
$$(\mathcal{D}) = 2^{\aleph_0} = \aleph_{\omega+1}$$
.

2

• Most Borel quasi orders do not have any Borel linearizations.

Definition (Harrington, Marker, and Shelah [2], 1988)

 $\mathcal P$ is **thin** if there is no perfect set of pairwise incomparable elements.

Theorem (Harrington, Marker, and Shelah [2], 1988)

If $\mathcal{P} = \langle P, \leq \rangle$ is a thin Borel quasi order, then for some $\alpha < \omega_1$, there is a Borel $f: P \to 2^{\alpha}$ such that

$$1 x \le y \implies f(x) \le_{\text{lex}} f(y) \text{ and }$$

$$x E_{\leq} y \iff f(x) = f(y), \text{ for all } x, y \in P.$$

Hence if ⟨P, ≤₀⟩ is a Borel quasi order and if ≤ is a Borel total quasi order extending ≤₀, then for some α < ω₁, there is a Borel f : P → 2^α such that

$$\begin{array}{l} x \leq_0 y \implies x \leq y \implies f(x) \leq_{\mathrm{lex}} f(y) \text{ and,} \\ x \ E_{\leq_0} y \iff x \ E_{\leq} y \iff f(x) = f(y), \end{array}$$

for all $x, y \in P$.

э

Kanovei [4] found a Borel quasi order (2^ω, ≤₀) which is the canonical obstruction to Borel linearizability.

Theorem (Kanovei [4], 1998)

Suppose $\langle P, \leq \rangle$ is a Borel quasi order. Then exactly one of the following two conditions is satisfied:

- $\langle P, \leq \rangle$ is Borel linearizable;
- 2 there is a continuous 1-1 map $F: 2^{\omega} \rightarrow P$ such that:

(2a) $a \leq_0 b \implies F(a) \leq F(b)$ and

(2b) $a \not E_0 b \implies F(a)$ and F(b) are \leq -incomparable.

3

Borel order dimension

Definition

Suppose $\mathcal{P} = \langle P, \leq \rangle$ is a Borel quasi order. The **Borel order dimension of** \mathcal{P} , denoted $\operatorname{odim}_B(\mathcal{P})$, is the minimal κ such that there is a sequence $\langle \leq_i : i \in \kappa \rangle$ of Borel quasi orders on P extending \leq such that for any $x, y \in P$, if $x \nleq y$, then $y <_i x$, for some $i \in \kappa$.

Definition

Let *X* be a set and *R* a binary relation on *X* that is disjoint from the diagonal. An *R*-loop is a finite sequence $x_0, \ldots, x_k \in X$ so that $(x_i, x_{i+1}) \in R$ for all i < k, $(x_k, x_0) \in R$.

Definition

Let $X = \langle X, R \rangle$ be a structure as in the previous definition. The **loop-free chromatic number of** X, denoted $\mathcal{H}(X)$, is the minimal κ such that $X = \bigcup_{\lambda < \kappa} X_{\lambda}$, where no X_{λ} contains an *R*-loop.

If *X* is a Polish space and *R* is a Borel binary relation on *X* that is disjoint from the diagonal, then the **Borel loop-free chromatic number of** *X*, denoted $\mathcal{H}_B(X)$, is the minimal κ such that $X = \bigcup_{\lambda < \kappa} X_{\lambda}$, where each X_{λ} is a Borel set that does not contain any *R*-loops.

- Suppose $\mathcal{P} = \langle P, \leq \rangle$ is a quasi order. Let $\mathcal{A}_{\mathcal{P}} = (P \times P) \setminus \geq$ and define $\mathcal{R}_{\mathcal{P}}$ on $\mathcal{A}_{\mathcal{P}} \times \mathcal{A}_{\mathcal{P}}$ by $(p_0, q_0) \mathcal{R}_{\mathcal{P}} (p_1, q_1) \iff q_0 \leq p_1$.
- $\mathcal{R}_{\mathcal{P}}$ is disjoint from the diagonal because for any $(p,q) \in \mathcal{R}_{\mathcal{P}}, q \nleq p$.

3

- Suppose $\mathcal{P} = \langle P, \leq \rangle$ is a quasi order. Let $\mathcal{A}_{\mathcal{P}} = (P \times P) \setminus \geq$ and define $\mathcal{R}_{\mathcal{P}}$ on $\mathcal{A}_{\mathcal{P}} \times \mathcal{A}_{\mathcal{P}}$ by $(p_0, q_0) \mathcal{R}_{\mathcal{P}} (p_1, q_1) \iff q_0 \leq p_1$.
- $\mathcal{R}_{\mathcal{P}}$ is disjoint from the diagonal because for any $(p,q) \in \mathcal{R}_{\mathcal{P}}, q \nleq p$.
- Suppose $\kappa = \text{odim}(\mathcal{P})$ and that $\langle \leq_{\lambda} : \lambda < \kappa \rangle$ is a witness.
- Let $X_{\lambda} = \leq_{\lambda} \setminus \geq$. Then $\mathcal{R}_{\mathcal{P}} = \bigcup_{\lambda < \kappa} X_{\lambda}$.
- If $(p_0, q_0), \ldots, (p_k, q_k)$ is an $\mathcal{R}_{\mathcal{P}}$ -loop in X_{λ} , then $p_0 E_{\leq_{\lambda}} q_0$, which implies $p_0 E_{\leq q_0}$, which is impossible as $q_0 \nleq p_0$.
- Hence $\mathcal{H}(\langle \mathcal{R}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}} \rangle) \leq \operatorname{odim}(\mathcal{P}).$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Conversely suppose H (⟨A_P, R_P⟩) = κ and that ⟨X_λ : λ < κ⟩ is a witness.
- Let \leq_{λ} be the transitive closure of $\leq \cup X_{\lambda}$.
- \leq_{λ} is then a quasi order on *P* and $\leq \subseteq \leq_{\lambda}$.
- $E_{\leq_{\lambda}} = E_{\lambda}$ because X_{λ} is $\mathcal{R}_{\mathcal{P}}$ -loop free.

3

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Conversely suppose H (⟨A_P, R_P⟩) = κ and that ⟨X_λ : λ < κ⟩ is a witness.
- Let \leq_{λ} be the transitive closure of $\leq \cup X_{\lambda}$.
- \leq_{λ} is then a quasi order on *P* and $\leq \subseteq \leq_{\lambda}$.
- $E_{\leq_{\lambda}} = E_{\lambda}$ because X_{λ} is $\mathcal{R}_{\mathcal{P}}$ -loop free.
- For example, if $pX_{\lambda}qX_{\lambda}rX_{\lambda}p$, then (p,q), (q,r), (r,p) would be an $\mathcal{R}_{\mathcal{P}}$ -loop in X_{λ} .
- Similarly if $p \le qX_{\lambda}rX_{\lambda}s \le tX_{\lambda}p$, then (q, r), (r, s), (t, p) is an $\mathcal{R}_{\mathcal{P}}$ -loop in X_{λ} .

3

- Conversely suppose H (⟨A_P, R_P⟩) = κ and that ⟨X_λ : λ < κ⟩ is a witness.
- Let \leq_{λ} be the transitive closure of $\leq \cup X_{\lambda}$.
- \leq_{λ} is then a quasi order on *P* and $\leq \subseteq \leq_{\lambda}$.
- $E_{\leq_{\lambda}} = E_{\lambda}$ because X_{λ} is $\mathcal{R}_{\mathcal{P}}$ -loop free.
- For example, if $pX_{\lambda}qX_{\lambda}rX_{\lambda}p$, then (p,q), (q,r), (r,p) would be an $\mathcal{R}_{\mathcal{P}}$ -loop in X_{λ} .
- Similarly if $p \le qX_{\lambda}rX_{\lambda}s \le tX_{\lambda}p$, then (q, r), (r, s), (t, p) is an $\mathcal{R}_{\mathcal{P}}$ -loop in X_{λ} .
- If $q \not\leq p$, then $(p,q) \in \mathcal{A}_{\mathcal{P}} = \bigcup_{\lambda < \kappa} X_{\lambda}$. So $p \leq_{\lambda} q$, and since $E_{\leq_{\lambda}} = E_{\leq}$, $p <_{\lambda} q$.
- Hence odim $(\mathcal{P}) \leq \mathcal{H}(\langle \mathcal{R}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}} \rangle)$
- Conclusion: $\operatorname{odim}(\mathcal{P}) = \mathcal{H}(\langle \mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}} \rangle).$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Theorem (R. and Xiao [7])

If \mathcal{P} is a Borel quasi order, then $\operatorname{odim}_{B}(\mathcal{P}) = \mathcal{H}_{B}(\langle \mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}} \rangle).$

2

Theorem (R. and Xiao [7])

If \mathcal{P} is a Borel quasi order, then $\operatorname{odim}_{B}(\mathcal{P}) = \mathcal{H}_{B}(\langle \mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}} \rangle).$

- Suppose s = ⟨n_k : k ∈ ω⟩ ∈ ω^ω is such that n_k ≥ 2 and n_k ≤ n_{k+1}, for all k ∈ ω.
- Define $T(s) = \prod_{k \in \omega} n_k$.

э

Theorem (R. and Xiao [7])

If \mathcal{P} is a Borel quasi order, then $\operatorname{odim}_{B}(\mathcal{P}) = \mathcal{H}_{B}(\langle \mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}} \rangle).$

- Suppose s = ⟨n_k : k ∈ ω⟩ ∈ ω^ω is such that n_k ≥ 2 and n_k ≤ n_{k+1}, for all k ∈ ω.
- Define $T(s) = \prod_{k \in \omega} n_k$. Let *D* be a dense subset of T(s) that intersects each level exactly once.
- For $(b_0, b_1) \in [T(s)]$, define $(b_0, b_1) \in R_0(D)$ iff there is a $d \in D$ and an $x \in \omega^{\omega}$, so that either:

$$b_0 = d^{\langle i \rangle} x$$
 and $b_1 = d^{\langle i + 1 \rangle} x$, or
 $b_0 = d^{\langle n_{|d|}} - 1^{\langle x}$ and $b_1 = d^{\langle 0 \rangle} x$.

• Let
$$\mathcal{G}_0(s, D) = \langle [T(s)], R_0(D) \rangle$$
.

Definition

 $\mathcal{M} = \{ M \subseteq 2^{\omega} : M \text{ is Borel and meager} \}.$ $\operatorname{cov}(\mathcal{M}) = \min\{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{M} \land 2^{\omega} = \bigcup \mathcal{F} \}.$

Lemma (R. and Xiao [7])

 $\mathcal{H}_B(\mathcal{G}_0(s,D)) \geq \operatorname{cov}(\mathcal{M}).$

Proof.

Every Borel non-meager set must contain a loop.

3

Theorem (R. and Xiao [7])

Suppose *X* is Polish $R \subseteq X \times X$ is Borel and disjoint from the diagonal. Then either:

2 there exist *s*, *D*, and a continuous homomorphism $f: C_{2}(s, D) \rightarrow \langle Y, P \rangle$

 $f: \mathcal{G}_0(s, D) \to \langle X, R \rangle.$

э

Definition

For *s* and *D*, define $\mathcal{P}_0(s, D) = \langle [T(s)] \times 2, \leq_0 \rangle$, where $(b_0, i) \leq_0 (b_1, j)$ iff i = 0, j = 1, and $(b_0, b_1) \in R_0(D)$.

- Note that $\{((b, 1), (b, 0)) : b \in [T(s)]\} \subseteq \mathcal{R}_{\mathcal{P}_0(s,D)}$.
- Further, $((b, 1), (b, 0)) \mathcal{R}_{\mathcal{P}_0(s,D)}((b', 1), (b', 0))$ iff $(b, 0) \leq_0 (b', 1)$ iff $b R_0(D) b'$.
- Therefore, there is a copy of $\mathcal{G}_0(s, D)$ inside the structure $\langle \mathcal{R}_{\mathcal{P}_0(s,D)}, \mathcal{R}_{\mathcal{P}_0(s,D)} \rangle$.
- Hence $\operatorname{odim}_B(\mathcal{P}_0(s, D)) \ge \operatorname{cov}(\mathcal{M}).$

э

Theorem (R. and Xiao [7])

For any Borel quasi order $\mathcal{P} = \langle P, \leq \rangle$ exactly one of the following holds:

• odim_B
$$(\mathcal{P}) \leq \aleph_0$$

2 There exist *s*, *D*, and a continuous $f : [T(s)] \times 2 \rightarrow P$ such that:

- (2a) $(b_0, 0) \leq_0 (b_1, 1) \implies f((b_0, 0)) \leq f((b_1, 1))$ and
- (2b) for every $b \in [T(s)]$, f((b, 0)) and f((b, 1)) are \leq -incomparable.

Corollary (R. and Xiao [7])

For every Borel quasi order \mathcal{P} , $\operatorname{odim}_{B}(\mathcal{P})$ is either countable or at least $\operatorname{cov}(\mathcal{M})$.

э

Theorem (R. and Xiao [7])

For any Borel quasi order $\mathcal{P} = \langle P, \leq \rangle$ exactly one of the following holds:

• odim_B(
$$\mathcal{P}$$
) $\leq \aleph_0$

2 There exist *s*, *D*, and a continuous $f : [T(s)] \times 2 \rightarrow P$ such that:

- (2a) $(b_0, 0) \leq_0 (b_1, 1) \implies f((b_0, 0)) \leq f((b_1, 1))$ and
- (2b) for every $b \in [T(s)]$, f((b, 0)) and f((b, 1)) are \leq -incomparable.

Corollary (R. and Xiao [7])

For every Borel quasi order \mathcal{P} , $\operatorname{odim}_{B}(\mathcal{P})$ is either countable or at least $\operatorname{cov}(\mathcal{M})$.

Theorem (R. and Xiao [7])

For every Borel quasi order \mathcal{P} , if $\operatorname{odim}_{B}(\mathcal{P})$ is countable, then \mathcal{P} has a Borel linearization.

The Turing degrees

- Combining these results with my earlier results with Higuchi, Lempp, and Stephan, we get that odim_B(D) is usually strictly bigger than odim(D).
- For example, if $cf(\kappa) > \omega$, $2^{\aleph_0} = \kappa^+$, and $MA_{\kappa}(countable)$ holds. Then $odim(\mathcal{D}) \le \kappa < \kappa^+ = cov(\mathcal{M}) = odim_B(\mathcal{D})$.
- In particular, if PFA holds, then odim(D) = ℵ₁ < ℵ₂ = odim_B(D) = 2^{ℵ₀}.

э

イロト 不得 トイヨト イヨト

Theorem (R. and Xiao [7])

If \mathcal{P} is a locally finite Borel quasi order, then $\operatorname{odim}_{\mathcal{B}}(\mathcal{P}) \leq \aleph_0$.

æ

Theorem (R. and Xiao [7])

If \mathcal{P} is a locally finite Borel quasi order, then $\operatorname{odim}_{B}(\mathcal{P}) \leq \aleph_{0}$.

- Our dichotomy does not provide any natural upper bound on odim_B(D) other than 2^{ℵ0}.
- So it is natural to wonder weather $\operatorname{odim}_B(\mathcal{D}) = 2^{\aleph_0}$.

Theorem (R. and Xiao [7])

There is a c.c.c. forcing which forces that for every locally countable Borel quasi order \mathcal{P} , $\operatorname{odim}_{B}(\mathcal{P}) = \aleph_{1}$.

- So starting with a ground model V where $2^{\aleph_0} = \aleph_{17}$, there is a cardinal preserving forcing extension in which $2^{\aleph_0} = \aleph_{17}$ and for every locally countable Borel quasi order \mathcal{P} , $\operatorname{odim}_B(\mathcal{P}) = \aleph_1$.
- Each $\mathcal{P}_0(s, D)$ is locally countable. So in this model, $\mathcal{H}_B(\mathcal{G}_0(s, D)) = \aleph_1 < 2^{\aleph_0}$, for every *s* and *D*.

イロト 不得 トイヨト イヨト

Bibliography I

- B. Dushnik and E. W. Miller, *Partially ordered sets*, Amer. J. Math. **63** (1941), 600–610.
- L. Harrington, D. Marker, and S. Shelah, *Borel orderings*, Trans. Amer. Math. Soc. **310** (1988), no. 1, 293–302.
- K. Higuchi, S. Lempp, D. Raghavan, and F. Stephan, On the order dimension of locally countable partial orderings, Proc. Amer. Math. Soc. 148 (2020), no. 7, 2823–2833.
- V. Kanovei, *When a partial Borel order is linearizable*, Fund. Math. **155** (1998), no. 3, 301–309.
- H. A. Kierstead and E. C. Milner, *The dimension of the finite subsets* of κ , Order **13** (1996), no. 3, 227–231.

Bibliography II

- A. Kumar and D. Raghavan, Separating families and order dimension of Turing degrees, Ann. Pure Appl. Logic 172 (2021), no. 5, Paper No. 102911, 19 pp.
- D. Raghavan and M. Xiao, *Borel order dimension*, preprint (2023).