Borel order dimension

Dilip Raghavan
(joint work with Ming Xiao)

National University of Singapore
Computability and Combinatorics 2023
University of Connecticut
Hartford, CT, USA.
May 21, 2023

Outline

(1) Order Dimension
(2) Borel order dimension
(3) A dichotomy

4 Locally countable orders

Notation

- \leq is a quasi order on P if \leq is a reflexive and transitive relation on P.
- < is a partial order on P if < is an irreflexive and transitive relation on P.
- A quasi order \leq on P is linear or total if for any $x, y \in P, x \leq y \vee y \leq x$.
- A partial order $<$ on P is linear or total if for any $x, y \in P$, $x<y \vee y<x \vee x=y$.
- For a quasi order \leq on P, E_{\leq}is the equivalence relation on P defined by

$$
p E_{\leq} q \Longleftrightarrow(p \leq q \wedge q \leq p)
$$

- For a quasi order $\leq, x<y$ means $x \leq y \wedge y \not \leq x$. < is a partial order. For a partial order $<, x \leqq y$ means $x<y \vee x=y$. is a quasi order with $E_{\leqq}==$.
- For a quasi order \leq on P, < induces a partial order on P / E_{\leq}, also denoted $<$.
- Example 1: $\mathcal{D}=\left\langle 2^{\omega}, \leq_{T}\right\rangle$, where \leq_{T} is Turing reducibility.
- Example 2: $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$, where $f \leq^{*} g$ iff $\forall^{\infty} n \in \omega[f(n) \leq g(n)]$.

Definition

A quasi order $\mathcal{P}=\langle P, \leq\rangle$ is called a Borel quasi order if P is a Polish space and \leq is a Borel subset of $P \times P$.

- \mathcal{D} and $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ are both Borel quasi orders.

Definition

A quasi order $\mathcal{P}=\langle P, \leq\rangle$ is said to be locally countable (locally finite) if for every $x \in P,\{y \in P: y \leq x\}$ is countable (finite).

- \mathcal{D} is locally countable.
- $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$ is not locally countable.

Definition

Suppose \leq_{0} and \leq are both quasi orders on P. \leq is said to extend \leq_{0} if
(1) $x \leq_{0} y \Longrightarrow x \leq y$ and
(2) $x E_{\leq_{0}} y \Longleftrightarrow x E_{\leq} y$,
for all $x, y \in P$.
If \leq is a linear quasi order which extends \leq_{0}, then we say \leq linearizes \leq_{0}.

- \leq extends \leq_{0} iff
(a) $P / E_{\leq_{0}}=P / E_{\leq}$and
(b) $[x]<0[y] \Longrightarrow[x]<[y]$, for all $x, y \in P$.

Definition

Suppose \leq_{0} and \leq are both quasi orders on P. \leq is said to extend \leq_{0} if
(1) $x \leq_{0} y \Longrightarrow x \leq y$ and
(2) $x E_{\leq_{0}} y \Longleftrightarrow x E_{\leq y} y$,
for all $x, y \in P$.
If \leq is a linear quasi order which extends \leq_{0}, then we say \leq linearizes \leq_{0}.

- \leq extends \leq_{0} iff
(a) $P / E_{\leq_{0}}=P / E_{\leq}$and
(b) $[x]<0[y] \Longrightarrow[x]<[y]$, for all $x, y \in P$.
- If $<$ is a partial order on $P / E_{\leq_{0}}$ with $<_{0} \subseteq<$, then define \leq on P by

$$
x \leq y \Longleftrightarrow\left(x \leq_{0} y \vee[x]_{E_{\leq_{0}}}<[y]_{E_{\leq_{0}}}\right)
$$

- Then \leq is a quasi order on P which extends \leq_{0} and the partial order induced by \leq on $P / E_{\leq_{0}}=P / E_{\leq}$is $<$.

Definition (Dushnik-Miller [1], 1941)

For a quasi order $\mathcal{P}=\langle P, \leq\rangle$, the order dimension (or simply dimension) of \mathcal{P} is the smallest cardinality of a collection of linear orders on P / E_{\leq} whose intersection is $<$. $\operatorname{odim}(\mathcal{P})$ will denote the order dimension of \mathcal{P}.

Fact

The order dimension of \mathcal{P} is the minimal κ such that $\left\langle P / E_{\leq},<\right\rangle$embeds into a product of κ many linear orders (with the coordinate wise ordering on the product).

Definition (Dushnik-Miller [1], 1941)

For a quasi order $\mathcal{P}=\langle P, \leq\rangle$, the order dimension (or simply dimension) of \mathcal{P} is the smallest cardinality of a collection of linear orders on P / E_{\leq} whose intersection is $<$. $\operatorname{odim}(\mathcal{P})$ will denote the order dimension of \mathcal{P}.

Fact

The order dimension of \mathcal{P} is the minimal κ such that $\left\langle P / E_{\leq},<\right\rangle$embeds into a product of κ many linear orders (with the coordinate wise ordering on the product).

- $\operatorname{odim}(\mathcal{P})$ is the minimal κ such that there is a sequence $\left\langle\leq_{i}: i \in \kappa\right\rangle$ of quasi orders on P extending \leq such that for any $x, y \in P$, if $x \not \leq y$, then $y<{ }_{i} x$, for some $i \in \kappa$.

Elementary facts

- The dimension of a linear order is 1.
- The dimension of an antichain is 2 .
- The dimension of a (set-theoretic) tree is 2.
- If \mathcal{P} is an infinite quasi order, then $\operatorname{odim}(\mathcal{P}) \leq|P|$.
- If $\langle P, \leq\rangle$ embeds into $\left\langle Q, \leq_{0}\right\rangle$, then $\operatorname{odim}\left(\left\langle Q, \leq_{0}\right\rangle\right) \geq \operatorname{odim}(\langle P, \leq\rangle)$.

Locally finite orders

- If \mathcal{P} is locally finite and $|P|=\kappa$, then \mathcal{P} embeds into $\left\langle[\kappa]^{<\aleph_{0}}, \subseteq\right\rangle$.
- So $\operatorname{odim}(\mathcal{P}) \leq \operatorname{odim}\left(\left\langle[\kappa]^{\left\langle\lambda_{0}\right.}, \subseteq\right\rangle\right)$.
- $\operatorname{odim}\left(\left\langle[\omega]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is \aleph_{0}.

Locally finite orders

- If \mathcal{P} is locally finite and $|P|=\kappa$, then \mathcal{P} embeds into $\left\langle[\kappa]^{<\aleph_{0}}, \subseteq\right\rangle$.
- So odim $(\mathcal{P}) \leq \operatorname{odim}\left(\left\langle[\kappa]^{<\aleph_{0}}, \subseteq\right\rangle\right)$.
- odim $\left(\left\langle[\omega]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is \aleph_{0}.
- $\operatorname{odim}\left(\left\langle\left[\omega_{1}\right]^{\left\langle\lambda_{0}\right.}, \subseteq\right\rangle\right)$ is ...

Locally finite orders

- If \mathcal{P} is locally finite and $|P|=\kappa$, then \mathcal{P} embeds into $\left\langle[\kappa]^{<\aleph_{0}}, \subseteq\right\rangle$.
- So odim $(\mathcal{P}) \leq \operatorname{odim}\left(\left\langle[\kappa]^{<\aleph_{0}}, \subseteq\right\rangle\right)$.
- $\operatorname{odim}\left(\left\langle[\omega]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is \aleph_{0}.
- $\operatorname{odim}\left(\left\langle\left[\omega_{1}\right]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is $\ldots \aleph_{0}$.
- $\operatorname{odim}\left(\left\langle\left[\omega_{2}\right]^{<\boldsymbol{N}_{0}}, \subseteq\right\rangle\right)$ is \ldots

Locally finite orders

- If \mathcal{P} is locally finite and $|P|=\kappa$, then \mathcal{P} embeds into $\left\langle[\kappa]^{<\aleph_{0}}, \subseteq\right\rangle$.
- So odim $(\mathcal{P}) \leq \operatorname{odim}\left(\left\langle[\kappa]^{<\aleph_{0}}, \subseteq\right\rangle\right)$.
- $\operatorname{odim}\left(\left\langle[\omega]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is \aleph_{0}.
- $\operatorname{odim}\left(\left\langle\left[\omega_{1}\right]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is $\ldots \aleph_{0}$.
- $\operatorname{odim}\left(\left\langle\left[\omega_{2}\right]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is $\ldots \aleph_{0}$.
- odim $\left(\left\langle\left[\omega_{3}\right]^{<\lambda_{0}}, \subseteq\right\rangle\right)$ is ...

Locally finite orders

- If \mathcal{P} is locally finite and $|P|=\kappa$, then \mathcal{P} embeds into $\left\langle[\kappa]^{\left\langle\aleph_{0}\right.}, \subseteq\right\rangle$.
- So $\operatorname{odim}(\mathcal{P}) \leq \operatorname{odim}\left(\left\langle[\kappa]^{<^{*}}, \subseteq\right\rangle\right)$.
- $\operatorname{odim}\left(\left\langle[\omega]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is \aleph_{0}.
- odim $\left(\left\langle\left[\omega_{1}\right]^{\left\langle\aleph_{0}\right.}, \subseteq\right\rangle\right)$ is $\ldots \aleph_{0}$.
- odim $\left(\left\langle\left[\omega_{2}\right]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is $\ldots \aleph_{0}$.
- odim $\left(\left\langle\left[\omega_{3}\right]^{<\lambda_{0}}, \subseteq\right\rangle\right)$ is ...
(1) if CH and $2^{\aleph_{1}}=\aleph_{2}$, then it is \aleph_{1};
(2) else it is \aleph_{0}.

Locally finite orders

- If \mathcal{P} is locally finite and $|P|=\kappa$, then \mathcal{P} embeds into $\left\langle[\kappa]^{\left\langle\aleph_{0}\right.}, \subseteq\right\rangle$.
- So $\operatorname{odim}(\mathcal{P}) \leq \operatorname{odim}\left(\left\langle[\kappa]^{<^{*}}, \subseteq\right\rangle\right)$.
- $\operatorname{odim}\left(\left\langle[\omega]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is \aleph_{0}.
- odim $\left(\left\langle\left[\omega_{1}\right]^{\left\langle\aleph_{0}\right.}, \subseteq\right\rangle\right)$ is $\ldots \aleph_{0}$.
- odim $\left(\left\langle\left[\omega_{2}\right]^{<\aleph_{0}}, \subseteq\right\rangle\right)$ is $\ldots \aleph_{0}$.
- odim $\left(\left\langle\left[\omega_{3}\right]^{<\lambda_{0}}, \subseteq\right\rangle\right)$ is ...
(1) if CH and $2^{\aleph_{1}}=\aleph_{2}$, then it is \aleph_{1};
(2) else it is \aleph_{0}.

Theorem (Kierstead and Milner [5], 1996)

Let $\kappa \geq \omega$ be any cardinal. Then $\operatorname{odim}\left(\left\langle[\kappa]^{<\omega}, \subseteq\right\rangle\right)=\log _{2}\left(\log _{2}(\kappa)\right)$.

Locally countable orders

Theorem (Higuchi, Lempp, R., and Stephan [3], 2019)

Suppose κ is any cardinal such that $\operatorname{cf}(\kappa)>\omega$ and $\mathcal{P}=\langle P, \leq\rangle$ is any locally countable quasi order of size κ^{+}. Then \mathcal{P} has dimension at most κ.

Theorem (Kumar and Raghavan [6], 2020)

$\mathcal{D}=\left\langle 2^{\omega}, \leq_{T}\right\rangle$ has the largest order dimension among all locally countable quasi orders of size $2^{\aleph_{0}}$.

Theorem (Kumar and Raghavan [6], 2020)

Each of the following is consistent:
(1) $\aleph_{1}<\operatorname{odim}(\mathcal{D})<2^{\aleph_{0}}$;
(2) $\operatorname{odim}(\mathcal{D})=2^{\aleph_{0}}$ and $2^{\aleph_{0}}$ is weakly inaccessible;
(3) $\operatorname{odim}(\mathcal{D})=2^{\aleph_{0}}=\boldsymbol{\aleph}_{\omega_{1}}$;
(4) $\operatorname{odim}(\mathcal{D})=2^{\boldsymbol{K}_{0}}=\boldsymbol{N}_{\omega+1}$.

- Most Borel quasi orders do not have any Borel linearizations.

Definition (Harrington, Marker, and Shelah [2], 1988)

\mathcal{P} is thin if there is no perfect set of pairwise incomparable elements.

Theorem (Harrington, Marker, and Shelah [2], 1988)

If $\mathcal{P}=\langle P, \leq\rangle$ is a thin Borel quasi order, then for some $\alpha<\omega_{1}$, there is a Borel $f: P \rightarrow 2^{\alpha}$ such that
(1) $x \leq y \Longrightarrow f(x) \leq_{\operatorname{lex}} f(y)$ and
(2) $x E_{\leq} y \Longleftrightarrow f(x)=f(y)$, for all $x, y \in P$.

- Hence if $\left\langle P, \leq_{0}\right\rangle$ is a Borel quasi order and if \leq is a Borel total quasi order extending \leq_{0}, then for some $\alpha<\omega_{1}$, there is a Borel $f: P \rightarrow 2^{\alpha}$ such that

$$
\begin{aligned}
& x \leq_{0} y \Longrightarrow x \leq y \Longrightarrow f(x) \leq_{\operatorname{lex}} f(y) \text { and }, \\
& x E_{\leq_{0}} y \Longleftrightarrow x E_{\leq} y \Longleftrightarrow f(x)=f(y),
\end{aligned}
$$ for all $x, y \in P$.

- Kanovei [4] found a Borel quasi order $\left\langle 2^{\omega}, \leq_{0}\right\rangle$ which is the canonical obstruction to Borel linearizability.

Theorem (Kanovei [4], 1998)

Suppose $\langle P, \leq\rangle$ is a Borel quasi order. Then exactly one of the following two conditions is satisfied:
(1) $\langle P, \leq\rangle$ is Borel linearizable;
(2) there is a continuous 1-1 map $F: 2^{\omega} \rightarrow P$ such that:
(2a) $a \leq_{0} b \Longrightarrow F(a) \leq F(b)$ and
(2b) $a E_{0} b \Longrightarrow F(a)$ and $F(b)$ are $\leq-i n c o m p a r a b l e . ~$

Borel order dimension

Definition

Suppose $\mathcal{P}=\langle P, \leq\rangle$ is a Borel quasi order. The Borel order dimension of \mathcal{P}, denoted $\operatorname{odim}_{B}(\mathcal{P})$, is the minimal κ such that there is a sequence $\left\langle\leq_{i}: i \in \kappa\right\rangle$ of Borel quasi orders on P extending \leq such that for any $x, y \in P$, if $x \not \leq y$, then $y<_{i} x$, for some $i \in \kappa$.

Definition

Let X be a set and R a binary relation on X that is disjoint from the diagonal. An R-loop is a finite sequence $x_{0}, \ldots, x_{k} \in X$ so that $\left(x_{i}, x_{i+1}\right) \in R$ for all $i<k,\left(x_{k}, x_{0}\right) \in R$.

Definition

Let $\mathcal{X}=\langle X, R\rangle$ be a structure as in the previous definition. The loop-free chromatic number of \mathcal{X}, denoted $\mathcal{H}(\mathcal{X})$, is the minimal κ such that $X=\bigcup_{\lambda<\kappa} X_{\lambda}$, where no X_{λ} contains an R-loop.

If X is a Polish space and R is a Borel binary relation on X that is disjoint from the diagonal, then the Borel loop-free chromatic number of \mathcal{X}, denoted $\mathcal{H}_{B}(\mathcal{X})$, is the minimal κ such that $X=\bigcup_{\lambda<\kappa} X_{\lambda}$, where each X_{λ} is a Borel set that does not contain any R-loops.

- Suppose $\mathcal{P}=\langle P, \leq\rangle$ is a quasi order. Let $\mathcal{A l}_{\mathcal{P}}=(P \times P) \backslash \geq$ and define $\mathcal{R}_{\mathcal{P}}$ on $\mathcal{A}_{\mathcal{P}} \times \mathcal{A}_{\mathcal{P}}$ by $\left(p_{0}, q_{0}\right) \mathcal{R}_{\mathcal{P}}\left(p_{1}, q_{1}\right) \Longleftrightarrow q_{0} \leq p_{1}$.
- $\mathcal{R}_{\mathcal{P}}$ is disjoint from the diagonal because for any $(p, q) \in \mathcal{A}_{\mathcal{P}}, q \not \equiv p$.
- Suppose $\mathcal{P}=\langle P, \leq\rangle$ is a quasi order. Let $\mathcal{A l}_{\mathcal{P}}=(P \times P) \backslash \geq$ and define $\mathcal{R}_{\mathcal{P}}$ on $\mathcal{A}_{\mathcal{P}} \times \mathcal{A}_{\mathcal{P}}$ by $\left(p_{0}, q_{0}\right) \mathcal{R}_{\mathcal{P}}\left(p_{1}, q_{1}\right) \Longleftrightarrow q_{0} \leq p_{1}$.
- $\mathcal{R}_{\mathcal{P}}$ is disjoint from the diagonal because for any $(p, q) \in \mathcal{A}_{\mathcal{P}}, q \not \leq p$.
- Suppose $\kappa=\operatorname{odim}(\mathcal{P})$ and that $\left\langle\leq_{\lambda}: \lambda<\kappa\right\rangle$ is a witness.
- Let $X_{\lambda}=\leq_{\lambda} \backslash \geq$. Then $\mathcal{A l}_{\mathcal{P}}=\bigcup_{\lambda<\kappa} X_{\lambda}$.
- If $\left(p_{0}, q_{0}\right), \ldots,\left(p_{k}, q_{k}\right)$ is an $\mathcal{R}_{\mathcal{P}}$-loop in X_{λ}, then $p_{0} E_{\leq_{\lambda}} q_{0}$, which implies $p_{0} E_{\leq} q_{0}$, which is impossible as $q_{0} \not \leq p_{0}$.
- Hence $\mathcal{H}\left(\left\langle\mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}}\right\rangle\right) \leq \operatorname{odim}(\mathcal{P})$.
- Conversely suppose $\mathcal{H}\left(\left\langle\mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}}\right\rangle\right)=\kappa$ and that $\left\langle X_{\lambda}: \lambda<\kappa\right\rangle$ is a witness.
- Let \leq_{λ} be the transitive closure of $\leq \cup X_{\lambda}$.
- \leq_{λ} is then a quasi order on P and $\leq \subseteq \leq_{\lambda}$.
- $E_{\leq_{\lambda}}=E_{\lambda}$ because X_{λ} is $\mathcal{R}_{\mathcal{P}}$-loop free.
- Conversely suppose $\mathcal{H}\left(\left\langle\mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}}\right\rangle\right)=\kappa$ and that $\left\langle X_{\lambda}: \lambda\langle\kappa\rangle\right.$ is a witness.
- Let \leq_{λ} be the transitive closure of $\leq \cup X_{\lambda}$.
- \leq_{λ} is then a quasi order on P and $\leq \subseteq \leq_{\lambda}$.
- $E_{\leq_{\lambda}}=E_{\lambda}$ because X_{λ} is \mathcal{R}_{p}-loop free.
- For example, if $p X_{\lambda} q X_{\lambda} r X_{\lambda} p$, then $(p, q),(q, r),(r, p)$ would be an $\mathcal{R}_{\mathcal{p}}$-loop in X_{λ}.
- Similarly if $p \leq q X_{\lambda} r X_{\lambda} s \leq t X_{\lambda} p$, then $(q, r),(r, s),(t, p)$ is an $\mathcal{R}_{\mathcal{P}}$-loop in X_{λ}.
- Conversely suppose $\mathcal{H}\left(\left\langle\mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}}\right\rangle\right)=\kappa$ and that $\left\langle X_{\lambda}: \lambda\langle\kappa\rangle\right.$ is a witness.
- Let \leq_{λ} be the transitive closure of $\leq \cup X_{\lambda}$.
- \leq_{λ} is then a quasi order on P and $\leq \subseteq \leq_{\lambda}$.
- $E_{\leq_{\lambda}}=E_{\lambda}$ because X_{λ} is $\mathcal{R}_{\mathcal{P}}$-loop free.
- For example, if $p X_{\lambda} q X_{\lambda} r X_{\lambda} p$, then $(p, q),(q, r),(r, p)$ would be an $\mathcal{R}_{\mathcal{P}}$-loop in X_{λ}.
- Similarly if $p \leq q X_{\lambda} r X_{\lambda} s \leq t X_{\lambda} p$, then $(q, r),(r, s),(t, p)$ is an $\mathcal{R}_{\mathcal{P}}$-loop in X_{λ}.
- If $q \not \leq p$, then $(p, q) \in \mathcal{A}_{\mathcal{P}}=\bigcup_{\lambda<\kappa} X_{\lambda}$. So $p \leq_{\lambda} q$, and since $E_{\leq_{\lambda}}=E_{\leq}$, $p<\lambda q$.
- Hence $\operatorname{odim}(\mathcal{P}) \leq \mathcal{H}\left(\left\langle\mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}}\right\rangle\right)$
- Conclusion: $\operatorname{odim}(\mathcal{P})=\mathcal{H}\left(\left\langle\mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}}\right\rangle\right)$.

Theorem (R. and Xiao [7])

If \mathcal{P} is a Borel quasi order, then $\operatorname{odim}_{B}(\mathcal{P})=\mathcal{H}_{B}\left(\left\langle\mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}}\right\rangle\right)$.

Theorem (R. and Xiao [7])

If \mathcal{P} is a Borel quasi order, then $\operatorname{odim}_{B}(\mathcal{P})=\mathcal{H}_{B}\left(\left\langle\mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}}\right\rangle\right)$.

- Suppose $s=\left\langle n_{k}: k \in \omega\right\rangle \in \omega^{\omega}$ is such that $n_{k} \geq 2$ and $n_{k} \leq n_{k+1}$, for all $k \in \omega$.
- Define $T(s)=\prod_{k \in \omega} n_{k}$.

Theorem (R. and Xiao [7])

If \mathcal{P} is a Borel quasi order, then $\operatorname{odim}_{B}(\mathcal{P})=\mathcal{H}_{B}\left(\left\langle\mathcal{A}_{\mathcal{P}}, \mathcal{R}_{\mathcal{P}}\right\rangle\right)$.

- Suppose $s=\left\langle n_{k}: k \in \omega\right\rangle \in \omega^{\omega}$ is such that $n_{k} \geq 2$ and $n_{k} \leq n_{k+1}$, for all $k \in \omega$.
- Define $T(s)=\prod_{k \in \omega} n_{k}$. Let D be a dense subset of $T(s)$ that intersects each level exactly once.
- For $\left(b_{0}, b_{1}\right) \in[T(s)]$, define $\left(b_{0}, b_{1}\right) \in R_{0}(D)$ iff there is a $d \in D$ and an $x \in \omega^{\omega}$, so that either:

$$
\begin{aligned}
& b_{0}=d^{\curvearrowright}\langle i\rangle \curvearrowright x \text { and } b_{1}=d^{\complement}\langle i+1\rangle \curvearrowright x, \text { or } \\
& b_{0}=d^{\curvearrowright}\left\langle n_{|d|}-1\right\rangle \curvearrowright x \text { and } b_{1}=d^{\curvearrowright}\langle 0\rangle \frown x .
\end{aligned}
$$

- Let $\mathcal{G}_{0}(s, D)=\left\langle[T(s)], R_{0}(D)\right\rangle$.

Definition

$\mathcal{M}=\left\{M \subseteq 2^{\omega}: M\right.$ is Borel and meager $\}$. $\operatorname{cov}(\mathcal{M})=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq \mathcal{M} \wedge 2^{\omega}=\bigcup \mathcal{F}\right\}$.

Lemma (R. and Xiao [7])
$\mathcal{H}_{B}\left(\mathcal{G}_{0}(s, D)\right) \geq \operatorname{cov}(\mathcal{M})$.

Proof.

Every Borel non-meager set must contain a loop.

Theorem (R. and Xiao [7])

Suppose X is Polish $R \subseteq X \times X$ is Borel and disjoint from the diagonal. Then either:
(1) $\mathcal{H}_{B}(\langle X, R\rangle) \leq \aleph_{0}$, or
(2) there exist s, D, and a continuous homomorphism

$$
f: \mathcal{G}_{0}(s, D) \rightarrow\langle X, R\rangle
$$

Definition

For s and D, define $\mathcal{P}_{0}(s, D)=\left\langle[T(s)] \times 2, \leq_{0}\right\rangle$, where $\left(b_{0}, i\right) \leq_{0}\left(b_{1}, j\right)$ iff $i=0, j=1$, and $\left(b_{0}, b_{1}\right) \in R_{0}(D)$.

- Note that $\{((b, 1),(b, 0)): b \in[T(s)]\} \subseteq \mathcal{A}_{\mathcal{P}_{0}(s, D)}$.
- Further, $((b, 1),(b, 0)) \mathcal{R}_{\mathcal{P}_{0}(s, D)}\left(\left(b^{\prime}, 1\right),\left(b^{\prime}, 0\right)\right)$ iff $(b, 0) \leq_{0}\left(b^{\prime}, 1\right)$ iff $b R_{0}(D) b^{\prime}$.
- Therefore, there is a copy of $\mathcal{G}_{0}(s, D)$ inside the structure $\left\langle\mathcal{A}_{\mathcal{P}_{0}(s, D)}, \mathcal{R}_{\mathcal{P}_{0}(s, D)}\right\rangle$.
- Hence $\operatorname{odim}_{B}\left(\mathcal{P}_{0}(s, D)\right) \geq \operatorname{cov}(\mathcal{M})$.

Theorem (R. and Xiao [7])

For any Borel quasi order $\mathcal{P}=\langle P, \leq\rangle$ exactly one of the following holds:
(c) $\operatorname{odim}_{B}(\mathcal{P}) \leq \aleph_{0}$.
(2) There exist s, D, and a continuous $f:[T(s)] \times 2 \rightarrow P$ such that:
(2a) $\left(b_{0}, 0\right) \leq_{0}\left(b_{1}, 1\right) \Longrightarrow f\left(\left(b_{0}, 0\right)\right) \leq f\left(\left(b_{1}, 1\right)\right)$ and
(2b) for every $b \in[T(s)], f((b, 0))$ and $f((b, 1))$ are \leq-incomparable.

Corollary (R. and Xiao [7])

For every Borel quasi $\operatorname{order} \mathcal{P}, \operatorname{odim}_{B}(\mathcal{P})$ is either countable or at least $\operatorname{cov}(\mathcal{M})$.

Theorem (R. and Xiao [7])

For any Borel quasi order $\mathcal{P}=\langle P, \leq\rangle$ exactly one of the following holds:
(c) $\operatorname{odim}_{B}(\mathcal{P}) \leq \aleph_{0}$.
(2) There exist s, D, and a continuous $f:[T(s)] \times 2 \rightarrow P$ such that:
(2a) $\left(b_{0}, 0\right) \leq_{0}\left(b_{1}, 1\right) \Longrightarrow f\left(\left(b_{0}, 0\right)\right) \leq f\left(\left(b_{1}, 1\right)\right)$ and
(2b) for every $b \in[T(s)], f((b, 0))$ and $f((b, 1))$ are \leq-incomparable.

Corollary (R. and Xiao [7])

For every Borel quasi $\operatorname{order} \mathcal{P}, \operatorname{odim}_{B}(\mathcal{P})$ is either countable or at least $\operatorname{cov}(\mathcal{M})$.

Theorem (R. and Xiao [7])

For every Borel quasi $\operatorname{order} \mathcal{P}$, if $\operatorname{odim}_{B}(\mathcal{P})$ is countable, then \mathcal{P} has a Borel linearization.

The Turing degrees

- Combining these results with my earlier results with Higuchi, Lempp, and Stephan, we get that $\operatorname{odim}_{B}(\mathcal{D})$ is usually strictly bigger than $\operatorname{odim}(\mathcal{D})$.
- For example, if $\operatorname{cf}(\kappa)>\omega, 2^{\aleph_{0}}=\kappa^{+}$, and MA_{κ} (countable) holds. Then $\operatorname{odim}(\mathcal{D}) \leq \kappa<\kappa^{+}=\operatorname{cov}(\mathcal{M})=\operatorname{odim}_{B}(\mathcal{D})$.
- In particular, if PFA holds, then $\operatorname{odim}(\mathcal{D})=\boldsymbol{\aleph}_{1}<\boldsymbol{\aleph}_{2}=\operatorname{odim}_{B}(\mathcal{D})=2^{\boldsymbol{\aleph}_{0}}$.

Theorem (R. and Xiao [7])
 If \mathcal{P} is a locally finite Borel quasi order, then $\operatorname{odim}_{B}(\mathcal{P}) \leq \boldsymbol{\aleph}_{0}$.

Theorem (R. and Xiao [7])

If \mathcal{P} is a locally finite Borel quasi order, then $\operatorname{odim}_{B}(\mathcal{P}) \leq \aleph_{0}$.

- Our dichotomy does not provide any natural upper bound on $\operatorname{odim}_{B}(\mathcal{D})$ other than $2^{s_{0}}$.
- So it is natural to wonder weather $\operatorname{odim}_{B}(\mathcal{D})=2^{\aleph_{0}}$.

Theorem (R. and Xiao [7])

There is a c.c.c. forcing which forces that for every locally countable Borel quasi $\operatorname{order} \mathcal{P}, \operatorname{odim}_{B}(\mathcal{P})=\boldsymbol{\aleph}_{1}$.

- So starting with a ground model \mathbf{V} where $2^{\aleph_{0}}=\boldsymbol{N}_{17}$, there is a cardinal preserving forcing extension in which $2^{\aleph_{0}}=\aleph_{17}$ and for every locally countable Borel quasi order $\mathcal{P}, \operatorname{odim}_{B}(\mathcal{P})=\boldsymbol{\aleph}_{1}$.
- Each $\mathcal{P}_{0}(s, D)$ is locally countable. So in this model, $\mathcal{H}_{B}\left(\mathcal{G}_{0}(s, D)\right)=\aleph_{1}<2^{\aleph_{0}}$, for every s and D.

Bibliography I

B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.
(in L. Harrington, D. Marker, and S. Shelah, Borel orderings, Trans. Amer. Math. Soc. 310 (1988), no. 1, 293-302.
目 K. Higuchi, S. Lempp, D. Raghavan, and F. Stephan, On the order dimension of locally countable partial orderings, Proc. Amer. Math. Soc. 148 (2020), no. 7, 2823-2833.
目 V. Kanovei, When a partial Borel order is linearizable, Fund. Math. 155 (1998), no. 3, 301-309.
H. A. Kierstead and E. C. Milner, The dimension of the finite subsets of κ, Order 13 (1996), no. 3, 227-231.

Bibliography II

A. Kumar and D. Raghavan, Separating families and order dimension of Turing degrees, Ann. Pure Appl. Logic 172 (2021), no. 5, Paper No. 102911, 19 pp.
D. Raghavan and M. Xiao, Borel order dimension, preprint (2023).

