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A Global View of Reverse Mathematics

Introduction

While I was preparing a public lecture on reverse mathematics for one of
the Tarski Lectures that I gave last month, I reached the discussion of the
disarray now present in the zoo of reverse mathematics.

The situation
seemed similar to that for the Turing degrees, DT , when that subject
seemed to be dominated by a proliferation of more and more complex
constructions and less and less clarity about any overall view of the
structure of the degrees.

There was then a shift in focus from individual results about the order in
DT to an interest in, and then emphasis on, more global questions about
the its structure. Other degrees of computational complexity were then
similarly analyzed.

So it occurred to me that perhaps one should view the reverse
mathematics zoo and it ordering as we do for degree structures and see
what one could say about it.
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A Global View of Reverse Mathematics

Move to a Global View: Relative Provability

The elements of the underlying structure were to be theories of reverse
mathematics, i.e. sets S of sentences in the language of second order
arithmetic containing RCA0. The ordering S ≤P T was to be given by
T ` S , i.e. (∀ϕ ∈ S)(T ` ϕ).

As usual our basic structure was to consist of the equivalence classes s of
this ordering, i.e. the degrees of provability s = {T |T ` S & S ` T} with
the induced ordering. The basic structure DP would then be these classes
with the induced provability ordering.

Much to my surprise there was quite a lot that could be said using mostly
only basic notions and techniques as would be found in many first courses
in logic: the deduction, compactness and completeness theorems;
variations on incompleteness theorems and essential undecidability; as well
as a couple of other classical techniques such as quantifier elimination and
back and forth constructions. At times, it is useful to use the fact that
RCA0 is Π02-conservative over Σ01-PA to transfer known results about
theories of first order arithmetic to RCA0.]
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A Global View of Reverse Mathematics

Similar Structures

I asked some proof theorists who did not know of such studies and
suggested only a similar ordering, S ≤I T (S is interpretable in T )
introduced by Tarski to study the ordering of consistency strength for
arbitrary theories. The abstract structure of degrees of interpretability of
extensions of PA (or weaker theories) has been studied by Per Lindstrom
and others. In this setting, S ≤I T ⇔ T ` ϕ for every Π01 sentence ϕ
provable in S .

Mingzhong Cai and others have studied the ordering of provable totality of
partial recursive functions (equivalently of Π02 sentences).

Neither of these dealt with the provability of arbitrary sets of sentences of
arithmetic as a degree structure on theories.
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A Global View of Reverse Mathematics

Tarski’s Calculus of Systems

This is still work in progress but after proving most of the results I will
mention, I learned from a JSL paper by Blok and Pigozzi (1988) on
Tarski’s work on general metamathematics that even the basic study of
the ordering of theories under provability in quite general settings was also
initiated by Tarski under the name of the calculus of systems in a number
of papers in the 1930s.

Having only very recently gotten some English translations, my knowledge
of the contents of these and related papers by Tarski is still mainly second
hand. In addition to the paper by Blok and Pigozzi, relevant information is
in ones from the same series by Monk (algebraic logic) and Vaught (model
theory). So almost certainly he did more than I now know. But his
viewpoint was different and did not address all the same questions. He
certainly proved many of the theorems we present.
In any case, the analysis of this structure for reverse mathematics paints a
picture of DP quite different from that now known for the Turing degrees
DT , the r.e. degrees RT and many other degree structures.

Richard A. Shore (Cornell University) 04/24/2023 5 / 20



A Global View of Reverse Mathematics

Tarski’s Calculus of Systems

This is still work in progress but after proving most of the results I will
mention, I learned from a JSL paper by Blok and Pigozzi (1988) on
Tarski’s work on general metamathematics that even the basic study of
the ordering of theories under provability in quite general settings was also
initiated by Tarski under the name of the calculus of systems in a number
of papers in the 1930s.

Having only very recently gotten some English translations, my knowledge
of the contents of these and related papers by Tarski is still mainly second
hand. In addition to the paper by Blok and Pigozzi, relevant information is
in ones from the same series by Monk (algebraic logic) and Vaught (model
theory). So almost certainly he did more than I now know. But his
viewpoint was different and did not address all the same questions. He
certainly proved many of the theorems we present.

In any case, the analysis of this structure for reverse mathematics paints a
picture of DP quite different from that now known for the Turing degrees
DT , the r.e. degrees RT and many other degree structures.

Richard A. Shore (Cornell University) 04/24/2023 5 / 20



A Global View of Reverse Mathematics

Tarski’s Calculus of Systems

This is still work in progress but after proving most of the results I will
mention, I learned from a JSL paper by Blok and Pigozzi (1988) on
Tarski’s work on general metamathematics that even the basic study of
the ordering of theories under provability in quite general settings was also
initiated by Tarski under the name of the calculus of systems in a number
of papers in the 1930s.

Having only very recently gotten some English translations, my knowledge
of the contents of these and related papers by Tarski is still mainly second
hand. In addition to the paper by Blok and Pigozzi, relevant information is
in ones from the same series by Monk (algebraic logic) and Vaught (model
theory). So almost certainly he did more than I now know. But his
viewpoint was different and did not address all the same questions. He
certainly proved many of the theorems we present.
In any case, the analysis of this structure for reverse mathematics paints a
picture of DP quite different from that now known for the Turing degrees
DT , the r.e. degrees RT and many other degree structures.
Richard A. Shore (Cornell University) 04/24/2023 5 / 20



A Global View of Reverse Mathematics

Degree Structures for Relative Provability of Theories

Along with DP we want to study two natural substructures: FP consists of
the degrees of theories finitely axiomatizable over RCA0. RP consists of
the degrees of theories recursively (or equivalently, recursively enumerably)
axiomatizable over RCA0.

We note that RCA0 itself can be seen to be finitely axiomatizable in the
language of second order arithmetic once one shows that there is a
universal Σ01 formula. Still, this point is irrelevant to our analysis.

As we proceed, we contrast the results for ≤P with those for ≤T on DT
and RT .

DT is an upper semi-lattice with 0 of size 2ω. RT is a countable upper
semi-lattice with 0. Neither is a lattice, neither is distributive neither is
complete.
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A Global View of Reverse Mathematics

General Description of P-degree Structures

For DP we define join and infimum based on operations on theories. They
are well defined on the P-degrees and also work in RP and FP . The three
structures also all share the same least and greatest elements.

Definition

For S any one of our theories, we let S̄ = {ϕ|S ` ϕ}. We then define
operations ∨ and ∧ and S ∨ T = (S ∪ T ); S ∧ T = S ∩ T . We let 0 and
1, respectively, be the degrees of RCA0 and {ψ|ψ ∈ L} ≡P {ϕ,¬ϕ} for
any sentence ϕ of L.

Note that S ≤P T ⇔ S̄ ⊆ T̄ and so S ≡P T ⇔ S̄ = T̄ . Thus each degree
s has a canonical representative S which is closed under deductions.
Clearly ≤P on theories induces a partial order ≤P on DP for which 0 and
1 are the least and greatest elements while ∨ and ∧ induce join and inf
operations on DP . RP and FP both contain 0 and 1 and are closed under
∧ and ∨. As usual, at times we confuse degrees and their (canonical)
representatives.
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A Global View of Reverse Mathematics

Basic Structure of P-degrees

Theorem
DP is a complete distributive lattice of size 2ω with 0 and 1. RP and FP
are countable (incomplete) distributive lattices with 0 and 1.

Proof: Unravel the definitions and use predicate logic. For distributivity we
show that r ∨ (s ∧ t) = (r ∨ s) ∧ (r ∨ t) by applications of predicate logic,
For the more interesting containment direction say ϕ ∈ (R ∨ S) ∧ (R ∧T ).
So ∃ρ1, ρ2 ∈ R∃σ ∈ S∃τ ∈ T (ρ1&σ ` ϕ, ρ2&τ ` ϕ). Let ρ = ρ1&ρ2 ∈ R.
So ρ&σ ` ϕ and ρ&τ ` ϕ i.e. ρ&(σ or τ) ` ϕ. As
ρ&(σ or τ) ∈ R ∨ (S ∧ T ) so is ϕ as required.
Completeness is immediate as ∨si ≡P ∪Si and ∧si ≡P ∩Si .
For DP the infinitary join and infimum are equivalent to a join or infimum
of a countable subset by the compactness theorem and the countability of
L. For subsets of Rp or FP the infinitary operations inside DP may not
produce an element of RP or FP . If they do not, the set has no sup or inf
in RP or FP .
For the other direction for distributivity
ϕ ∈ R ∨ (S ∧ T )⇔ (∃ρ ∈ R, θ ∈ S ,T )(ρ&θ ` ϕ)⇒ ϕ ∈ R ∨ S and
ϕ ∈ R ∨ T ⇒ ϕ ∈ (R∨S) ∧ (R ∨ T ).
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Algebraic Information

A Boolean Algebra

Theorem: FP is an atomless Boolean algebra.

Clearly FP is isomorphic to the Boolean algebra of the equivalence classes
of single sentences ϕ under equiprovability over RCA0 with order given by
ϕ ≤ ψ ⇔ RCA0 ` ψ → ϕ and join and infimum given by ϕ&ψ and
ϕ or ψ. I knew this as the Lindenbaum Algebra of RCA0 but now know
that is should be the Lindenbaum-Tarski algebra or that the result should
be attributed just to Tarski.
Gödel’s theorems show that Fp is upward dense and so downward dense.
It is the atomless Boolean Algebra.
We give more information about density in RP and DP by investigating
the exceptions to density, i.e. the possible pairs of degrees s and t such
that t is a minimal cover of s, i.e. s < t and there is no r, s < r < t.

In DT every degree has continuum many minimal covers. Some degrees
such as all the r.e. degrees and all the 0(n) are not minimal covers. Every
degree above 0(ω) is a minimal cover. RT is dense so no minimal covers.

Richard A. Shore (Cornell University) 04/24/2023 9 / 20
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be attributed just to Tarski.
Gödel’s theorems show that Fp is upward dense and so downward dense.
It is the atomless Boolean Algebra.
We give more information about density in RP and DP by investigating
the exceptions to density, i.e. the possible pairs of degrees s and t such
that t is a minimal cover of s, i.e. s < t and there is no r, s < r < t.

In DT every degree has continuum many minimal covers. Some degrees
such as all the r.e. degrees and all the 0(n) are not minimal covers. Every
degree above 0(ω) is a minimal cover. RT is dense so no minimal covers.
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Algebraic Information

Minimal Covers: Some Facts

Theorem
In DP every s 6= 0 is a minimal cover. Indeed, for any ϕ ∈ S − RCA0 there
is an R such that R ∪ {ϕ} = S which is a minimal cover of R.

Theorem
In DP , 1 is a minimal cover of precisely each of the complete consistent
extensions T of RCA0. So the set of degrees of complete consistent
extensions of RCA0 is definable in DP . They are the coatoms of DP .

Theorem
Every complete T is a minimal cover over precisely those S such that
S = T ∩ T ′ for some complete T ′ 6= T.

Theorem
No ϕ ∈ FP has a minimal cover in DP , RP or FP .
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Algebraic Information

Complements

Not meaningful in DT as no 1. No pairs of complements in RT except for
{0,1}.

As usual S has T as a complement if S ∨ T ≡P 1 and S ∧ T ≡P 0. If S
has one it is unique.
We can characterize the complemented elements of DT and RT .

Theorem
S has a complement in DP iff it has one in RP (and they are then the
same element) iff it is finitely axiomatizable over RCA0, i.e. S ∈ FP .
(compactness)

Theorem
The class of degrees of theories finitely axiomatizable over RCA0 are
definable in DP and RP .
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Algebraic Information

Algebraic and Heyting Latices; Pseudocomplements

Definition
Let L be a lattice with 0. If a ∈ L then a∗ ∈ L is a pseudocomplement of
a if a ∧ a∗ = 0 and for any x ∈ L such that a ∧ x = 0, x ≤ a∗. If every
element of L has a pseudocomplement, L is pseudocomplemented. L is
relatively pseudocomplemented (a Heyting algebra) if for every a, b ∈ L
there is a d such that ∀x((a∧ x) ≤ b ⇔ x ≤ d). The compact elements of
L are those a such for any X ⊆ L with a ≤ ∨X there is a finite X̂ ⊆ X
such that a ≤ ∨X̂ . L is algebraic if every element is the join of the
compact elements below it.

Theorem
DP is a complete algebraic lattice and relatively pseudocomplemented (a
Heyting algebra). RP is an incomplete algebraic lattice. For each of them
the compact elements are those in FP and the pseudocomplement of S
relative to T in DP is ∨{{ϕ}|{ϕ} ∧ S ≤ T}.

Richard A. Shore (Cornell University) 04/24/2023 12 / 20



Algebraic Information

Algebraic and Heyting Latices; Pseudocomplements

Definition
Let L be a lattice with 0. If a ∈ L then a∗ ∈ L is a pseudocomplement of
a if a ∧ a∗ = 0 and for any x ∈ L such that a ∧ x = 0, x ≤ a∗. If every
element of L has a pseudocomplement, L is pseudocomplemented. L is
relatively pseudocomplemented (a Heyting algebra) if for every a, b ∈ L
there is a d such that ∀x((a∧ x) ≤ b ⇔ x ≤ d). The compact elements of
L are those a such for any X ⊆ L with a ≤ ∨X there is a finite X̂ ⊆ X
such that a ≤ ∨X̂ . L is algebraic if every element is the join of the
compact elements below it.

Theorem
DP is a complete algebraic lattice and relatively pseudocomplemented (a
Heyting algebra). RP is an incomplete algebraic lattice. For each of them
the compact elements are those in FP and the pseudocomplement of S
relative to T in DP is ∨{{ϕ}|{ϕ} ∧ S ≤ T}.

Richard A. Shore (Cornell University) 04/24/2023 12 / 20



Algebraic Information

An Overview of the Global Structure of the T-degrees

The (first order) theory of DT with ≤T is as complicated as possible — full
true second order arithmetic.

DT has no small generating sets but it does have an automorphism basis
of a single degree and at most countably many automorphism. We do not
know if there are any automorphisms other than the identity.
Many natural degrees are definable in DT as well as all suffi ciently large
ones which are definable in second order arithmetic.
Homogeneity generally fails: If a and b are degrees with a noticeable
difference between them (in terms of a few Turing jumps of each) then the
cones DaT (the T-degrees above a) and DbT are not isomorphic. No two
distinct cones are known to be isomorphic.
The theory of RT is recursively isomorphic to the true first order theory of
arithmetic. Several interesting classes of r.e. degrees are naturally
definable and many others have definitions. It is not known if RT has a
nontrivial automorphism or a definable degree.
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Algebraic Information

Theories of the P-degrees

Theorem
The (first order) theories of FP and DP with ≤P (and so with ∨, ∧, 0,
and 1) are decidable.

For FP this follows from Tarski’s proof of the decidability of theory of
Boolean algebras using quantifier elimination.
Given the definability in DP of the atomless Boolean algebra F , DP is
clearly biinterpretable with the monadic second order structure of the
atomless Boolean algebra with quantification over ideals (Tarski). Rabin
proved the decidability of this structure as a corollary of his celebrated
proof of the decidability of the monadic second order structure of two
successor functions that was based on his analysis of infinitary automata
on trees.
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Algebraic Information

Generating Sets, Automorphisms, Definability: P-Degrees

Theorem
FP generates both DP and RP under infinitary joins and so is an
automorphism basis for each of them. (All such joins exist in DP . For RP
we only need the ones which do exist there.)

Tarski’s back and forth argument for countable atomless Boolean algebras
can be embellished and applied to DP and FP .

Theorem
FP and DP have exactly 2ω many automorphisms. If s, t ∈ FP and neither
is 0 or 1, there is an automorphism of FP and so of DP taking s to t. If s
and t are coatoms, there is an automorphism of DP taking s to t.

Corollary
There are no definable P-degrees other than 0 and 1.
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Algebraic Information

Definability

With some extra effort in building automorphisms one can determine all
countable definable subsets of DP .

Theorem
The countable subsets of DP which are fixed under all automorphisms are
∅, {0}, {1}, {0.1},FP ,FP − {0},FP − {1} and FP − {0, 1} which are also
then the only countable definable subsets of DP .

Assume S is a countable subset of DP not on the list above. We want to
construct an automorphism of FP which extends to one of DP that does
not fix S. Wlog we may assume that 0, 1 ∈ S. If S splits FP − {0, 1} then
choose ϕ,ψ ∈ FP with ϕ ∈ S and ψ /∈ S. Any automorphism of FP
ϕ 7→ ψ is as required.
Otherwise, FP ( S or FP ∩ S = {0, 1}. In either case we may choose an
S ∈ S with S /∈ FP . List the Si ∈ S and build an automorphism of FP in
stages n that takes one finite Boolean subalgebra ϕi to another ψi , i < kn.
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Algebraic Information

Definability

In addition to the usual moves to make the map an automorphism of FP ,
at some stages we want to extend the finite automorphism constructed so
far to guarantee that at the end its extension to DP does not take S to Sm
where m is least such that we have not yet guaranteed that the
automorphism does not take S to Sm .

The conditions for extending the automorphism require that the new item
θ chosen on the ϕ side is matched with something γ satisfying the same
relations on the ψ side relative to the already defined map. The fact that
S /∈ FP means that one can fix the constraints satisfied by S with respect
to the ϕi without fixing S . One then can rule out any Sm not satisfying
the same constraints with respect to the ψi . Moreover, one can rule out
any Sm ∈ FP . One can then use the algebraic structure to find a γ /∈ Sm
satisfying the constraints with respect to the ψi that are the same as ones
satisfied by θ with respect to the ϕi . One can then extend the
automorphism to the next pair of finite Boolean algebras so that θ is sent
to γ.
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Homogeneity

Thanks to Leo Harrington for a correction to an earlier version of the
following.

Theorem
The cones DsP for s < 1 correspond to the countable Boolean algebras
with the set of their ideals (identify principal ideals with their generator).
If S ∨ ϕ is not a complete theory for any ϕ, then the atomless Boolean
algebra FP ∼= F sP , the degrees of theories finitely axiomatizable over S. So
DsP is the the closure of F sP under infinite joins and DsP ∼= DP .

Thus strengthening the base theory, RCA0, to any with no complete finite
extensions gives the same structures for FP and DP . These include any
recursively axiomatized extension of RCA0. Thus for any such base theory
S , DsP ∼= DP and so the zoo over S is identical to the one for RCA0.
If we instead look at weaker theories of second order arithmetic, our
analysis works as long as it is strong enough to be subject to the same
incompleteness phenomena as RCA0.
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Algebraic Information

Questions

RP : The most interesting class of questions concern the structure of RP ,
the recursively axiomatizable theories, i.e. the ones with r.e.
representatives. In particular, what can one say about the automorphisms
of RP? We have almost no information. The problem, of course, is that
the back and forth constructions of automorphisms of FP are are not
recursive. So the question is if there is some way to preserve recursive
enumerability.

Orbits: The complete theories and the finitely axiomatized theories each
form an orbit (and a definable set). Are there other definable orbits? For
example, is it true that for every finite Boolean algebra B (or even for any
other than {0.1}) if DsP ∼= DtP ∼= B, then there is an automorphism of DP
taking s to t. Another way to phrase this question is if for every pair of
finite sequences 〈T0, . . . ,Tn−1〉 and 〈S0, . . . ,Sn−1〉 of distinct complete
theories is there an automorphism of DP taking Ti to Si for each i < n.
(We know this is true for n = 1.)
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Thanks.
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