
Saturated Embedding Tests Proof Mining ACF 0 Fields with Small Subgroups

From Saturated Embeddings to Explicit
Algorithms

Henry Towsner

University of Pennsylvania

May 20, 2023



Saturated Embedding Tests Proof Mining ACF 0 Fields with Small Subgroups

Definition
A theory T admits quantifier elimination if whenever ϕ(x⃗) is a
formula in the language of T , there is a quantifier-free formula
ψ(x⃗) such that T ⊢ ∀x⃗ ϕ(x⃗) ↔ ψ(x⃗).

Examples:
Dense linear orders without endpoints (i.e. the theory of
(Q, <)),
Random graph,
Torsion-free divisible abelian groups,
Algebraically closed fields,
etc.

A well-known non-example is Presburger arithmetic, the theory of
(N, <, 0, S,+): the formula ∃y y + y = x defines even numbers
and is not equivalent to a combination of equalities and
inequalities. (The expansion of Presburger arithmetic by new
predicates “divisible by n” for each fixed n does admit quantifier
elimination.)
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All these examples (and many others) are computable theories in
countable languages, and there are proofs of quantifier elimination
which are algorithmic: given a formula ϕ, they provide an explicit
algorithm which takes ϕ(x⃗) and produces the formula ψ(x⃗).

Many modern proofs of quantifier-elimination in model theory,
however, do not give an explicit algorithm. They relay on saturated
embedding tests: theorems that derive quantifier elimination from
facts about embeddings into saturated models.
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Theorem (Proposition 4.3.28 of Marker)
T has quantifier elimination if and only if whenever M ⊨ T,
A ⊆ M, N ⊨ T is |M|+-saturated, and f : A → N is a
homomorphism, f extends to an embedding of M into N .
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Theorem
Let T be a theory. Suppose that whenever M and N are models
of T , N is ω-saturated, A ⊆ M is finite, f : A → N is a
homomorphism, and a ∈ |M| \ A, there is a homomorphism
g : A ∪ {a} → N extending f .
Then T has quantifier elimination.

Proof.
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Let T be a theory. Suppose that whenever M and N are models
of T , N is ω-saturated, A ⊆ M is finite, f : A → N is a
homomorphism, and a ∈ |M| \ A, there is a homomorphism
g : A ∪ {a} → N extending f .
Then T has quantifier elimination.

Proof.
To show quantifier elimination, it suffices to show that whenever
ϕ(x , y⃗) is a a quantifier-free formula with the displayed free
variables, there is a quantifier-free formula ψ(y⃗) so that
T ⊢ ψ(y⃗) ↔ ∃x ϕ(x , y⃗).
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Theorem
Let T be a theory. Suppose that whenever M and N are models
of T , N is ω-saturated, A ⊆ M is finite, f : A → N is a
homomorphism, and a ∈ |M| \ A, there is a homomorphism
g : A ∪ {a} → N extending f .
Then T has quantifier elimination.

Proof.
So let ϕ(x , y⃗) be given. We work in an extension of the language
of T with some fresh constant symbols for d⃗ . If T ∪ {∀x ¬ϕ(x , d⃗)}
is inconsistent then ∀x ¬ϕ(x , d⃗) is equivalent to ⊥.

Otherwise, T ∪ {∀x ¬ϕ(x , d⃗)} is consistent, so there let N be an
ω-saturated model.



Saturated Embedding Tests Proof Mining ACF 0 Fields with Small Subgroups

Theorem
Let T be a theory. Suppose that whenever M and N are models
of T , N is ω-saturated, A ⊆ M is finite, f : A → N is a
homomorphism, and a ∈ |M| \ A, there is a homomorphism
g : A ∪ {a} → N extending f .
Then T has quantifier elimination.

Proof.
Otherwise, let Σ be the set of quantifier-free sentences true in N .

Our goal is to show that Σ implies ∀x ¬ϕ(x , d⃗). Then, by
compactness, there will be some finite subset of Σ which is
equivalent to ∀x ¬ϕ(x , d⃗).
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Theorem
Let T be a theory. Suppose that whenever M and N are models
of T , N is ω-saturated, A ⊆ M is finite, f : A → N is a
homomorphism, and a ∈ |M| \ A, there is a homomorphism
g : A ∪ {a} → N extending f .
Then T has quantifier elimination.

Proof.
N is an ω-saturated model of T ∪ {∀x ¬ϕ(x , d⃗)}. Σ is the
quantifier-free sentences of N .

Suppose towards a contradiction that T ∪ Σ ∪ {∃x ϕ(x , d⃗)} is
consistent. Let M be a model of T ∪ Σ ∪ {∃x ϕ(x , d⃗)}.

Let A = d⃗ and f map the copy of d⃗ in M to the copy in N .
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Theorem
Let T be a theory. Suppose that whenever M and N are models
of T , N is ω-saturated, A ⊆ M is finite, f : A → N is a
homomorphism, and a ∈ |M| \ A, there is a homomorphism
g : A ∪ {a} → N extending f .
Then T has quantifier elimination.

Proof.
N is an ω-saturated model of T ∪ {∀x ¬ϕ(x , d⃗)}. Σ is the
quantifier-free sentences of N . M is a model of
T ∪ Σ ∪ {∃x ϕ(x , d⃗)}.

Pick a ∈ |M| so that M ⊨ ϕ(a, d⃗). The assumption gives us a
homomorphism g mapping d⃗M to d⃗N and a to some element g(a)
witnessing that N ⊨ ϕ(a, d⃗), contradicting the construction of N .
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Many quantifier elimination theorems have been proven using this
result (or various technical modifications) in suitable languages:

many theories extending algebraically closed fields:
differentially closed fields, “p-adically” closed fields,
algebraically closed valued fields, and so on.
the reals, or o-minimal structures more generally, augmented
by various predicates
The culminating result of Aschenbrenner–van den Dries–van
der Hoeven’s book Asymptotic Differential Algebra and Model
Theory of Transseries is a quantifier elimination result for a
certain theory of transseries using precisely the theorem above.

In some cases, algorithms were subsequently found, but in many
cases no algorithms are known.
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When T is a computable (or computably enumerable) theory, the
statement that T admits quantifier elimination can be encoded as
a Π0

2 statement in the language of arithmetic: it says that for every
(code for) a formula ϕ, there exists (a code for) a quantifier-free
formula ψ together with (a code for) a deduction from T showing
the equivalence.

General meta-theorems show that when we have a proof of a Π0
2

statement, it is generally possible to extract an algorithm from it.

These methods would apply straightforwardly if our proofs were,
say, given as formal deductions in Peano arithmetic. There has
been extensive work the methods of proof mining to proofs which,
at least superficially, go beyond arithmetic reasoning, like
arguments about analytic spaces or proofs which use ultraproducts
or nonstandard analysis.

But none of these methods directly apply to reasoning about
infinite models, especially uncountable ones.
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The solution is to replace reasoning about models with
computational reasoning. What is a computational notion we can
substitute for a model?

One answer is a computable model with universe N. This is a bit
too narrow: recall from the proof that a typical example of a
model for us is “a model of T ∪ Σ ∪ {∃x ϕ(a, d⃗)}, if this is
consistent”. There may be no computable model of this theory.

Instead, we will work with a function which attempts to enumerate
the facts about the model, but is permitted to be wrong for a
while, as long as it eventually gets it right.
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Definition
An approximation of a model of T is a function h such that

for each n, h(n) is a finite set of sentences in LN,
for every ϕ, either ϕ or ¬ϕ is in h(n) for all but finitely many
n,
every axiom σ of T is eventually in f (n),
if σ is eventually in h(n) and σ ⊢ τ then τ is eventually in
h(n).

Then we can take limn h(n) to be those σ which are eventually in
h(n), and limn h(n) will always be a complete (not necessarily
consistent) theory extending T . We say h is consistent if
⊥ ̸∈ limn h(n).
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For instance, we can construct a computable approximation to a
model of T ∪ Σ ∪ {∃x ϕ(a, d⃗)}:

let {ψ1, . . . , ψm, . . .} be a computable enumeration of
formulas,
h(n) will be a complete subset of
Sn = {ψ1, . . . , ψn,¬ψ1, . . . ,¬ψn} for all n,
we determine whether ψi ∈ h(n) with i < n by:

if ψi ∈ T or ¬ψi ∈ T , the corresponding formula is in h(n),
if there is a deduction with code ≤ n putting ψi or ¬ψi in Σ,
the corresponding formula is in h(n),
for those formulas not settled in this way, we place them in
h(n) in order unless there is a deduction with code ≤ n
showing that this would lead to an inconsistent set, in which
case we put the negation in h(n).
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How can we make sense of saturated models in this context?

A typical pattern is that when we try to push uncountable objects
down so we can deal with them computably, we end up with
“higher order” objects.

For instance, a set S is uncountable if there is no surjection
f : N → S. Sometimes the right analog is to work with functionals:
we functionals F and S so that S(F ) is a set and
F (S(F )) : N → S(F ), and S is uncountable if F (S(F )) is never
surjective.
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Our analog of embedding a model in a saturated model is to have
interrelated functions ρ and h, a finite set A and an a ̸∈ A where:

ρ and h are both approximations of models,
h has to agree with ρ about quantifier-free statements about
A,
ρ has to agree with h about quantifier-free statements about
A ∪ {a}.

The two functions are interrelated, and we can think of them as
competing: they’re trying to force the other to either be
inconsistent or non-convergent.



Saturated Embedding Tests Proof Mining ACF 0 Fields with Small Subgroups

Our analog of embedding a model in a saturated model is to have
interrelated functions ρ and h, a finite set A and an a ̸∈ A where:

ρ and h are both approximations of models,
h has to agree with ρ about quantifier-free statements about
A,
ρ has to agree with h about quantifier-free statements about
A ∪ {a}.

The two functions are interrelated, and we can think of them as
competing: they’re trying to force the other to either be
inconsistent or non-convergent.



Saturated Embedding Tests Proof Mining ACF 0 Fields with Small Subgroups

Theorem
Let T be a theory. Suppose that whenever we have h and ρ as
above, if ρ converges for all quantifier-free formulas about A, h
converges, and h is consistent, then ρ is consistent.

Then T has quantifier elimination.

Proof.
Let ρ the computable approximation of a saturated model of
T ∪ {∀x ¬ϕ(x , d⃗)} and h the computable approximation to a
model of T ∪ Σ ∪ {∃x ϕ(x , d⃗)} where Σ is the quantifier-free
statements about d⃗ .

As soon as h enumerates ϕ(a, d⃗), this formula gets copied into ρ,
leading to a contradiction. Since ρh is inconsistent, h is
inconsistent.
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So instead of working with saturated models, we can interpret
model theoretic arguments as proofs of:

Suppose that we have an embedding of computable ap-
proximations h into ρ (as described above), if h is consis-
tent then ρh is consistent.

This is a perfectly decent arithmetic statement of the kind we can
hope to proof mine.
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Theorem
Suppose M is an algebraically closed field of characteristic 0, N is
an ω-saturated algebraically closed field of characteristic 0, A ⊆ M
is finite, f : A → N is a local isomorphism, and b ∈ M. Then there
is a homomorphism g : A ∪ {b} → N extending f .

Proof.



Saturated Embedding Tests Proof Mining ACF 0 Fields with Small Subgroups

Theorem
Suppose M is an algebraically closed field of characteristic 0, N is
an ω-saturated algebraically closed field of characteristic 0, A ⊆ M
is finite, f : A → N is a local isomorphism, and b ∈ M. Then there
is a homomorphism g : A ∪ {b} → N extending f .

Proof.

If b is in the field generated by A then b =
∑

i qi ai∑
i q′

i a′
i

where the qi , q′
i

are in Q and the ai , a′
i are in A. Therefore we take

g(b) =
∑

i qi f (ai )∑
i q′

i f (a′
i )

.
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Theorem
Suppose M is an algebraically closed field of characteristic 0, N is
an ω-saturated algebraically closed field of characteristic 0, A ⊆ M
is finite, f : A → N is a local isomorphism, and b ∈ M. Then there
is a homomorphism g : A ∪ {b} → N extending f .

Proof.
If not, suppose there is a polynomial p(x) =

∑
i cix i where each ci

is a rational sum from A and p(b) = 0. We may choose p to have
minimal degree, and then take g(b) to be any root of

∑
i f (ci)x i .

(It requires some non-trivial field theory to establish that this is
really a valid choice.)
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Theorem
Suppose M is an algebraically closed field of characteristic 0, N is
an ω-saturated algebraically closed field of characteristic 0, A ⊆ M
is finite, f : A → N is a local isomorphism, and b ∈ M. Then there
is a homomorphism g : A ∪ {b} → N extending f .

Proof.
If not, b is transcendental over the field generated by A. Choose
g(b) to be any element transcendental over g(A).
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So suppose we have a quantifier-free statement ϕ(x , y⃗) and we
wish to find a quantifier-free equivalent for ∃x ϕ(x , y⃗).

We have an approximation h to a model of ACF0 ∪ Σ ∪ {ϕ(a, d⃗)}
which is trying to enumerate a consistent model. The model
theoretic arguments usually start with cases where the witness is
“close” to y⃗ and work towards cases where the witness is far away,
but when we’re trying to imagine how h behaves, it’s more natural
to work in the other direction.

Initially, we can imagine h trying to make a transcendental over d⃗ ;
this is easy, since we just say that each non-trivial polynomial
involving a is non-zero. The model theoretic argument must tell us
how to enumerate formulas into Σ which contradict this: that is,
we must discover that there are finitely many polynomials pi and a
quantifier-free formula ψ so that∧

i≤n
pi(a, d⃗) ̸= 0 → ϕ(a, d⃗) ↔ ψ(d⃗).
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This is typically what happens with proof mining. We start with a
case split between a Σ1 case and a Π1 case. In this case the Σ1
case is that there exists a polynomial p(a, d⃗) = 0, while the Π1
case is that there is no such polynomial.

To get effective information out, we need to replace this with a
split between the Σ1 case happening with a small witness versus
the Π1 case “almost” happening.

To finish the proof of quantifier elimination, we then consider have
to consider a disjunction of cases, one for each pi(a, d⃗) = 0. In this
case the model theory depends on some basic field theory which in
turn depends on a lot of calculations involving things like
polynomial division which show up in the quantifier elimination
algorithm.
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Van den Dries and Günaydin showed quantifier elimination-like
results for algebraically or real closed fields “small” distinguished
subgroups.

If K is a field of characteristic 0 and G ⊆ K× is a multiplicative
subgroup, G has the Mann property if each equation of the form

q1x1 + · · · + qnxn = 1

where the qi are rational has only finitely many non-degenerate
solutions in G . A solution g1, . . . , gn is degenerate if

∑
i∈I qigi = 0

for some non-empty set I.

Motivating examples are 2Z, 2Q, 2Z3Z as subsets of R.
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Let Γ be a dense subgroup of R>0 with the Mann property. Work
in the language of real closed fields together with:

a predicate U (intended to name the dense subgroup),
constant symbols for each element of Γ.

Theorem (Van den Dries–Günaydin)
Any formula ϕ(x⃗) in this language is equivalent (in the
corresponding extension of RCF) to a Boolean combination of
formula of the form

∃y⃗(U(y⃗) ∧ θ(y⃗) ∧ ψ(x⃗))

where:
θ is a formula where addition only appears in atomic formulas
of the form

∑
i ti =

∑
i t ′

i ,
all quantifiers in θ are restricted to U,
ψ is quantifier-free.
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Van den Dries and Günaydin prove quantifier elimination by a
similar saturated embedding type argument: they show that if we
have a finite partial homomorphism f : (M,U) → (N,V ) with N
ω-saturated and a ∈ M and U ≡ V and a ∈ M then the
homomorphism can be extended to include a.

As usual, the proof breaks into cases:
if a is in U,
if there is an elementary extension U ′ ≻ U so that a is in the
real closure of dom(f ) ∪ U ′,
if a is not in the real closure of any dom(f ) ∪ U ′.

Further, the proof actually depends on M itself being real closed.
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These complications in the model theoretic proof lead to
corresponding complications in the algorithm.

We start in the case where a is not in the real closure of any
dom(f ) ∪ U ′. This means that our model h keeps enumerating
sentences like ∀u⃗ U(u⃗) → p(a, d⃗ , u⃗) ̸= 0.

When we use the real
closure of M, we end up adding formulas depending on other
elements. This means we actually need to enumerate sentences
like ∀u⃗ U(u⃗) → ∀w q(d⃗ , u⃗,w) = 0 → p(a, d⃗ , u⃗,w) ̸= 0, and
similarly with sequences w1, . . . ,wn.

Evenutually the model theory tells us how to find a quantifier-free
equivalent for ϕ under these assumptions. That is, we get an
algorithm to find formulas so that

∀u⃗, w⃗ U(u⃗)∧η(d⃗ , u⃗, w⃗) → ∃a(ϕ(a, d⃗)∧
∧
i

pi(a, d⃗ , u⃗, w⃗) ̸= 0) ↔ ψ(x⃗ , u⃗, w⃗)

where η says that each element of w⃗ belongs to the real closure of
d⃗ , u⃗.
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We start in the case where a is not in the real closure of any
dom(f ) ∪ U ′. This means that our model h keeps enumerating
sentences like ∀u⃗ U(u⃗) → p(a, d⃗ , u⃗) ̸= 0. When we use the real
closure of M, we end up adding formulas depending on other
elements. This means we actually need to enumerate sentences
like ∀u⃗ U(u⃗) → ∀w q(d⃗ , u⃗,w) = 0 → p(a, d⃗ , u⃗,w) ̸= 0, and
similarly with sequences w1, . . . ,wn.

Evenutually the model theory tells us how to find a quantifier-free
equivalent for ϕ under these assumptions. That is, we get an
algorithm to find formulas so that

∀u⃗, w⃗ U(u⃗)∧η(d⃗ , u⃗, w⃗) → ∃a(ϕ(a, d⃗)∧
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Saturated Embedding Tests Proof Mining ACF 0 Fields with Small Subgroups

We can reinterpret statements about uncountable sets as
statements about functionals.

We can use this, plus proof mining, to give a systematic
method for turning model theoretic quantifier elimination
proofs into algoirithms.
We can use this in practice to produce new algorithms:

Forthcoming: quantifier elimination algorithm for real and
algebraically closed fields with small subgroups.
Forthcoming, but more slowly: quantifier elimination algorithm
for valued D-fields.

The end.
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