Weihrauch degrees above arithmetical transfinite recursion

Keita Yokoyama¹ (Joint work with Yudai Suzuki)

Mathematical Institute, Tohoku University

20 May, 2023

¹This work is partially supported by JSPS KAKENHI grant numbers 19K03601 and 21KK0045.

Summary

I will talk about

- studies on the complexity of mathematical theorems/problems.
 - Reverse Mathematics: Which axiom is needed to prove?
 - Weihrauch Degrees: How difficult is it to construct solutions?
- Typically, consider the complexity of arithmetical statements above the level of \mathbf{ATR}_0 / hyperarithmeticity from the viewpoint of Weihrauch degrees.

1 Second-order arithmetic and Weihrauch degrees

2 Around arithmetical transfinite recursion

3 Above arithmetical transfinite recursion

Systems of second-order arithmetic

\mathcal{L}_2 -systems used in Reverse Math

$$\begin{aligned} \mathbf{RCA}_0 &= \mathbf{PA}^- + \mathbf{I}\Sigma_1^0 + \Delta_1^0 - \mathbf{CA}, \\ \mathbf{ACA}_0 &= \mathbf{RCA}_0 + \forall X \exists Y(Y = X' = \mathsf{Jump}(X)), \\ \mathbf{ATR}_0 &= \mathbf{RCA}_0 + \forall W, X(\mathsf{WO}(W) \to \exists Y \operatorname{Hier}(X, W, Y)) \end{aligned}$$

Here $\operatorname{Hier}(X, L, \langle Y_i \rangle_i)$ denotes the following formula: $Y_{\min L} = X \wedge (\forall i \neq \min L)(Y_i = \operatorname{\mathsf{Jump}}(\langle Y_j \rangle_{j < L^i})).$

Intuition of Hier

Y is the W-time iteration of Turing jump of X.

Y is a (pseudo-)jump hierarchy for (L,X) if $\operatorname{Hier}(X,L,Y)$ holds.

Around ATR 000000000

Weihrauch degrees

Definition

Weihrauch problem:

- a partial function $\mathsf{P} :\subseteq \mathcal{P}(\omega) \to \mathcal{P}(\mathcal{P}(\omega))$.
- $X \in \text{dom}(\mathsf{P})$ is called an input for X.
- For $X \in \text{dom}(\mathsf{P})$, Y is an output of $\mathsf{P}(X)$ if $Y \in \mathsf{P}(X)$.

P, Q : problems.

Definition (Weihrauch Reduction)

 P is Weihrauch reducible to Q (denoted by $\mathsf{P}\leq_W\mathsf{Q})$ if there are computable functionals Φ,Ψ such that

$$(\forall X \in \operatorname{dom} \mathsf{P})(\Phi(X) \downarrow \in \operatorname{dom} \mathsf{Q}),$$

 $(\forall X \in \operatorname{dom} \mathsf{P})(\forall Y)((\Phi(X),Y) \in Q) \to (X,\Psi(X,Y) \downarrow) \in \mathsf{P}).$

SOA and W-degrees	Around ATR	Above ATR
ooo●oo	000000000	0000000000

 $\mathsf{P} \leq_W \mathsf{Q}$ via Φ, Ψ shows the following condition:

Input for P X $\Psi(X \oplus Y)$ Output of $\mathsf{P}(X)$ \downarrow \downarrow \downarrow Input for Q $\Phi(X) \longrightarrow Y$ Output of $\mathsf{Q}(\Phi(X))$

Definition (Weihrauch degrees)

The degree structure of Weihrauch Problems induced by \leq_W is called Weihrauch hierarchy.

\mathcal{L}_2 -statements and Weihrauch problems

Let T be an \mathcal{L}_2 -statement of the form $\forall X(\theta(X) \to \exists Y \eta(X, Y))$.

e.g. if X is an ill-founded linear order on \mathbb{N} then Y is an infinite X-descending sequence.

 $\mathrm{Put}\ \mathsf{P}(\theta,\eta) = \{(X,Y): (\omega,\mathcal{P}(\omega)) \models \theta(X) \land \eta(X,Y)\}.$

We may identify T and a Weihrauch problem $\mathsf{P}(\theta, \eta)$.

\mathcal{L}_2 -statements and Weihrauch problems

Let T be an \mathcal{L}_2 -statement of the form $\forall X(\theta(X) \to \exists Y \eta(X, Y))$.

e.g. if X is an ill-founded linear order on \mathbb{N} then Y is an infinite X-descending sequence.

Put $\mathsf{P}(\theta,\eta) = \{(X,Y) : (\omega,\mathcal{P}(\omega)) \models \theta(X) \land \eta(X,Y)\}.$

We may identify T and a Weihrauch problem $\mathsf{P}(\theta, \eta)$.

We focus on Weihrauch problems described by \mathcal{L}_2 -formulas.

\mathcal{L}_2 -statements and Weihrauch problems

Let T be an \mathcal{L}_2 -statement of the form $\forall X(\theta(X) \to \exists Y \eta(X, Y))$.

e.g. if X is an ill-founded linear order on \mathbb{N} then Y is an infinite X-descending sequence.

Put
$$\mathsf{P}(\theta, \eta) = \{(X, Y) : (\omega, \mathcal{P}(\omega)) \models \theta(X) \land \eta(X, Y)\}.$$

We may identify T and a Weihrauch problem $\mathsf{P}(\theta, \eta)$.

We focus on Weihrauch problems described by \mathcal{L}_2 -formulas.

- $\mathsf{P} = \mathsf{P}(\theta, \eta)$ is said to be an arithmetical problem if both of θ and η are arithmetical.
- $\mathsf{P} = \mathsf{P}(\theta, \eta)$ is said to be a (Γ, Δ) -problem if $\theta \in \Gamma$ and $\eta \in \Delta$, where $\Gamma, \Delta \in \{\Sigma_1^1, \Pi_1^1 \dots\}$
- Conversely, if $\mathsf{P} = \mathsf{P}(\theta, \eta)$, we may write $\mathcal{L}_2(\mathsf{P})$ for the \mathcal{L}_2 -statement $\forall X(\theta(X) \to \exists Y \eta(X, Y))$.

Definition (ω -model reduction)

Let P,Q be problems.

- P is ω -model reducible to Q (P \leq_{ω} Q) if for any $S \subseteq \mathcal{P}(\omega)$, $(\omega, S) \models \mathbf{RCA}_0 + \mathcal{L}_2(\mathsf{Q})$ implies $(\omega, S) \models \mathcal{L}_2(\mathsf{P}).$
- P is arithmetically ω -model reducible to Q ($\mathsf{P} \leq_{\omega}^{a} \mathsf{Q}$) if for any $S \subseteq \mathcal{P}(\omega)$, $(\omega, S) \models \mathbf{ACA}_{0} + \mathcal{L}_{2}(\mathsf{Q})$ implies $(\omega, S) \models \mathcal{L}_{2}(\mathsf{P}).$
- We may easily see that $\leq_W \subseteq \leq_{\omega} \subseteq \leq_{\omega}^a$.
- In other words, the study of the Weihrauch degrees is a refinement of the study of ω -models of second-order arithmetic.

Second-order arithmetic and Weihrauch degrees

2 Around arithmetical transfinite recursion

3 Above arithmetical transfinite recursion

Definition (monotone operator)

- An operator $\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is said to be *monotone* if $X \subseteq Y \Rightarrow \Gamma(X) \subseteq \Gamma(Y)$.
- $\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is said to be *arithmetical* if there is an arithmetical formula $\varphi(n, X)$ possibly with parameters from $\mathcal{P}(\omega)$ such that $\Gamma_{\varphi}(X) = \{n : \varphi(n, X)\}.$

Theorem (FP, weak form of the Knaster-Tarski theorem)

FP: any monotone operator $\Gamma : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ has a fixed point.

Question:

What is the strength of FP for arithmetical operators?

Thoerem (Avigad, 1996)

Over \mathbf{RCA}_0 , TFAE.

- **1**ATR₀,
- **2** FP for arithmetical operators.
- **3** FP for positive Σ_2^0 -operators.

(An arithmetical formula $\varphi(n, X)$ is *positive* if there is no subformula of the form $t \notin X$ in the negation normal form.)

This equivalence is proved by pseudo-hierarchy method.

Question:

How about the situation in Weihrauch degrees?

Observation

- $\mathbf{RCA}_0 + \mathcal{L}_2(\mathsf{Jump}) = \mathbf{ACA}_0.$
- $\mathbf{RCA}_0 + \mathcal{L}_2(\mathsf{ATR}) = \mathbf{RCA}_0 + \mathcal{L}_2(\mathsf{ATR}_2) = \mathbf{ATR}_0.$
- $\mathcal{L}_2(\mathsf{C}_{\omega^{\omega}})$ is a trivial statement.

Theorem (Kihara/Marcone/Pauly, Goh)

 $\mathsf{Jump} <_W \mathsf{ATR} <_W < \mathsf{ATR}_2 <_W \mathsf{C}_{\omega^\omega} .$

* ATR may be considered as the truth in (ω, HYP^X) -models. * $C_{\omega^{\omega}}$ may be considered as the truth in β -models.

Theorem (folklore?)

- If P is $(\Sigma^1_{\infty}, \Sigma^1_0)$, then $\mathsf{P} \leq_W \mathsf{C}_{\omega^{\omega}}$.
- 2 If P is (Π_1^1, Σ_0^1) , then $\mathsf{P} <_W \mathsf{C}_{\omega^{\omega}}$.
- **③** If P is $(Σ_0^1, Σ_0^1)$ and ATR ≤_W P, then ATR <_W P <_W C_{ω^ω}.

Output A fixed point of Γ_{φ} .

- $\mathcal{L}_2(\mathsf{FP}\,\Sigma_2^0)$ is provable from $\mathbf{ATR}_0 = \mathbf{RCA}_0 + \mathcal{L}_2(\mathsf{ATR}_2)$, but the proof cannot be converted to the reduction " $\mathsf{FP}\,\Sigma_2^0 \leq_W \mathsf{ATR}_2$ ".
- Indeed, the proof essentially uses the pseudo-hierarchy method.

Output A fixed point of Γ_{φ} .

- $\mathcal{L}_2(\mathsf{FP}\,\Sigma_2^0)$ is provable from $\mathbf{ATR}_0 = \mathbf{RCA}_0 + \mathcal{L}_2(\mathsf{ATR}_2)$, but the proof cannot be converted to the reduction " $\mathsf{FP}\,\Sigma_2^0 \leq_W \mathsf{ATR}_2$ ".
- Indeed, the proof essentially uses the pseudo-hierarchy method.

Theorem

- $\mathsf{ATR}_2 <_W \mathsf{ATR}_2 \times \mathsf{ATR}_2 \leq_W \mathsf{FP}\,\Sigma_2^0$,
- $\mathsf{FP} \Sigma_2^0$ is parallelizable, but ATR_2 is not.

Fact (\mathbf{ACA}_0)

There is no Σ_1^1 formula $\varphi(X)$ such that $\forall X(\varphi(X) \leftrightarrow X \text{ is a well-order.})$

Pseudo-Hierarchy Method for FP in ATR_0

Let $\varphi(n, X)$ be a formula and L is a well-order. Then there exists a sequence $\langle A_i \rangle_{i \in |L|}$ such that

• $A_i = \{n : \varphi(n, \bigcup_{j < L^i} A_j)\}.$

Thus there is an ill-founded linear order L and a sequence $\langle A_i \rangle_{i \in |L|}$ such that

- $\min_L \{ j \in |L| \mid j >_L i \}$ exists for any $i \in |L|$,
- $A_i = \{n : \varphi(n, \bigcup_{j <_L i} A_j)\},\$

• for any $i \in |L|$ and $x \in A_i$, $\min_L\{j \in |L| \mid x \in A_j\}$ exists.

If $\langle i_s | s \in \mathbb{N} \rangle$ is an infinite decreasing sequence of L, then $\bigcap_s A_{i_s}$ is a fixed point.

• Formulation of psuedo-hierarchy method in [PEA d'Auriac, 2019].

Strong enough but above $C_{\omega^{\omega}}$.

- Some weaker formulations of the psuedo-hierarchy method may be available but they are usually equivalent to $C_{\omega^{\omega}}$.
- In general, to apply the psuedo-hierarchy method in the setting of Weihrauch degrees, we need an ill-founded linear order L, its decreasing sequence and the witness for $\varphi(L)$.

Question:

How can we bound the psuedo-hierarchy method available within \mathbf{ATR}_0 in the context of Weihrauch degrees?

Second-order arithmetic and Weihrauch degrees

2 Around arithmetical transfinite recursion

3 Above arithmetical transfinite recursion

Definition

For a problem $\mathsf{P}(\theta, \eta)$, define $\mathsf{P}^{\mathrm{rfn}}$ as follows. Input Any set X, Output A tuple $(\langle M_i \rangle_{i \in \omega}, f, g, e)$ such that $\langle M_i \rangle_i$ is closed under \leq_T , $(\forall i, j)(M_{f(i)} = M'_i \land M_{g(i,j)} = M_i \oplus M_j),$ $M_e = X,$ $(\forall i)(\theta(M_i) \to \exists j\eta(M_i, M_j))$

- $\langle M_i \rangle_i$ is an ω -model of **ACA**₀.
- If $\theta \in \Sigma_1^1, \eta \in \Pi_1^1$ then $\langle M_i \rangle_i$ also satisfies P .

Theorem

Let $\mathsf{P}(\theta, \eta), \mathsf{Q}(\tilde{\theta}, \tilde{\eta})$ be problems.

- If $\eta \in \Sigma_0^1$ then $\mathsf{P} \leq_W \mathsf{P}^{\mathrm{rfn}}$.
- $2 If \theta, \eta \in \Sigma_0^1 then \mathsf{P} <_W \mathsf{P}^{rfn} <_W \mathsf{C}_{\omega^{\omega}}.$
- **3** If $\theta \in \Pi_1^1, \eta \in \Sigma_1^1, \widetilde{\theta}, \widetilde{\eta} \in \Sigma_0^1$ and P is provable from $\mathbf{Q} + \mathbf{ACA}_0 + \Sigma_{\infty}^1 \mathbf{IND}$, then $\mathsf{P}^{\mathrm{rfn}} \leq_W \mathsf{Q}^{\mathrm{rfn}}$.

Corollary

For any arithmetical problem $\mathsf{P}(\theta, \eta)$, if $\mathcal{L}_2(\mathsf{P})$ is provable from $\mathbf{ATR}_0 + \Sigma_{\infty}^1$ - \mathbf{IND} , then $\mathsf{P}(\theta, \eta) <_W \mathsf{P}^{\mathrm{rfn}} \leq_W \mathsf{ATR}_2^{\mathrm{rfn}}$.

Especially, $\mathsf{FP} \Sigma_2^0 <_W (\mathsf{FP} \Sigma_2^0)^{\mathrm{rfn}} \equiv_W \mathsf{ATR}_2^{\mathrm{rfn}}$.

For the separation of P and $\mathsf{P}^{\mathrm{rfn}},$ we can show a bit more.

Theorem (ω -model incompleteness, Friedman)

Let φ be an \mathcal{L}_2 sentence which is true in $(\omega, \mathcal{P}(\omega))$. Put $\mathbf{T} = \mathbf{ACA}_0 + \varphi$. Then there exists $S \subseteq \mathcal{P}(\omega)$ such that $(\omega, S) \models \mathbf{T} + \neg \exists$ countable coded ω -model of \mathbf{T} .

Note that adding ACA_0 is essential for the above theorem.

Corollary

If P is an arithmetical problem, then $\mathsf{P}^{\mathrm{rfn}} \not\leq^a_{\omega} \mathsf{P}$.

Question:

Are there any "natural" problems between $(ATR_2)^{rfn}$ and $C_{\omega^{\omega}}$?

There is a good hierarchy of problems between $\mathsf{ATR}_2^{\mathsf{rfn}}$ and $\mathsf{C}_{\omega^{\omega}}$.

Definition $(\Sigma_k^0 \mathsf{LPP})$

Input An ill-founded tree T and its path f.

Output A path g of T such that there is no $\Sigma_k^{T \oplus f \oplus g}$ -definable path h of T lexicographically smaller than g.

Originally, this was introduced in [Towsner, 2013] in the context of reverse mathematics.

- $ACA_0 + \Sigma_0^0 LPP$ implies ATR_0 .
- $\Pi_1^1 \mathbf{CA}_0$ implies $\Sigma_k^0 \mathsf{LPP}$, and the converse does not hold.

Around ATR 000000000

We let
$$(\mathsf{P})^{n+1 \operatorname{rfn}} = ((\mathsf{P})^{n \operatorname{rfn}})^{\operatorname{rfn}}$$
.

Theorem

- ATR $\leq_W \Sigma_0^0 LPP$.
- $\textbf{2} \ \mathsf{FP}\, \Sigma_2^0 \leq_W \Sigma_2^0 \mathsf{LPP}.$
- $\ \ \, {\rm ATR}_2 <_W ({\rm ATR}_2)^{\rm rfn} <_W \Sigma_3^0 {\rm LPP}.$
- $\label{eq:LPP} \textbf{0} \ \ \Sigma^0_n \ \mathsf{LPP} <_W \ (\Sigma^0_n \ \mathsf{LPP})^{n \operatorname{rfn}} <_W \Sigma^0_{n+3} \ \mathsf{LPP}.$

$$\ \, \mathbf{\Sigma}_n^0 \operatorname{LPP} <_W \mathsf{C}_{\omega^\omega}.$$

Moreover, for 3–5, the converse does not holds even \leq_{ω}^{a} .

Questions:

- Does $\max_{\leq W} \{ \mathsf{P} \in (\Sigma_0^1, \Sigma_0^1) \mid \mathbf{ATR}_0 \vdash \mathcal{L}_2(\mathsf{P}) \}$ exist? (Note that if 'sup' exists, then it has to be 'max'.)
- Can we improve the separation $(\Sigma_n^0 \mathsf{LPP})^{\mathrm{rfn}} <_W \Sigma_{n+3}^0 \mathsf{LPP}?$
- Are there more "natural" arithmetical problems above/around Σ_n^0 LPP?

References

- PEA d'Auriac. Infinite Computations in Algorithmic Randomness and Reverse Mathematics. Thèse de doctorat Logique Mathématique, Université Paris-Est École Doctorale MSTIC. 2019.
- T. Kihara, A. Marcone and A. Pauly. Searching for an analogue of ATR₀ in the Weihrauch lattice. The Journal of Symbolic Logic 85.3 (2020): 1006–1043.
- Jun Le Goh. Some computability-theoretic reductions between principles around ATR_0 . arXiv preprint, arXiv:1905.06868 (2019).
- Jeremy Avigad. On the relationship between ATR_0 and $\widehat{ID}_{<\omega}$. The Journal of Symbolic Logic 61.3 (1996): 768-779.
- Henry Towsner. Partial impredicativity in reverse mathematics. The Journal of Symbolic Logic 78.2 (2013): 459–488.
- Y. Suzuki and K. Yokoyama. Searching problems above arithmetical transfinite recursion. arXiv preprint, arXiv:2305.07321 (2023).