Weihrauch degrees above arithmetical transfinite recursion

Keita Yokoyama ${ }^{1}$
(Joint work with Yudai Suzuki)
Mathematical Institute, Tohoku University

20 May, 2023
${ }^{1}$ This work is partially supported by JSPS KAKENHI grant numbers 19 K 03601 and 21 KK 0045 .

Summary

I will talk about

- studies on the complexity of mathematical theorems/problems.
- Reverse Mathematics: Which axiom is needed to prove?
- Weihrauch Degrees: How difficult is it to construct solutions?
- Typically, consider the complexity of arithmetical statements above the level of $\mathbf{A T R}_{0} /$ hyperarithmeticity from the viewpoint of Weihrauch degrees.
(1) Second-order arithmetic and Weihrauch degrees
(2) Around arithmetical transfinite recursion
(3) Above arithmetical transfinite recursion

Systems of second-order arithmetic

\mathcal{L}_{2}-systems used in Reverse Math

$\mathbf{R C A}_{0}=\mathbf{P A}^{-}+\mathbf{I} \Sigma_{1}^{0}+\Delta_{1}^{0}-\mathbf{C A}$,
$\mathbf{A C A}_{0}=\mathbf{R C A}_{0}+\forall X \exists Y\left(Y=X^{\prime}=\operatorname{Jump}(X)\right)$,
$\mathbf{A T R}_{0}=\mathbf{R C A}_{0}+\forall W, X(\mathrm{WO}(W) \rightarrow \exists Y \operatorname{Hier}(X, W, Y))$.
Here $\operatorname{Hier}\left(X, L,\left\langle Y_{i}\right\rangle_{i}\right)$ denotes the following formula:

$$
Y_{\min L}=X \wedge(\forall i \neq \min L)\left(Y_{i}=\operatorname{Jump}\left(\left\langle Y_{j}\right\rangle_{j<_{L} i}\right)\right)
$$

Intuition of Hier

Y is the W-time iteration of Turing jump of X.
Y is a (pseudo-)jump hierarchy for (L, X) if $\operatorname{Hier}(X, L, Y)$ holds.

Weihrauch degrees

Definition

Weihrauch problem:
a partial function $\mathrm{P}: \subseteq \mathcal{P}(\omega) \rightarrow \mathcal{P}(\mathcal{P}(\omega))$.

- $X \in \operatorname{dom}(\mathrm{P})$ is called an input for X.
- For $X \in \operatorname{dom}(\mathrm{P}), Y$ is an output of $\mathrm{P}(X)$ if $Y \in \mathrm{P}(X)$.
P, Q : problems.

Definition (Weihrauch Reduction)

P is Weihrauch reducible to $\mathrm{Q}\left(\right.$ denoted by $\left.\mathrm{P} \leq_{W} \mathrm{Q}\right)$ if there are computable functionals Φ, Ψ such that
$(\forall X \in \operatorname{dom} \mathrm{P})(\Phi(X) \downarrow \in \operatorname{dom} \mathrm{Q})$,
$(\forall X \in \operatorname{dom} \mathrm{P})(\forall Y)((\Phi(X), Y) \in Q) \rightarrow(X, \Psi(X, Y) \downarrow) \in \mathrm{P})$.
$\mathrm{P} \leq_{W} \mathrm{Q}$ via Φ, Ψ shows the following condition:

Definition (Weihrauch degrees)

The degree structure of Weihrauch Problems induced by \leq_{W} is called Weihrauch hierarchy.

\mathcal{L}_{2}-statements and Weihrauch problems

Let T be an \mathcal{L}_{2}-statement of the form $\forall X(\theta(X) \rightarrow \exists Y \eta(X, Y))$. e.g. if X is an ill-founded linear order on \mathbb{N} then Y is an infinite X-descending sequence.
Put $\mathrm{P}(\theta, \eta)=\{(X, Y):(\omega, \mathcal{P}(\omega)) \models \theta(X) \wedge \eta(X, Y)\}$. We may identify T and a Weihrauch problem $\mathrm{P}(\theta, \eta)$.

\mathcal{L}_{2}-statements and Weihrauch problems

Let T be an \mathcal{L}_{2}-statement of the form $\forall X(\theta(X) \rightarrow \exists Y \eta(X, Y))$. e.g. if X is an ill-founded linear order on \mathbb{N} then Y is an infinite X-descending sequence.
Put $\mathrm{P}(\theta, \eta)=\{(X, Y):(\omega, \mathcal{P}(\omega)) \models \theta(X) \wedge \eta(X, Y)\}$. We may identify T and a Weihrauch problem $\mathrm{P}(\theta, \eta)$.

We focus on Weihrauch problems described by \mathcal{L}_{2}-formulas.

\mathcal{L}_{2}-statements and Weihrauch problems

Let T be an \mathcal{L}_{2}-statement of the form $\forall X(\theta(X) \rightarrow \exists Y \eta(X, Y))$. e.g. if X is an ill-founded linear order on \mathbb{N} then Y is an infinite X-descending sequence.
Put $\mathrm{P}(\theta, \eta)=\{(X, Y):(\omega, \mathcal{P}(\omega)) \models \theta(X) \wedge \eta(X, Y)\}$. We may identify T and a Weihrauch problem $\mathrm{P}(\theta, \eta)$.

We focus on Weihrauch problems described by \mathcal{L}_{2}-formulas.

- $\mathrm{P}=\mathrm{P}(\theta, \eta)$ is said to be an arithmetical problem if both of θ and η are arithmetical.
- $\mathrm{P}=\mathrm{P}(\theta, \eta)$ is said to be a (Γ, Δ)-problem if $\theta \in \Gamma$ and $\eta \in \Delta$, where $\Gamma, \Delta \in\left\{\Sigma_{1}^{1}, \Pi_{1}^{1} \ldots\right\}$
- Conversely, if $\mathrm{P}=\mathrm{P}(\theta, \eta)$, we may write $\mathcal{L}_{2}(\mathrm{P})$ for the \mathcal{L}_{2}-statement $\forall X(\theta(X) \rightarrow \exists Y \eta(X, Y))$.

Definition (ω-model reduction)

Let P, Q be problems.

- P is ω-model reducible to $\mathrm{Q}\left(\mathrm{P} \leq_{\omega} \mathrm{Q}\right)$ if for any $S \subseteq \mathcal{P}(\omega),(\omega, S) \models \mathbf{R C A}_{0}+\mathcal{L}_{2}(\mathrm{Q})$ implies $(\omega, S) \models \mathcal{L}_{2}(\mathrm{P})$.
- P is arithmetically ω-model reducible to $\mathrm{Q}\left(\mathrm{P} \leq_{\omega}^{a} \mathrm{Q}\right)$ if for any $S \subseteq \mathcal{P}(\omega),(\omega, S) \models \mathbf{A C A}_{0}+\mathcal{L}_{2}(\mathrm{Q})$ implies $(\omega, S)=\mathcal{L}_{2}(\mathrm{P})$.
- We may easily see that $\leq_{W} \subseteq \leq_{\omega} \subseteq \leq_{\omega}^{a}$.
- In other words, the study of the Weihrauch degrees is a refinement of the study of ω-models of second-order arithmetic.
(1) Second-order arithmetic and Weihrauch degrees
(2) Around arithmetical transfinite recursion

3 Above arithmetical transfinite recursion

Definition (monotone operator)

- An operator $\Gamma: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is said to be monotone if $X \subseteq Y \Rightarrow \Gamma(X) \subseteq \Gamma(Y)$.
- $\Gamma: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is said to be arithmetical if there is an arithmetical formula $\varphi(n, X)$ possibly with parameters from $\mathcal{P}(\omega)$ such that $\Gamma_{\varphi}(X)=\{n: \varphi(n, X)\}$.

Theorem (FP, weak form of the Knaster-Tarski theorem)

FP: any monotone operator $\Gamma: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ has a fixed point.

Question:

What is the strength of FP for arithmetical operators?

Thoerem (Avigad, 1996)

Over $\mathbf{R C A}_{0}$, TFAE.

(1) $\mathbf{A T R}_{0}$,
(2) FP for arithmetical operators.
(3) FP for positive Σ_{2}^{0}-operators.
(An arithmetical formula $\varphi(n, X)$ is positive if there is no subformula of the form $t \notin X$ in the negation normal form.)

This equivalence is proved by pseudo-hierarchy method.

Question:

How about the situation in Weihrauch degrees?

Input Any set X
Output The Turing jump X^{\prime} of X.
ATR
Input A well-order W and a set A.
Output The jump hierarchy of (W, A).
ATR_{2}
Input A linear order L and a set A.
Output A jump hierarchy of (L, A) or a descending sequence of L.

Input An ill-founded tree $T \subseteq \omega^{<\omega}$.
Output A path of T.

Observation

- $\mathbf{R C A}_{0}+\mathcal{L}_{2}($ Jump $)=\mathbf{A C A}_{0}$.
- $\mathbf{R C A}_{0}+\mathcal{L}_{2}(\mathrm{ATR})=\mathbf{R C A}_{0}+\mathcal{L}_{2}\left(\mathrm{ATR}_{2}\right)=\mathbf{A T R}_{0}$.
- $\mathcal{L}_{2}\left(\mathrm{C}_{\omega^{\omega}}\right)$ is a trivial statement.

Theorem (Kihara/Marcone/Pauly, Goh)

$$
\text { Jump }<_{W} \operatorname{ATR}<_{W}<\mathrm{ATR}_{2}<_{W} \mathrm{C}_{\omega^{\omega}} .
$$

* ATR may be considered as the truth in $\left(\omega\right.$, HYP $\left.^{X}\right)$-models.
* $\mathrm{C}_{\omega^{\omega}}$ may be considered as the truth in β-models.

Theorem (folklore?)

(1) If P is $\left(\Sigma_{\infty}^{1}, \Sigma_{0}^{1}\right)$, then $\mathrm{P} \leq_{W} \mathrm{C}_{\omega^{\omega}}$.
(2) If P is $\left(\Pi_{1}^{1}, \Sigma_{0}^{1}\right)$, then $\mathrm{P}<{ }_{W} \mathrm{C}_{\omega^{\omega}}$.
(3) If P is $\left(\Sigma_{0}^{1}, \Sigma_{0}^{1}\right)$ and ATR $\leq_{W} \mathrm{P}$, then ATR $<_{W} \mathrm{P}<_{W} \mathrm{C}_{\omega^{\omega}}$.

Weihrauch Hierarchy
Reverse Mathematics

FP Σ_{2}^{0}
Input A positive Σ_{2}^{0}-formula (and its parameters) $\varphi(X)$.
Output A fixed point of Γ_{φ}.

FP Σ_{2}^{0}

> Input A positive Σ_{2}^{0}-formula (and its parameters) $\varphi(X)$.
> Output A fixed point of Γ_{φ}.

- $\mathcal{L}_{2}\left(\mathrm{FP} \Sigma_{2}^{0}\right)$ is provable from $\mathbf{A T R}_{0}=\mathbf{R C A}_{0}+\mathcal{L}_{2}\left(\mathrm{ATR}_{2}\right)$, but the proof cannot be converted to the reduction "FP $\Sigma_{2}^{0} \leq_{W}$ ATR $_{2}$ ".
- Indeed, the proof essentially uses the pseudo-hierarchy method.

FP Σ_{2}^{0}
Input A positive Σ_{2}^{0}-formula (and its parameters) $\varphi(X)$.
Output A fixed point of Γ_{φ}.

- $\mathcal{L}_{2}\left(\mathrm{FP} \Sigma_{2}^{0}\right)$ is provable from $\mathbf{A T R}_{0}=\mathbf{R C A}_{0}+\mathcal{L}_{2}\left(\mathrm{ATR}_{2}\right)$, but the proof cannot be converted to the reduction "FP $\Sigma_{2}^{0} \leq_{W}$ ATR $_{2}$ ".
- Indeed, the proof essentially uses the pseudo-hierarchy method.

Theorem

- $\mathrm{ATR}_{2}<_{W} \mathrm{ATR}_{2} \times \mathrm{ATR}_{2} \leq_{W} \mathrm{FP} \Sigma_{2}^{0}$,
- $\mathrm{FP} \Sigma_{2}^{0}$ is parallelizable, but ATR_{2} is not.

Fact ($\mathbf{A C A}_{0}$)

There is no Σ_{1}^{1} formula $\varphi(X)$ such that $\forall X(\varphi(X) \leftrightarrow X$ is a well-order.)

Pseudo-Hierarchy Method for FP in ATR

Let $\varphi(n, X)$ be a formula and L is a well-order. Then there exists a sequence $\left\langle A_{i}\right\rangle_{i \in|L|}$ such that

- $A_{i}=\left\{n: \varphi\left(n, \bigcup_{j<{ }_{L} i} A_{j}\right)\right\}$.

Thus there is an ill-founded linear order L and a sequence $\left\langle A_{i}\right\rangle_{i \in|L|}$ such that

- $\min _{L}\left\{j \in|L| \mid j>_{L} i\right\}$ exists for any $i \in|L|$,
- $A_{i}=\left\{n: \varphi\left(n, \bigcup_{j<{ }_{L} i} A_{j}\right)\right\}$,
- for any $i \in|L|$ and $x \in A_{i}, \min _{L}\left\{j \in|L| \mid x \in A_{j}\right\}$ exists.

If $\left\langle i_{s} \mid s \in \mathbb{N}\right\rangle$ is an infinite decreasing sequence of L, then $\bigcap_{s} A_{i_{s}}$ is a fixed point.

- Formulation of psuedo-hierarchy method in [PEA d'Auriac, 2019].

Strong enough but above $\mathrm{C}_{\omega}{ }^{\omega}$.

- Some weaker formulations of the psuedo-hierarchy method may be available but they are usually equivalent to $\mathrm{C}_{\omega^{\omega}}$.
- In general, to apply the psuedo-hierarchy method in the setting of Weihrauch degrees, we need an ill-founded linear order L, its decreasing sequence and the witness for $\varphi(L)$.

Question:

How can we bound the psuedo-hierarchy method available within $\mathbf{A T R}_{0}$ in the context of Weihrauch degrees?

(1) Second-order arithmetic and Weihrauch degrees

(2) Around arithmetical transfinite recursion
(3) Above arithmetical transfinite recursion

Definition

For a problem $\mathrm{P}(\theta, \eta)$, define $\mathrm{P}^{\mathrm{rfn}}$ as follows.
Input Any set X,
Output A tuple $\left(\left\langle M_{i}\right\rangle_{i \in \omega}, f, g, e\right)$ such that

$$
\begin{aligned}
& \left\langle M_{i}\right\rangle_{i} \text { is closed under } \leq_{T}, \\
& (\forall i, j)\left(M_{f(i)}=M_{i}^{\prime} \wedge M_{g(i, j)}=M_{i} \oplus M_{j}\right), \\
& M_{e}=X, \\
& (\forall i)\left(\theta\left(M_{i}\right) \rightarrow \exists j \eta\left(M_{i}, M_{j}\right)\right.
\end{aligned}
$$

- $\left\langle M_{i}\right\rangle_{i}$ is an ω-model of $\mathbf{A C A}_{0}$.
- If $\theta \in \Sigma_{1}^{1}, \eta \in \Pi_{1}^{1}$ then $\left\langle M_{i}\right\rangle_{i}$ also satisfies P .

Theorem

Let $\mathrm{P}(\theta, \eta), \mathrm{Q}(\widetilde{\theta}, \widetilde{\eta})$ be problems.
(1) If $\eta \in \Sigma_{0}^{1}$ then $\mathrm{P} \leq_{W} \mathrm{P}^{\mathrm{rfn}}$.
(2) If $\theta, \eta \in \Sigma_{0}^{1}$ then $\mathrm{P}<_{W} \mathrm{P}^{\mathrm{rfn}}<_{W} \mathrm{C}_{\omega^{\omega}}$.
(3) If $\theta \in \Pi_{1}^{1}, \eta \in \Sigma_{1}^{1}, \widetilde{\theta}, \widetilde{\eta} \in \Sigma_{0}^{1}$ and P is provable from $\mathrm{Q}+\mathbf{A C A}_{0}+\Sigma_{\infty}^{1}$ - IND, then $\mathrm{P}^{\mathrm{rfn}} \leq_{W} \mathrm{Q}^{\mathrm{rfn}}$.

Corollary

For any arithmetical problem $\mathrm{P}(\theta, \eta)$, if $\mathcal{L}_{2}(\mathrm{P})$ is provable from $\mathbf{A T R}_{0}+\Sigma_{\infty}^{1}$ - IND, then $\mathrm{P}(\theta, \eta)<_{W} \mathrm{P}^{\mathrm{rfn}} \leq_{W} \mathrm{ATR}_{2}^{\mathrm{rfn}}$.

Especially, FP $\Sigma_{2}^{0}<_{W}\left(\mathrm{FP} \Sigma_{2}^{0}\right)^{\mathrm{rfn}} \equiv_{W} \mathrm{ATR}_{2}^{\mathrm{rfn}}$.

Weihrauch Hierarchy

Reverse Mathematics

For the separation of P and $\mathrm{P}^{\text {rfn }}$, we can show a bit more.

Theorem (ω-model incompleteness, Friedman)

Let φ be an \mathcal{L}_{2} sentence which is true in $(\omega, \mathcal{P}(\omega))$.
Put $\mathbf{T}=\mathbf{A C A}_{0}+\varphi$. Then there exists $S \subseteq \mathcal{P}(\omega)$ such that $(\omega, S) \models \mathbf{T}+\neg \exists$ countable coded ω-model of \mathbf{T}.

Note that adding $\mathbf{A C A}_{0}$ is essential for the above theorem.

Corollary

If P is an arithmetical problem, then $\mathrm{P}^{\mathrm{rfn}}{\underset{z}{\omega}}_{a}^{a} \mathrm{P}$.

Question:

Are there any "natural" problems between $\left(\mathrm{ATR}_{2}\right)^{\mathrm{rfn}}$ and $\mathrm{C}_{\omega} \omega$?

There is a good hierarchy of problems between $\operatorname{ATR}_{2}^{\text {rfn }}$ and $C_{\omega^{\omega}}$.

Definition (Σ_{k}^{0} LPP)

Input An ill-founded tree T and its path f.
Output A path g of T such that there is no $\Sigma_{k}^{T \oplus f \oplus g}$-definable path h of T lexicographically smaller than g.

Originally, this was introduced in [Towsner, 2013] in the context of reverse mathematics.

- $\mathbf{A C A}_{0}+\Sigma_{0}^{0}$ LPP implies $\mathbf{A T R}_{0}$.
- $\Pi_{1}^{1} \mathbf{C A}_{0}$ implies Σ_{k}^{0} LPP, and the converse does not hold.

We let $(\mathrm{P})^{n+1 \mathrm{rfn}}=\left((\mathrm{P})^{n \mathrm{rfn}}\right)^{\mathrm{rfn}}$.

Theorem

(1) ATR $\leq_{W} \Sigma_{0}^{0}$ LPP.
(2) $\mathrm{FP} \Sigma_{2}^{0} \leq_{W} \Sigma_{2}^{0} \mathrm{LPP}$.
(3) $\mathrm{ATR}_{2}<_{W}\left(\mathrm{ATR}_{2}\right)^{\mathrm{rfn}}<_{W} \Sigma_{3}^{0} \mathrm{LPP}$.
(9) $\Sigma_{n}^{0} \mathrm{LPP}<_{W}\left(\Sigma_{n}^{0} \mathrm{LPP}\right)^{n \mathrm{rfn}}<_{W} \Sigma_{n+3}^{0}$ LPP.
(6) $\Sigma_{n}^{0} \mathrm{LPP}<{ }_{W} \mathrm{C}_{\omega^{\omega}}$.

Moreover, for $3-5$, the converse does not holds even \leq_{ω}^{a}.

Weihrauch Hierarchy
 Reverse Mathematics

Questions:

- Does $\max _{\leq_{W}}\left\{\mathrm{P} \in\left(\Sigma_{0}^{1}, \Sigma_{0}^{1}\right) \mid \mathbf{A T R}_{0} \vdash \mathcal{L}_{2}(\mathrm{P})\right\}$ exist? (Note that if 'sup' exists, then it has to be 'max'.)
- Can we improve the separation $\left(\Sigma_{n}^{0} \mathrm{LPP}\right)^{\mathrm{rfn}}<_{W} \Sigma_{n+3}^{0}$ LPP?
- Are there more "natural" arithmetical problems above/around Σ_{n}^{0} LPP?

References

- PEA d'Auriac. Infinite Computations in Algorithmic Randomness and Reverse Mathematics. Thèse de doctorat Logique Mathématique, Université Paris-Est École Doctorale MSTIC. 2019.
- T. Kihara, A. Marcone and A. Pauly. Searching for an analogue of ATR_{0} in the Weihrauch lattice. The Journal of Symbolic Logic 85.3 (2020): 1006-1043.
- Jun Le Goh. Some computability-theoretic reductions between principles around ATR $_{0}$. arXiv preprint, arXiv:1905.06868 (2019).
- Jeremy Avigad. On the relationship between ATR_{0} and $\widehat{\mathrm{ID}}_{<\omega}$. The Journal of Symbolic Logic 61.3 (1996): 768-779.
- Henry Towsner. Partial impredicativity in reverse mathematics. The Journal of Symbolic Logic 78.2 (2013): 459-488.
- Y. Suzuki and K. Yokoyama. Searching problems above arithmetical transfinite recursion. arXiv preprint, arXiv:2305.07321 (2023).

