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Summary

I will talk about

studies on the complexity of mathematical
theorems/problems.

Reverse Mathematics: Which axiom is needed to prove?
Weihrauch Degrees: How difficult is it to construct
solutions?

Typically, consider the complexity of arithmetical
statements above the level of ATR0 / hyperarithmeticity
from the viewpoint of Weihrauch degrees.
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Systems of second-order arithmetic

L2-systems used in Reverse Math

RCA0 = PA− + IΣ0
1 +∆0

1-CA,

ACA0 = RCA0+∀X∃Y (Y = X ′ = Jump(X)),

ATR0 = RCA0+∀W,X(WO(W ) → ∃Y Hier(X,W, Y )).

Here Hier(X,L, ⟨Yi⟩i) denotes the following formula:

YminL = X ∧ (∀i ̸= minL)(Yi = Jump(⟨Yj⟩j<Li)).

Intuition of Hier

Y is the W -time iteration of Turing jump of X.

Y is a (pseudo-)jump hierarchy for (L,X) if Hier(X,L, Y ) holds.
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Weihrauch degrees

Definition

Weihrauch problem:
a partial function P :⊆ P(ω) → P(P(ω)).

X ∈ dom(P) is called an input for X.

For X ∈ dom(P), Y is an output of P(X) if Y ∈ P(X).

P,Q : problems.

Definition (Weihrauch Reduction)

P is Weihrauch reducible to Q (denoted by P ≤W Q) if there are
computable functionals Φ,Ψ such that

(∀X ∈ domP)(Φ(X) ↓∈ domQ),

(∀X ∈ domP)(∀Y )((Φ(X), Y ) ∈ Q) → (X,Ψ(X,Y ) ↓) ∈ P).
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P ≤W Q via Φ,Ψ shows the following condition:

Input for P

Input for Q

X

Φ(X) Y

Ψ(X ⊕ Y ) Output of P(X)

Output of Q(Φ(X))

Definition (Weihrauch degrees)

The degree structure of Weihrauch Problems induced by ≤W is
called Weihrauch hierarchy.
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L2-statements and Weihrauch problems

Let T be an L2-statement of the form ∀X(θ(X) → ∃Y η(X,Y )).

e.g. if X is an ill-founded linear order on N then Y is an
infinite X-descending sequence.

Put P(θ, η) = {(X,Y ) : (ω,P(ω)) |= θ(X) ∧ η(X,Y )}.
We may identify T and a Weihrauch problem P(θ, η).

We focus on Weihrauch problems described by L2-formulas.

P = P(θ, η) is said to be an arithmetical problem if both of
θ and η are arithmetical.

P = P(θ, η) is said to be a (Γ,∆)-problem if θ ∈ Γ and
η ∈ ∆, where Γ,∆ ∈ {Σ1

1,Π
1
1 . . . }

Conversely, if P = P(θ, η), we may write L2(P) for the
L2-statement ∀X(θ(X) → ∃Y η(X,Y )).
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Definition (ω-model reduction)

Let P,Q be problems.

P is ω-model reducible to Q (P ≤ω Q)
if for any S ⊆ P(ω), (ω, S) |= RCA0+L2(Q) implies
(ω, S) |= L2(P).

P is arithmetically ω-model reducible to Q (P ≤a
ω Q)

if for any S ⊆ P(ω), (ω, S) |= ACA0+L2(Q) implies
(ω, S) |= L2(P).

We may easily see that ≤W ⊆ ≤ω ⊆ ≤a
ω.

In other words, the study of the Weihrauch degrees is a
refinement of the study of ω-models of second-order
arithmetic.
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Definition (monotone operator)

An operator Γ : P(N) → P(N) is said to be monotone if
X ⊆ Y ⇒ Γ(X) ⊆ Γ(Y ).

Γ : P(N) → P(N) is said to be arithmetical if there is an
arithmetical formula φ(n,X) possibly with parameters
from P(ω) such that Γφ(X) = {n : φ(n,X)}.

Theorem (FP, weak form of the Knaster-Tarski theorem)

FP: any monotone operator Γ : P(N) → P(N) has a fixed point.

Question:

What is the strength of FP for arithmetical operators?
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Thoerem (Avigad, 1996)

Over RCA0, TFAE.

1 ATR0,

2 FP for arithmetical operators.

3 FP for positive Σ0
2-operators.

(An arithmetical formula φ(n,X) is positive if there is no subformula
of the form t ̸∈ X in the negation normal form.)

This equivalence is proved by pseudo-hierarchy method.

Question:

How about the situation in Weihrauch degrees?
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Jump� �
Input Any set X

Output The Turing jump X ′ of X.� �
ATR� �

Input A well-order W and a set A.

Output The jump hierarchy of (W,A).� �
ATR2

� �
Input A linear order L and a set A.

Output A jump hierarchy of (L,A) or a descending
sequence of L.� �

Cωω� �
Input An ill-founded tree T ⊆ ω<ω.

Output A path of T .� �
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Observation

RCA0+L2(Jump) = ACA0.

RCA0+L2(ATR) = RCA0+L2(ATR2) = ATR0.

L2(Cωω) is a trivial statement.

Theorem (Kihara/Marcone/Pauly, Goh)

Jump <W ATR <W< ATR2 <W Cωω .

* ATR may be considered as the truth in (ω,HYPX)-models.

* Cωω may be considered as the truth in β-models.

Theorem (folklore?)

1 If P is (Σ1
∞,Σ1

0), then P ≤W Cωω .

2 If P is (Π1
1,Σ

1
0), then P <W Cωω .

3 If P is (Σ1
0,Σ

1
0) and ATR ≤W P, then ATR <W P <W Cωω .
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Weihrauch Hierarchy Reverse Mathematics

Π1
1-CA Π1

1-CA0

Cωω

ATR2

ATR

ATR0
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FPΣ0
2

� �
Input A positive Σ0

2-formula (and its parameters)
φ(X).

Output A fixed point of Γφ.� �

L2(FPΣ0
2) is provable from ATR0 = RCA0+L2(ATR2),

but the proof cannot be converted to the reduction
“FPΣ0

2 ≤W ATR2”.

Indeed, the proof essentially uses the pseudo-hierarchy
method.

Theorem

ATR2 <W ATR2×ATR2 ≤W FPΣ0
2,

FPΣ0
2 is parallelizable, but ATR2 is not.

15 / 27



SOA and W-degrees Around ATR Above ATR

FPΣ0
2

� �
Input A positive Σ0

2-formula (and its parameters)
φ(X).

Output A fixed point of Γφ.� �
L2(FPΣ0

2) is provable from ATR0 = RCA0+L2(ATR2),
but the proof cannot be converted to the reduction
“FPΣ0

2 ≤W ATR2”.

Indeed, the proof essentially uses the pseudo-hierarchy
method.

Theorem

ATR2 <W ATR2×ATR2 ≤W FPΣ0
2,

FPΣ0
2 is parallelizable, but ATR2 is not.

15 / 27



SOA and W-degrees Around ATR Above ATR

FPΣ0
2

� �
Input A positive Σ0

2-formula (and its parameters)
φ(X).

Output A fixed point of Γφ.� �
L2(FPΣ0

2) is provable from ATR0 = RCA0+L2(ATR2),
but the proof cannot be converted to the reduction
“FPΣ0

2 ≤W ATR2”.

Indeed, the proof essentially uses the pseudo-hierarchy
method.

Theorem

ATR2 <W ATR2×ATR2 ≤W FPΣ0
2,

FPΣ0
2 is parallelizable, but ATR2 is not.

15 / 27



Fact (ACA0)

There is no Σ1
1 formula φ(X) such that

∀X(φ(X) ↔ X is a well-order.)

Pseudo-Hierarchy Method for FP in ATR0

Let φ(n,X) be a formula and L is a well-order. Then there
exists a sequence ⟨Ai⟩i∈|L| such that

Ai = {n : φ(n,
⋃

j<Li
Aj)}.

Thus there is an ill-founded linear order L and a sequence
⟨Ai⟩i∈|L| such that

minL{j ∈ |L| | j >L i} exists for any i ∈ |L|,
Ai = {n : φ(n,

⋃
j<Li

Aj)},
for any i ∈ |L| and x ∈ Ai, minL{j ∈ |L| | x ∈ Aj} exists.

If ⟨is | s ∈ N⟩ is an infinite decreasing sequence of L, then⋂
sAis is a fixed point.
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Formulation of psuedo-hierarchy method in [PEA d’Auriac,
2019].

Strong enough but above Cωω .

Some weaker formulations of the psuedo-hierarchy method
may be available but they are usually equivalent to Cωω .

In general, to apply the psuedo-hierarchy method in the
setting of Weihrauch degrees, we need an ill-founded linear
order L, its decreasing sequence and the witness for φ(L).

Question:

How can we bound the psuedo-hierarchy method available
within ATR0 in the context of Weihrauch degrees?
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Definition

For a problem P(θ, η), define Prfn as follows.

Input Any set X,

Output A tuple (⟨Mi⟩i∈ω, f, g, e) such that

⟨Mi⟩i is closed under ≤T ,

(∀i, j)(Mf(i) = M ′
i ∧Mg(i,j) = Mi ⊕Mj),

Me = X,

(∀i)(θ(Mi) → ∃jη(Mi,Mj)

⟨Mi⟩i is an ω-model of ACA0.

If θ ∈ Σ1
1, η ∈ Π1

1 then ⟨Mi⟩i also satisfies P.
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Theorem

Let P(θ, η),Q(θ̃, η̃) be problems.

1 If η ∈ Σ1
0 then P ≤W Prfn.

2 If θ, η ∈ Σ1
0 then P <W Prfn <W Cωω .

3 If θ ∈ Π1
1, η ∈ Σ1

1, θ̃, η̃ ∈ Σ1
0 and P is provable from

Q+ACA0+Σ1
∞- IND, then Prfn ≤W Qrfn.

Corollary

For any arithmetical problem P(θ, η), if L2(P) is provable from
ATR0+Σ1

∞- IND, then P(θ, η) <W Prfn ≤W ATRrfn
2 .

Especially, FPΣ0
2 <W (FPΣ0

2)
rfn ≡W ATRrfn

2 .
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Weihrauch Hierarchy Reverse Mathematics

Π1
1-CA Π1

1-CA0

Cωω

ATR2

ATR

ATR0

FP

ATR2
rfn
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For the separation of P and Prfn, we can show a bit more.

Theorem (ω-model incompleteness, Friedman)

Let φ be an L2 sentence which is true in (ω,P(ω)).
Put T = ACA0+φ. Then there exists S ⊆ P(ω) such that

(ω, S) |= T+ ¬∃countable coded ω-model of T.

Note that adding ACA0 is essential for the above theorem.

Corollary

If P is an arithmetical problem, then Prfn ̸≤a
ω P.

Question:

Are there any “natural” problems between
(ATR2)

rfn and Cωω?
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There is a good hierarchy of problems between ATRrfn
2 and Cωω .

Definition (Σ0
k LPP)

Input An ill-founded tree T and its path f .

Output A path g of T such that there is no
ΣT⊕f⊕g
k -definable path h of T lexicographically

smaller than g.

Originally, this was introduced in [Towsner, 2013] in the context
of reverse mathematics.

ACA0+Σ0
0 LPP implies ATR0.

Π1
1CA0 implies Σ0

k LPP, and the converse does not hold.
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We let (P)n+1 rfn = ((P)n rfn)rfn.

Theorem

1 ATR ≤W Σ0
0 LPP.

2 FPΣ0
2 ≤W Σ0

2 LPP.

3 ATR2 <W (ATR2)
rfn <W Σ0

3 LPP.

4 Σ0
n LPP <W (Σ0

n LPP)
n rfn <W Σ0

n+3 LPP.

5 Σ0
n LPP <W Cωω .

Moreover, for 3–5, the converse does not holds even ≤a
ω.
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Weihrauch Hierarchy Reverse Mathematics

Π1
1-CA Π1

1-CA0

Cωω

ATR2

ATR

ATR0

FP

ATR2
rfn

Σ0
n LPP Σ0

n LPP

Σ0
n+3 LPP

(Σ0
n LPP

rfn
)rfn

Σ0
n LPP

rfn

Σ0
n LPP
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Questions:

Does max≤W {P ∈ (Σ1
0,Σ

1
0) | ATR0 ⊢ L2(P)} exist?

(Note that if ‘sup’ exists, then it has to be ‘max’.)

Can we improve the separation (Σ0
n LPP)

rfn <W Σ0
n+3 LPP?

Are there more “natural” arithmetical problems
above/around Σ0

n LPP?
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