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Two ways to study Martin-Löf randomness for

objects other than infinite bit sequences

1. Replace Cantor space:

I General framework: computable probability space as in

Hoyrup/Rojas, 2009

I e.g. space of continuous functions on [0, 1] that vanish at 0

with the Wiener measure

I easy to adapt the notion of ML-test to this setting.

2. Extend Cantor space

I A space of generalised bit sequences, along with a notion of

ML-test for such generalised sequences.

I for usual bit sequences, the new notion coincides with the

previous one.
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Infinite sequences of qubits

I We follow the second approach.

I Study randomness for infinite sequences of qubits.

I We explain the mathematical model for such sequences:

states on a certain C⇤-algebra M1.

I ML-tests can be defined, and are equivalent to the usual tests

for classical bit sequences.

I This is joint work with the mathematical physicist Volkher Scholz

that started in 2015, and appeared in the J. Math. Physics, 2019.

I Tejas Bhojraj (2021) wrote a thesis on quantum ML-randomness

under the supervision of Joseph Miller, and my informal

co-supervision. He published one JMP and one TCS paper

containing the main results.
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Density matrices and states

I A qubit is a physical system that can be in two classical states.

E.g. electron with spin up/down.

I A system of n qubits is modelled by a vector in C2

n
.

I If one qubit is deleted, the remaining ones enter a statistical

superposition of possibilities.

I Such a superposition is modelled by a density matrix: a 2n ⇥ 2n

Hermitian matrix with all eigenvalues positive, and trace 1.

A state is an infinite sequence (⇢
n

)
n2N of 2n ⇥ 2n density matrices

such that deleting the last qubit of ⇢
n+1

yields ⇢
n

(detail later).

I States such that all the matrices are diagonal are equivalent to

measures on Cantor space. They can be seen as statistical

superpositions of classical infinite bit sequences.

I This case is easier. We will treat it first.
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Martin-Löf absolutely continuous measures

Joint work with Frank Stephan,

STACS paper 2020,

Theoretical Computer Science 900 (2022): 1-19
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Martin-Löf’s randomness notion (1966)

Let � denote the uniform (product) measure on Cantor

space {0, 1}N giving both 0 and 1 the same probability.

I A Martin-Löf test is a uniformly ⌃0

1

sequence hU
m

i
m2N of open

sets in {0, 1}N such that �U
m

 2�m for each m.

I A bit sequence Z is Martin-Löf random if Z passes each

ML-test, in the sense that Z is only in finitely many of the U
m

.
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Initial segment complexity

Let K(x) be the length of a shortest prefix free description of a

binary string x. Given Z 2 {0, 1}N and n 2 N, let Z � n denote the

initial segment Z(0) . . . Z(n� 1).

The Schnorr - Levin Theorem says informally that

Z is ML-random () each initial segment of Z is incompressible.

Formally:

Theorem (Schnorr 1973, Levin)

Z is ML-random () there is b 2 N such that 8nK(Z � n) � n� b.

Chaitin (1987) proved that the condition lim
n

K(Z � n)� n = 1 is

also equivalent to ML-randomness of Z.
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Martin-Löf absolutely continuous measures

Recall that a measure µ is absolutely continuous if µ(N ) = 0 for

each �-null set N .

Definition (N. and Stephan, 2022)

A measure µ on {0, 1}N is called Martin-Löf absolutely continuous

(ML-a.c., for short) if

inf
m

µ(G
m

) = 0 for each Martin-Löf-test hG
m

i.

Example

I The uniform measure � is ML-a.c.

I Let µ =
P

k

c
k

�
Zk

be a positive sum of Dirac measures.

Then µ is ML-a.c. () all Z
k

are Martin-Löf-random.

I In particular, �
Z

is ML-a.c. i↵ Z is ML-random.
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Definition (Recall)

A measure µ on Cantor space is called Martin-Löf absolutely continuous

(ML-a.c., for short) if inf
m

µ(G
m

) = 0 for each Martin-Löf-test hG
m

i.

I It su�ces to consider descending Martin-Löf-tests, because we

can replace hG
m

i by the Martin-Löf-test bG
m

=
S

k>m

G
k

.

I So we can change the passing condition to lim
m

G
m

= 0.

There is a universal ML-test. So

µ is ML-a.c. () µ(non-MLR) = 0.

In particular, each a.c. measure is ML-a.c.
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Solovay tests

I A Solovay test is a sequence hS
k

i
k2N of uniformly ⌃0

1

sets such

that
P

k

�S
k

< 1. (For ML-tests, we required �S
k

 2�k.)

I A measure µ passes such a test if lim
k

µ(S
k

) = 0.

Proposition

A measure µ is ML-a.c. () µ passes each Solovay test.

Proof: ( is trivial. For ):

I by the equivalence of the test notions for bit sequences, the class

V = {Z : 91k [Z 2 S
k

]} only consists of non-ML random

sequences.

I So µ(V) = 0.

I Using Fatou’s Lemma, lim sup
k

µ(S
k

)  µ(V).
10 / 35

Descriptive complexity of initial segments

For a finite bit string x, by K(x) we denote its prefix-free

descriptive complexity. Let

K(µ� n) = P
|x|=n

K(x)µ[x].

This is the µ-weighted average of the K(x) over all strings x of

length n.

Fact

We have K(�� n) �+ n+K(n), were � denotes the uniform

measure.

� is not the only measure with maximal K-complexity.
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Both implications of Levin-Schnorr theorem fail

Proposition (Show that µ is ML-a.c. 6) K(µ� n) �+ n)

There is a ML-a.c. measure µ such that for each ✓ 2 (0, 1),

K(µ� n) + n� n✓. (+ means  up to a constant.)

Proof: Define µ as a convex sum
P

k

c
k

�
Zk for a sequence hZ

k

i of
ML-randoms. The Z

k

have long initial segments of 0s, leading to a low

K(µ� n).

Theorem (Show that µ is ML-a.c. 6( K(µ� n) �+ n)

There are bit sequences X, Y such that µ = 1

2

(�
X

+ �
Y

) (avg. of the

Dirac measures) satisfies K(µ� n) �+ n, but µ is not ML-a.c.

Proof: Define X and Y so that Y is not ML-random, and

K(X � n) +K(Y � n) �+ 2n for all n.
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Implications between “randomness notions” for µ

µ is a.c.

##

8nK(µ� n) �+ n+K(n)

✏✏

µ is MLR w.r.t.P

yy

91nC(µ� n) �+ n

✏✏
µ is ML-a.c.

✏✏

lim
n

1

n

C(µ� n) = 1

P is the uniform measure on the space of probability measures.

Culver showed that µ is ML-rd. w.r.t. P ) µ is orthogonal to �,

and hence not a.c. The implications in the middle column of the

diagram are strict, via examples that are Dirac measures.
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QK complexity for measures on sets of strings

K is a bit unsatisfying for measures. Let ↵ be a measure on the

strings of lengths n. Write n = |↵|. Given ✏ > 0, let

QK✏(↵) = min{K(F ) + log |F | : F ✓ n2 ^ ↵(F ) > ✏}.
This is the measure case of a Definition of Bhojraj (TCS, 2021).
K(F ) means K of the string (of length up to 2n · n) encoding F .

The idea is to impose a higher “penalty” on larger sets F .

Trivial upper bound: QK✏(↵)  K(n) + n+O
✏

(1), via F = 2=n.

If ↵ concentrates on a string �, let F = {�} and get K(�) +O(1).

Proposition (Chaitin type condition for weak randomness, Bhojraj)

A measure µ passes all restricted Solovay tests ()
for each ✏, lim

n

QK✏(µ� n)� n = 1.

Restricted Solovay test : a computable sequence hS
k

i
k2N of clopen sets

in Cantor space such that
P

k

�S
k

< 1.
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Ergodic measures and their entropy

I T denotes the shift operator on {0, 1}N. A measure ⇢ is

shift-invariant if ⇢(A) = ⇢(T�1(A)) for each Borel A.

I A shift-invariant measure ⇢ is ergodic if every measurable set

A with A = T�1(A) satisfies ⇢(A) 2 {0, 1}.
I For ergodic ⇢, the entropy H(⇢) is defined as lim

n

H
n

(⇢),

where

H
n

(⇢) = � 1

n

X

|w|=n

⇢[w] log ⇢[w].

I H(�) = 1.
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SMB Theorem (1950s)

Empirical entropy along Z

For n � 0, for Z 2 {0, 1}N let h⇢

n

(Z) = � 1

n

log ⇢[Z � n].

Note that H
n

(⇢) = E
⇢

h⇢

n

where E
⇢

denotes the expectation w.r.t. ⇢.

Theorem (Shannon-McMillan-Breiman theorem)

Let ⇢ be an ergodic measure.

For ⇢-a.e. Z 2 {0, 1}N we have lim
n

h⇢

n

(Z) = H(⇢).

Algorithmic version:

If ⇢ is computable, then the conclusion holds for ⇢-ML-random Z

by results of Hochman (2009, implicit) and Hoyrup (2012).
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E↵ective SMB theorem for measures

We say that a measure µ is ML-a.c. relative ⇢ if µ(G
m

) ! 0 for

each ⇢-ML test hG
m

i. Recall that h⇢

n

(Z) = � 1

n

log ⇢[Z � n].

Proposition
I Let ⇢ be a computable ergodic measure.

I Suppose that there is D such that h⇢

n

 D for each n.

If µ is ML-a.c. w.r.t. ⇢ then

lim
n

E
µ

h⇢

n

= H(⇢),

where E
µ

h⇢

n

=
P

|x|=n

h⇢

n

(x)µ([x]).

In the paper we give an example based on a renewal process which

shows that the boundedness condition is necessary.
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Sequences of quantum bits
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Finite sequences of quantum bits

I A quantum bit (qubit) | �i is in a superposition of the two

classical states | 0i and | 1i:
| �i = ↵ | 0i+ � | 1i, where ↵, � 2 C, |↵|2 + |�|2 = 1.

I Measurement of a qubit w.r.t. standard basis |0i, |1i yields
0 with probability |↵|2, and 1 with probability |�|2.

I Let (C2)⌦n (tensor power) be the 2n-dimensional Hilbert space.

The standard basis of (C2)⌦n is given by n-bit strings: it

consists of vectors |a
1

. . . a
n

i := |a
1

i ⌦ . . .⌦ |a
n

i.
I The state of n qubits is represented by a unit vector in (C2)⌦n.

I This vector is a linear superposition of the base vectors

|a
1

. . . a
n

i.
I Example: Einstein-Podolsky-Rosen state 1p

2

|00i+ 1p
2

|11i.
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Mixed states, or density operators

I A “pure” state | i is viewed as a unit vector in (C2)⌦n. By

| ih | Dirac denotes the orthogonal projection onto the

subspace spanned by | i, fixing | i.
I A mixed state is a convex linear combination

P
2

n

i=1

p
i

| 
i

ih 
i

|
for pairwise orthogonal pure states  

i

.

I Recall that for an operator S on a finite dimensional Hilbert

space A, the trace is

Tr(S) = sum of the eigenvalues of S.

I A mixed state is the same as a Hermitean operator S on

(C2)⌦n with Tr(S) = 1 and no eigenvalue negative.
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Deleting the last qubit

M
2

n denotes the set of 2n ⇥ 2n matrices over C. This is a C⇤

algebra with the operator norm on matrices. We index the entries

by pairs �, ⌧ of n-bit strings via the reverse binary representation.

E.g. (1010, 1110) indexes the entry in position (5, 7).

Partial trace operation T
n

: M
2

n+1 ! M
2

n

For a 2n+1 ⇥ 2n+1 matrix M = (a
�r,⌧s

) where |�|, |⌧ | = n,

and r, s are bits, N = T
n

(M) is given by the 2n ⇥ 2n matrix

b
�,⌧

= a
�0,⌧0

+ a
�1,⌧1

.

Example: Let n = 1 and consider the EPR state. We have

T
1

(
1p
2
|00ih00|+ 1p

2
|11ih11|

| {z }
pure state

) =
1

2
|0ih0|+ 1

2
|1ih1|

| {z }
mixed state

.
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Diagonal states as measures

I As mentioned, diagonal states S 2 M
2

n+1 can be identified with

measures ↵ on the set of n+ 1-bit strings.

I � = T
n

(↵) is a diagonal state and corresponds to the measure

on n-bit strings given by ↵.

I That is, �([�]) = ↵([�0]) + ↵([�1]).
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Coherent sequences of density matrices

“Quantum Cantor space” S(M1) consists of the sequences (⇢
n

)
n2N

of density matrices in M
2

n such that T
n

(⇢
n+1

) = ⇢
n

for each n.

I This can be identified with the set of states ⇢ (positive linear

functionals of norm 1) on the computable C⇤ algebra

M1 = lim�!n

M
2

n .

I Diagonal states (i.e. states such that all ⇢
n

are diagonal)

correspond to measures on Cantor space.

I The tracial state ⌧ is given by ⌧
n

= 2�nI
2

n .

I A classical bit sequence Z corresponds to the Dirac measure

concentrated on {Z}. So, Cantor space embeds into S(M1).

I One-dimensional quantum spin system (see 2016 textbook by

Naaijkens). Dynamics studied by Bjelakovich et al. (2004).
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Algorithmic randomness tests for states
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Special projections

I Calg denotes the field of algebraic complex numbers.

I A special projection in M
2

n is a Hermitian matrix p such that

p2 = p, with matrix entries in Calg.

I Equivalent: subspace of (C2)⌦n

Let’s discuss the expression Tr(⌘ p) where ⌘ is a density matrix in M
2

n .

This is the expected squared length of projecting ⌘ onto the range of p.

If ⌘ is a vector v then Tr(⌘ p) = hv | p(v)i. If ⌘ is diagonal (i.e., a

measure) and p is a set of strings of length n, then Tr(⌘ p) equals ⌘(p).

Embed M
2

n into M
2

n+1 via A ! A⌦ I
2

=

✓
A 0

0 A

◆
.

For (special) projections p 2 M
2

n , q 2 M
2

k , where n  k, denote by

p  q that the range of p is contained in range of q.
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⌃

0
1 probabilistic sets on quantum Cantor space

A quantum ⌃0

1

set G is given by a computable ascending sequence

of special projections hp
n

i
n2N where p

n

2 M
2

n . For a state

⌘ = h⌘
n

i
n2N let

G(⌘) = sup
n

⌘(p
n

) = sup
n

Tr(⌘
n

p
n

).

In particular let ⇢ be the tracial state ⌧ , the diagonal state such

that each nonzero entry of ⌧
n

is 2�n. One has

G(⌧) = sup
n

2�nTr(p
n

).

We also write ⌧(G) for this value, to stress that it extends the idea of a

measure of a set G when all projections correspond to clopen sets.
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Quantum Martin-Löf randomness

Recall the “noncommutative measure” ⌧(G) := sup
n

2�nTr(p
n

).

I A quantum Martin-Löf test is an e↵ective sequence hG
r

i
r2N of

quantum ⌃0

1

sets such that ⌧(G
r

)  2�r for each r.

I A state ⇢ passes the test if inf
r

G
r

(⇢) = 0.

Think of hG
r

i
r2N as a sequence of measurements.

The asymptotic measured value at ⇢ is inf
r

G
r

(⇢).

Def. ⇢ is quantum ML random if it passes each quantum ML test.

There is a universal test (N. and Scholz, 2019).

Theorem (N. and Scholz, Bhojraj)

I Every ML-random bit sequence is quantum ML-random.

I More generally, if a measure ⇢ is ML-a.c. then ⇢ is quantum

ML random. 27 / 35

Quantum Solovay test

Definition (Quantum Solovay randomness)

I A quantum Solovay test is an e↵ective sequence hG
r

i
r2N of

quantum ⌃0

1

sets such that
P

r

⌧(G
r

) < 1.

I We say that the test is restricted if the G
r

are given as

projections; that is, from r we can compute n
r

and a matrix of

algebraic numbers in M
2

nr describing G
r

.

I We say that ⇢ is [weakly] quantum Solovay-random if

lim
r

⇢(G
r

) = 0 for each [restricted] quantum Solovay test

hG
r

i
r2N.

Theorem (Bhojraj, 2021)

Quantum Martin-Löf random () quantum Solovay random.

The Solovay definition implies that the set of qML states is convex.
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Descriptive QK complexity and weak Solovay rd.

Recall that for a measure ↵ be a measure on the strings of lengths n we

defined QK✏(↵) = min{K(F ) + log |F | : F ✓ 2=|↵| ^ ↵(F ) > ✏}.

More generally, let ↵ be a density matrix in M
2

n . For ✏ > 0,

QK✏(↵) = min{K(p) + log |p| :
p 2 M

2

n is special projection ^ Tr(↵ p) > ✏}.
Here |p| is the dimension of the range of p (Bhojraj, 2021).

Theorem (Bhojraj, 2021)

A state ⇢ = h⇢
n

i passes all restricted Solovay tests ()
for each ✏, lim

n

QK✏(⇢
n

)� n = 1.
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Initial segment characterization of qML-rd.?

I It is unknown whether for a state ⇢, passing all restricted

Solovay tests is equivalent to qML-randomness. The notions

are known to coincide if ⇢ is non-high.
I Bhojraj showed quantum Schnorr randomness is equivalent to

incompressibility w.r.t. a restricted version of QK where the

decompression is carried out by computable measure machines.

Diagram of some of his results in the JMP and TCS papers:

q-ML rd. ks
JMP

+3

↵◆

q-Sol. rd.

↵◆
QK-incompr.

↵◆

ks
TCS

+3 q-weak Sol. rd.

q-Schnorr rd. ks
TCS

+3 QK
C

-incompr.
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Towards an e↵ective quantum SMB theorem

A state ⇢ on M1 is called ergodic if it is an extreme point on the

convex set of shift invariant states. Its entropy is

h(⇢) = � lim
n

1

n

Tr(⇢
n

log ⇢
n

).

I We conjecture that the e↵ective SMB-theorem generalises from

measures to the quantum setting: Suppose the empirical entropy of

⇢ is bounded above. Then h(⇢) = � lim
n

1

n

Tr(µ
n

log ⇢
n

), whenever µ

is quantum ML-random with respect to ⇢.

I By the result for measures, we can do the case that ⇢ is a measure.

To see this one replaces µ by the measure µ, where µ
n

is the diagonal

of µ
n

, for each n. (For detail see Logic Blog 2020, Section 9.)

I This also settles the case that ⇢ is an i.i.d. state, namely, ⇢
n

= V ⌦n

for some fixed 2⇥ 2 density matrix V .
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Spin chains, and undecidability of the spectral gap

The existence of a spectral gap in the thermodynamical limit is

undecidable for finite chains of qudits (d classical states), with

behaviour described by local Hamiltonians (Heisenberg model).

Due to Bausch, Cubitt, Lucia and Perez-Garcia, 2020.

Let h(1) 2 M
d

(C) and h(2) 2 M
d

2(C) be Hermitian matrices, where

I h(1) describes the one-site “interactions”, and

I h(2) describes the nearest-neighbour interactions.

The global Hamiltonian of a spin chain of n qudits is given by

shifting the local Hamiltonians and adding up these interactions as

the indices vary:

H
n

=
P

n

i=1

h
(1)

i

+
P

n�1

i=1

h
(2)

i,i+1

.

32 / 35



What is the asymptotic spectral gap?

The spectral gap of a Hamiltonian H acting on a finite-dimensional

Hilbert space is �(H) = �
1

(H)� �
0

(H), the di↵erence between its

least two eigenvalues. Suppose that H
n

is a Hamiltonian on the

dn-dimensional Hilbert space. The asymptotic spectral gap is

�hH
n

i = lim inf
n

�(H
n

).

From Cubitt et al., Nature 2015. (a) gapped (b) gapless
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Coding the halting problem (Bausch et al., 2020)

Given a Turing machine M , Bausch et al. determine a (large)

dimension d.

Then, given an input ⌘ 2 N to M they compute local Hamiltonians

h(1) 2 M
d

(C) and h(2) 2 M
d

2(C) as above such that

I if M(⌘) halts then the sequence hH
n

(⌘)i (defined as above by

shifting the local interactions) is gapless,

I otherwise the sequence hH
n

(⌘)i is gapped.

34 / 35

References

N. and Scholz, Martin-Loef random quantum states, arxiv

1709.08422, J. Math. Physics, 60, 092201 (2019);

N. and Stephan, A weak randomness notion for probability

measures, TCS 900 (2022): 1-19.

Naaijkens, Quantum Spin Systems on Infinite Lattices, Springer

1997

Bhojraj thesis, UW Madison, 2021. Prefix-free quantum

Kolmogorov complexity, TCS, 2021. Quantum algorithmic

randomness, J. Math. Physics 62.2 (2021): 022202.

Logic Blog 2020, arxiv 2101.09508, sections 8 and 9.
35 / 35


