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Fractal dimensions

Given a (separable) metric space, Hausdorff dimension and packing
dimension generalize the usual integer dimension idea



Hausdorff definition of dimension

Let p be a metric on a set X.

@ For EC X and § > 0, a d-cover of E is a collection U such
that for all U € U, diam(U) < § and

EC U U.
Ueld

@ Fors >0,
H*(E) = lims_0infy/ is a 5-cover of E ZUEU diam(U)®

The Hausdorff dimension of E C X is
dimg(E) = inf{s|H*(E)=0}.




Packing dimension

Let p be a metric on a set X.

@ For EC X and 6 > 0, a d-packing of E is a collection U of
disjoint open balls U with centers in E and diam(U) < ¢.
@ Fors >0,
PS(E) = lims_0o SUPy is a §-packing of E ZUGZ/[ diam( U)s
@ Fors >0,
P=(E) = inf {X*, P§(E:) |E C UE:}

The Packing dimension of E C X is
dimp(E) =inf{s|P°*(E)=0}.




Effectivizing Hausdorff dimension |

Definition
An s-gale is d : 2<% — [0, c0) with

(w0) + d(wl)

d
d(W) = 25 ’

S™[d] = {x €2¥

limsupd(x | n) :oo}.
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Effectivizing Hausdorff dimension Il

From a compression/decompression definition:

@ Fix UaUTM. Let w e 2<% xe2¥ §>0
K(w) = min{|y||U(y) = w}

Ks(x) = inf{K(q) g € Q,[x —gq| <4}

. o Ks(x)
dim(x) = fiminf /5y

dim(A) = sup dim(x)
X€EA

(and similarly for Dim, Dim(x) = limsups_,o+ %)
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Ways to generalize

Why do we effectivize?
e To quantify
@ Partial randomness
@ Geometric measure theory
Ways to generalize effective dimension
@ Make it more precise, avoid infinite dimension cases
@ Use different resource-bounds, avoid dimension 0 spaces

@ Relativize to compare those effectivizations



The gauge function ingredient

To avoid infinite dimension

@ A gauge function is a continuous, nondecreasing function
from [0, 00) to [0, 00) that vanishes only at 0.

@ A gauge family is a one-parameter family
© ={ps|s € (0,00)} of gauge functions s satisfying for
s> t, ps(8) = o(pe(d)) as & — 0T

Definition
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The gauge function ingredient

To avoid infinite dimension

@ A gauge function is a continuous, nondecreasing function
from [0, 00) to [0, 00) that vanishes only at 0.

@ A gauge family is a one-parameter family
© ={ps|s € (0,00)} of gauge functions s satisfying for
s> t, ps(8) = o(pe(d)) as & — 0T

Definition

HSM(E) - (!LrI})Z/I is a 5i2cfver of E UEGZ; (ps(diam( U))

dim?(E) = inf {s|H*¥(E) = 0}.

They generalize 05(§) = 6° in Hausdorff dimension.
We can define p-gales d : 2<“ — [0, 00) with

d(w)ps(271") = (d(w) + d(wl))ps(27117Y)



The resource-bound ingredient

@ Finite-State dimension: base dependent, randomness is
dimension 1 (normality), gambling and compression, no
universality

e p-dimension: only gambling, complexity classes (NP), close
to gp-dimension, no universality

@ pspace-dimension: gambling and compression, no
universality

@ dim: gambling and compression, universality

They each have distinctive properties



The relativization ingredient

Except for the finite state case, all definitions relativize to any
oracle B C N,



Point-to-set principles

Theorem (Lutz Lutz 2018)
Let AC 2¥. Then

dimg(A) = min dimB(A).

Theorem (Lutz Lutz 2018)
Let AC 2¥. Then

. . . B
dimp(A) = min Dim®(A).




Resource-bounded point-to-set principles

qp = quasi-polynomial time, 2(l°g n)*

Theorem (Lutz Lutz M 2021)
Let AC 2¥. Then

dimgp(A) = ép;iqr}) dim§(A).

Theorem (Lutz Lutz M 2021)
Let AC2¥ and I < A. Then

dima (A) = min dim§ (A).
geA




Application of point to set principles to fractal geometry:
projection formula

Theorem (Marstrand 1954)

Let E C R? be an analytic set with dimg(E) = s. Then for almost
every 0 € (0,2M), dimg(pgE) = min{s, 1}
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Application of point to set principles to fractal geometry:
projection formula

Theorem (Marstrand 1954)

Let E C R? be an analytic set with dimg(E) = s. Then for almost
every 0 € (0,2M), dimg(pgE) = min{s, 1}

It does not hold for arbitrary E (assuming CH). Recently an
extension using PSP

Theorem (N.Lutz Stull 2018)

Let E C R? be an arbitrary set with dimy(E) = dimp(E) = s.
Then for almost every § € (0,201), dimg(pgE) = min{s, 1}

Further extension in (Stull 2021)



Other

@ (N.Lutz 2021) Intersection formula (extension from Borel to
all)

o (N.Lutz Stull 2020) results on Furstenberg sets

@ (Slaman 2021) The Hausdorff dimensions of co-analytic sets
are not carried by their closed subsets

@ (Lutz 2021) There are Hamel bases (R over Q) with any
positive Hausdorff dimension
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Looking at other separable spaces

@ Where can we effectivize dimension?

o We can define Kolmogorov complexity/ effectivize Hausdorff
measure if we have a separator (countable dense set)

Definition (Kolmogorov complexity of x at precision )

Let (X, p) be a separable metric space and let D C X be a
countable dense set (fix f : 2<% — D)

Ks(x) = inf {K(w) |w € 25 p(x, f(w)) < & }




Looking at other separable spaces

Definition
The algorithmic dimension and strong algorithmic dimension of a

point x € X is
. o Ki(x)
b =i og(1/)
Ks(x)

Di =i L
() = lim sup e (1/s)




Looking at other spaces: gauged dimension

Definition
The p-gauged algorithmic dimension and strong algorithmic
dimension of a point x € X is

dim?(x) = inf {5 lim inf 2o (5) = 0} )
§—07t

and the p-gauged of x is
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0—0*t

Dim?(x) = inf {s




Looking at other spaces: gauged dimension

Definition
The p-gauged algorithmic dimension and strong algorithmic
dimension of a point x € X is

dim?(x) = inf {5 lim inf 2o (5) = 0} )
§—07t

and the p-gauged of x is

lim sup 2K (85) = } ,

0—0*t

Dim?(x) = inf {s

d(w)es(271) = (d(w0) + d(wl))ps(27171)



General Point-to-set principles

Let (X, p) be a separable metric space, ¢ a gauge family

Theorem (Lutz Lutz M 2022)
Let AC X. Then

dim{;(A) = mi dim?B(x).
img; (A) min sup dim (x)

Theorem (Lutz Lutz M 2022)
Let AC X. Then

dim§(A) = g]gl%)s(gﬁ Dim*?B(x).




An exercise: the Hilbert cube

e Let (X, p) be a compact separable metric space, let (a,) be
an /5> sequence of positive real numbers

e Let H(X; (an)) be the set of infinite sequences of X together
with the metric

1/2
da(X»)/) = <Z a?,p(xmy,,)z)

e H(X;(an)) has infinite Hausdorff dimension
@ What is the right gauged dimension for it?
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0s(6) < 2—Ks(x)
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An exercise: the Hilbert cube

e Try to get for each x € H(X; (an)), i.0. 4,

0s(6) < 2—Ks(x)

e E.g. H([0,1];(1/n))

Ky-i(x) < 2K

o ¢(8) = 271/% (the power-exponential scale)



The hyperspace

@ Let (X, p) be a separable metric space

@ Let K(X) be the set of nonempty compact subsets of X
together with the Hausdorff metric distyy defined as follows

distir(U, V') = max< sup p(x, V), sup p(y, U) ¢ .
xeU yev

(n(a, B) = inf{p(a, b)[b € B})



Relationship of the dimensions of E and K(E)

McClure (1995 and 1996) has several results relating Hausdorff
and packing dimensions of a set E and KC(E) for

@ E self-similar

@ E o-compact



Relationship of the dimensions of E and K(E)

McClure (1995 and 1996) has several results relating Hausdorff
and packing dimensions of a set E and KC(E) for

o E self-similar
@ E o-compact

IC(E) has infinite dimension, a different gauge family is needed
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A result by McClure

Theorem (McClure 1995)
Let E C X be o-compact. Let 1)5(8) = 27/ Then

dim$(K(E)) > dimp(E).

We aim to extend the theorem to other E and to other gauge
families beside the canonical one.

Definition

The jump of a gauge family ¢ is the family ¢ given
Bs(8) = 271/s(9),

For the canonical gauge family 05(8) = 6°, 65(6) = 2~ /%



Hyperspace packing dimension theorem

Theorem (LLM 2022)
Let E C X be an analytic set, and let p be a gauge family, then

dim?(K(E)) > dim&(E).
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Proof ideas: where we use PSP

@ By the general point-to-set principle, let A be an oracle such

that B -
dim{(K(E)) = sup Dim#4(L),
LEK(E)

@ We recursively construct a single compact set L € IC(E) (i.e.,
a single point in the hyperspace K(E)) so that it has high
Kolmogorov complexity at infinitely many precisions, relative
to oracle A. -

Dim?A(L) > s

Ks(L) > —log ¢s()

o For E compact, we can reach Dim#A(L) > s for s = dim$(E)



Open questions

o Can we get Dim®4(L) > dim$%(E) for E more general than
compact?

@ Is there a more general hyperspace Hausdorff dimension
theorem? dim{;(K(E)) vs dimf;(E) for interesting E

@ Are (the complexity or the good properties of ) the two oracles
in the PTSP related to hyperspace dimension theorems?



References

@ Jack H. Lutz and Neil Lutz, Who asked us? How the theory
of computing answers questions about analysis, Ding-Zhu Du
and Jie Wang (eds.), Complexity and Approximation: In
Memory of Ker-1 Ko, pp. 48-56, Springer, 2020.

@ Jack H. Lutz and Elvira Mayordomo, Algorithmic fractal
dimensions in geometric measure theory. In Vasco Brattka
and Peter Hertling (eds.), Handbook of Computability and
Complexity in Analysis, Springer-Verlag (2021).

@ Jack H. Lutz, Neil Lutz, and Elvira Mayordomo, Extending
the Reach of the Point-to-Set Principle. STACS 2022
https://arxiv.org/abs/2004.07798


https://arxiv.org/abs/2004.07798

	Geometric fractal geometry
	Algorithmic fractal geometry
	Point to set principle
	Algorithmic dimensions on other separable spaces
	An exercise: the Hilbert cube
	The hyperspace
	References

