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Outline

» Give a brief review of the enumeration degrees.

» Talk about minimal subshifts as our original motivation for
studying the cototal sets and degrees. Introduce uniform
introenumerability.

» Talk about enumeration pointed trees and McCarthy’s
characterizations of cototality. Relate this to uniform
introenumerability.

» Describe my recent work with Goh, Jacobsen-Grocott, and
Soskova.

» Talk about the proof that there is a uniformly introenumerable
set that is not of cototal degree.
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The enumeration degrees

Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: A € w is enumeration reducible to B € w (A <. B) if
there is a uniform way to enumerate A from an enumeration of B.
Definition. A <. B if there is a c.e. set W such that

A= {n: (Je){(n,ey e W and D, < B},
where D, is the eth finite set in a canonical enumeration.
The degree structure D, induced by <. is called the enumeration

degrees. Tt is an upper semi-lattice with a least element (the degree of
all c.e. sets).
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The total enumeration degrees

Proposition. A<r B <= A®A<.B®B.
This suggests a natural embedding of the Turing degrees into the
enumeration degrees.
Proposition. The embedding ¢: Dy — D,, defined by
Udr(4)) = de(A® A),
preserves the order and the least upper bound.

Definition. A € w is total if A <. A (equivalently, if A=, A® A).
An enumeration degree is total if it contains a total set.

The image of the Turing degrees under the embedding ¢ is exactly the
set of total enumeration degrees.

It is easy to prove that there are nontotal enumeration degrees. In
fact, a sufficiently generic A < w has nontotal degree.
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A question from Emmanuel Jeandel

Question (Jeandel, email from Summer 2015)

If A <. A, what can be said about the enumeration degree of A?

This email inspired a paper on such enumeration degrees (Andrews,
Ganchev, Kuyper, Lempp, M., A. Soskova, and M. Soskova 2019).

Definition (AGKLMSS 2019, with apologies to B. Solon)

A set A C wis cototal if A <, A. An enumeration degree is cototal if
it contains a cototal set.

Theorem (M., Soskova 2018). The cototal enumeration degrees
are a dense substructure of the enumeration degrees.

Jeandel’s interest in these enumeration degrees comes out of
symbolic dynamics.
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Minimal subshifts

Definition
» The shift operator is the map o: 2“ — 2% that erases the first bit
of a given sequence.

» C € 2% is a subshift if it is closed and shift-invariant.
» C is minimal if there is no nonempty, proper sub-subshift D < C.
» The language of subshift C is the set

Le ={0€2~¥: (3X €C) o is a subword of X}.

Proposition
The following are equivalent for a subshift C < 2¢:

1. C is minimal.
2. For every X € C, the o-orbit of X is dense in C.

3. Every X € C contains the same subwords (i.e., all of L¢).
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Minimal subshifts and enumeration degrees

Assume that C is minimal.
» Every X € C can enumerate the language L¢.

» Conversely, from an enumeration of L¢, we can compute an
element of C.

Proposition (Jeandel). A Turing degree computes a member of a
minimal subshift C € 2¢ if and only if it enumerates L¢.

In fact, Jeandel and Vanier (2013) proved that for a nontrivial
minimal subshift C, any Turing degree that computes a member of C
also contains a member of C.

Therefore, the degrees of members of a nontrivial minimal
subshift C are exactly the total degrees above deg,(Lc¢).
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Le¢ is cototal and uniformly introenumerable

We are ready to explain Jeandel’s email.
Proposition (Jeandel)

If C is a minimal subshift, then L¢ is cototal (i.e., L¢ <. Lc).

Proof Sketch. o
Starting with the full tree 2<“, use an enumeration of L¢ to prune
branches that do not extend to elements of C.

By compactness, 7 € L¢ if and only if at some stage of this pruning
process, T is a subword of every unpruned path. O

A similar compactness argument shows:

Proposition (Jeandel). If C is a minimal subshift, then there is an
enumeration operator I' such that S € L¢ infinite = L¢ =T'(5).

We say that L¢ is uniformly introenumerable.
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Taking stock

At this point, we are left with the following questions:

1. Are the degrees of languages of minimal subshifts exactly the
cototal degrees?

2. How do the uniformly introenumerable degrees (i.e., those that
contain a uniformly introenumerable set) relate to the cototal
degrees?

Theorem (McCarthy 2018). Every cototal enumeration degree is
the degree of the language of a minimal subshift.

So all cototal degrees are uniformly introenumerable.

McCarthy’s proof passes through the notion of e-pointed trees.
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Enumeration pointed trees

Definition (Montalban). A tree T < 2<% is e-pointed if it has no
dead ends and every infinite path f € [T'] enumerates T
We consider several variations:

> Baire e-pointed: if T € w<¥.

» uniformly e-pointed: if every f € [T] enumerates T by a fixed
operator.

> e-pointed with dead ends: if dead ends are allowed.

Facts

» Uniformly e-pointed trees (in 2<“) are cototal and uniformly
introenumerable.

» If C = [T] is a minimal subshift, where T" < 2=“ has no dead
ends, then T is uniformly e-pointed.
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Enumeration pointed trees

Theorem (Montalban 2021)

If a structure spectrum is the Turing-upward closure of an F, subset
of 2% then it is an enumeration-cone (the set of total/Turing degrees
above some fixed enumeration degree).

In particular, it must be the cone above the enumeration degree of an
e-pointed tree. (Furthermore, the converse holds!)

The same is true for F,, subsets of w* and Baire e-pointed trees.

Theorem (McCarthy 2018)

An enumeration degree is cototal if and only if it contains a
(uniformly) e-pointed tree in 2<% (possibly with dead ends).
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But what about introenumerability?

Given an infinite set I € w, let T7 € w=<¥ be the tree of subsets of I.
In other words, f € [T] if and only if f is injective and range(f) < I.

Note that 77 has no dead ends.

Observation. If I € w is (uniformly) introenumerable, then T is
(uniformly) Baire e-pointed.

Proof. Every f € [T;] enumerates range(f) =. I (and this is uniform
if T is uniformly introenumerable). Clearly I > T7. O

So in the enumeration degrees:

cototal <= (uniformly) e-pointed

= uniformly introenumerable = uniformly Baire e-pointed.
These implications are strict.
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Joint work with Goh, Jacobsen-Grocott, and Soskova

The solid arrows are strict.

(uniformly)
Baire e-pointed
w/ dead ends

hyper-
cototal
Baire e-pointed
uniformly -
Baire e-pointed
uniformly
introenumerable

The red arrow is open. If it
is false, then the dashed
arrows are also strict.

(uniformly)
Cantor e-pointed
(w/ dead ends)

Everything else is resolved.
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Hyperenumeration reducibility

Sanchis (1978) introduced hyperenumeration reduction (<) as a
“higher” version of enumeration reduction.

It fits nicely into the analogy:

<r c.e. relative to <e

<h I} relative to <he

where <, is hyperarithmetic reducibility.

For example:
Proposition. A<, B «— A® A<y B®B.
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Hyper-cototality

Definition. A is called hyper-cototal if A <p. A. An enumeration
degree is hyper-cototal if it contains a hyper-cototal set. (This is
equivalent to only containing hyper-cototal sets.)

Proposition (GJ-GMS)
An enumeration degree is hyper-cototal if and only if it contains a
(uniformly) Baire e-pointed tree with dead ends.

Facts
» All T1} sets hyper-cototal because they are in the least he-degree.

» No 3-generic is enumeration equivalent to a Baire e-pointed tree.

» Therefore, hyper-cototal == Baire e-pointed.
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Joint work with Goh, Jacobsen-Grocott, and Soskova

Our main results are:

(uniformly)
Baire e-pointed
w/ dead ends

cototal
Thm. There is a uniformly

introenumerable set that does
not have cototal degree.
uniformly "

uniformly
introenumerable

Thm. There is a uniformly
Baire e-pointed tree that does
not have introenumerable
degree.

(uniformly)
Cantor e-pointed
(w/ dead ends)

We discuss the first.
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Uniformly introenumerable but not cototal

Theorem (Goh, Jacobsen-Grocott, M., and Soskova)

There is a uniformly introenumerable set I € w that does not have
cototal degree.

We build I by forcing.

First, assume that we have fixed a suitable enumeration operator ¥
that will witness that I is uniformly introenumerable. It must behave
well with respect to finite sets.

- ¥(2) = .
» If S € w is finite, then so is ¥(S).

» If U(S) < T, where S and T are finite, then there is an x such
that ¥(S v {z}) =T.

» The previous extends (to the extent that it can) to finite
sequences of pairs S;, T;.
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The forcing notion

A forcing condition has the form (G, By, ..., By, L), for some k € w,
and satisfies 1-7 below.

1. G,Byg,...,By € w are disjoint finite sets.

> Every n € G is “good”; it will be in our introenumerable set.
> Every n e <,
»Let A=GulJ

B; is “bad”; we keep these out of our set.
i<k B

2. L: AxP(A) - w-2 U {o}.

3. For C < A, we have (Vn) L(n,C) =0 < ne ¥(C).

> L(n,C) tells us how close we are to adding n to ¥(C).

» o will be a placeholder for finite numbers of indeterminate (but
presumably large) size.

» We order w -2 U {oc} by

O<l<2< "< <w<wt+l<w+2<---.
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The

forcing notion (2)

ot

. For C € A, we have (Vn) L(n,C) =0 < ne ¥(C).
. If C 2 D < Aand ne A, then either L(n, D) < L(n,C),

L(n,D) = «« = L(n,C), or L(n,D) =0 = L(n,C).

> o¢ allows us to sidestep the fact that w - 2 is well-founded.
> It is only allowed if n is “worse” than any element of C.

>LetAj=GULJ B;. (SOAk=G)

>

. If L(n,C) = o, then for some j we have C' < A; and n € B;.
.If C < Aj and ne By, then L(n,C) = «

» By 6 and 3, no bad number can be in ¥U(G).

> Finally, we have a transitivity property for “finiteness”.

If L(n,C v D) oc and (Vm € C') L(m, D) < o, then
L(n, D) <
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The forcing notion (3)

We say that p’ = (G’, By,,..., B}, L") extends p = {G, By, ..., By, L),
written as p’ < p, if

» ' 2 G,

> (Vj < k) B, = B,

» k' >k, and

» L' 1(Ax P(A)) = L.

If F is a filter, then let Ir = |J _» GP.

pEF

Claims. If F is sufficiently generic, then
» Ir is infinite. (Uses the choice of ¥.)
» Ir uniformly introenumerable. (This is straightforward.)

» Ir does not have cototal degree. (This is where we use the
sequence of bad sets.)
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Why do we have a sequence of bad sets?

New
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Thank you!

(uniformly)
Baire e-pointed
w/ dead ends

hyper-
cototal

Baire e-pointed

uniformly =
Baire e-pointed

(uniformly)
Cantor e-pointed
(w/ dead ends)



