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Outline

§ Give a brief review of the enumeration degrees.

§ Talk about minimal subshifts as our original motivation for
studying the cototal sets and degrees. Introduce uniform
introenumerability.

§ Talk about enumeration pointed trees and McCarthy’s
characterizations of cototality. Relate this to uniform
introenumerability.

§ Describe my recent work with Goh, Jacobsen-Grocott, and
Soskova.

§ Talk about the proof that there is a uniformly introenumerable
set that is not of cototal degree.
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The enumeration degrees

Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: A Ď ω is enumeration reducible to B Ď ω (A ďe B) if
there is a uniform way to enumerate A from an enumeration of B.

Definition. A ďe B if there is a c.e. set W such that

A “ tn : pDeq xn, ey PW and De Ď Bu,

where De is the eth finite set in a canonical enumeration.

The degree structure De induced by ďe is called the enumeration
degrees. It is an upper semi-lattice with a least element (the degree of
all c.e. sets).
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The total enumeration degrees

Proposition. A ďT B ðñ A‘A ďe B ‘B.

This suggests a natural embedding of the Turing degrees into the
enumeration degrees.

Proposition. The embedding ι : DT Ñ De, defined by

ιpdT pAqq “ depA‘Aq,

preserves the order and the least upper bound.

Definition. A Ď ω is total if A ďe A (equivalently, if A ”e A‘A).
An enumeration degree is total if it contains a total set.

The image of the Turing degrees under the embedding ι is exactly the
set of total enumeration degrees.

It is easy to prove that there are nontotal enumeration degrees. In
fact, a sufficiently generic A Ď ω has nontotal degree.

3 / 20



A question from Emmanuel Jeandel

Question (Jeandel, email from Summer 2015)
If A ďe A, what can be said about the enumeration degree of A?

This email inspired a paper on such enumeration degrees (Andrews,
Ganchev, Kuyper, Lempp, M., A. Soskova, and M. Soskova 2019).

Definition (AGKLMSS 2019, with apologies to B. Solon)
A set A Ď ω is cototal if A ďe A. An enumeration degree is cototal if
it contains a cototal set.

Theorem (M., Soskova 2018). The cototal enumeration degrees
are a dense substructure of the enumeration degrees.

Jeandel’s interest in these enumeration degrees comes out of
symbolic dynamics.
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Minimal subshifts

Definition
§ The shift operator is the map σ : 2ω Ñ 2ω that erases the first bit

of a given sequence.

§ C Ď 2ω is a subshift if it is closed and shift-invariant.

§ C is minimal if there is no nonempty, proper sub-subshift D Ă C.
§ The language of subshift C is the set

LC “ tσ P 2ăω : pDX P Cq σ is a subword of Xu.

Proposition
The following are equivalent for a subshift C Ď 2ω:
1. C is minimal.

2. For every X P C, the σ-orbit of X is dense in C.

3. Every X P C contains the same subwords (i.e., all of LC).
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Minimal subshifts and enumeration degrees

Assume that C is minimal.

§ Every X P C can enumerate the language LC .

§ Conversely, from an enumeration of LC , we can compute an
element of C.

Proposition (Jeandel). A Turing degree computes a member of a
minimal subshift C Ď 2ω if and only if it enumerates LC .

In fact, Jeandel and Vanier (2013) proved that for a nontrivial
minimal subshift C, any Turing degree that computes a member of C
also contains a member of C.

Therefore, the degrees of members of a nontrivial minimal
subshift C are exactly the total degrees above degepLCq.
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LC is cototal and uniformly introenumerable

We are ready to explain Jeandel’s email.

Proposition (Jeandel)
If C is a minimal subshift, then LC is cototal (i.e., LC ďe LC).

Proof Sketch.
Starting with the full tree 2ăω, use an enumeration of LC to prune
branches that do not extend to elements of C.

By compactness, τ P LC if and only if at some stage of this pruning
process, τ is a subword of every unpruned path.

A similar compactness argument shows:

Proposition (Jeandel). If C is a minimal subshift, then there is an
enumeration operator Γ such that S Ď LC infinite ùñ LC “ ΓpSq.

We say that LC is uniformly introenumerable.
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Taking stock

At this point, we are left with the following questions:

1. Are the degrees of languages of minimal subshifts exactly the
cototal degrees?

2. How do the uniformly introenumerable degrees (i.e., those that
contain a uniformly introenumerable set) relate to the cototal
degrees?

Theorem (McCarthy 2018). Every cototal enumeration degree is
the degree of the language of a minimal subshift.

So all cototal degrees are uniformly introenumerable.

McCarthy’s proof passes through the notion of e-pointed trees.
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Enumeration pointed trees

Definition (Montalbán). A tree T Ď 2ăω is e-pointed if it has no
dead ends and every infinite path f P rT s enumerates T .

We consider several variations:

§ Baire e-pointed : if T Ď ωăω.

§ uniformly e-pointed : if every f P rT s enumerates T by a fixed
operator.

§ e-pointed with dead ends: if dead ends are allowed.

Facts
§ Uniformly e-pointed trees (in 2ăω) are cototal and uniformly

introenumerable.

§ If C “ rT s is a minimal subshift, where T Ď 2ăω has no dead
ends, then T is uniformly e-pointed.
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Enumeration pointed trees

Theorem (Montalbán 2021)
If a structure spectrum is the Turing-upward closure of an Fσ subset
of 2ω, then it is an enumeration-cone (the set of total/Turing degrees
above some fixed enumeration degree).

In particular, it must be the cone above the enumeration degree of an
e-pointed tree. (Furthermore, the converse holds!)

The same is true for Fσ subsets of ωω and Baire e-pointed trees.

Theorem (McCarthy 2018)
An enumeration degree is cototal if and only if it contains a
(uniformly) e-pointed tree in 2ăω (possibly with dead ends).
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But what about introenumerability?

Given an infinite set I Ď ω, let TI Ď ωăω be the tree of subsets of I.
In other words, f P rTI s if and only if f is injective and rangepfq Ď I.

Note that TI has no dead ends.

Observation. If I Ď ω is (uniformly) introenumerable, then TI is
(uniformly) Baire e-pointed.

Proof. Every f P rTI s enumerates rangepfq ěe I (and this is uniform
if I is uniformly introenumerable). Clearly I ěe TI .

So in the enumeration degrees:

cototal ðñ (uniformly) e-pointed
ùñ uniformly introenumerable ùñ uniformly Baire e-pointed.

These implications are strict.
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Joint work with Goh, Jacobsen-Grocott, and Soskova

The solid arrows are strict.

The red arrow is open. If it
is false, then the dashed
arrows are also strict.

Everything else is resolved.

cototal
(uniformly)

Cantor e-pointed
(w/ dead ends)

uniformly
introenumerable

hyper-
cototal

(uniformly)
Baire e-pointed
w/ dead ends

uniformly
Baire e-pointed

Baire e-pointed

introenumerable

total
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Hyperenumeration reducibility

Sanchis (1978) introduced hyperenumeration reduction (ďhe) as a
“higher” version of enumeration reduction.

It fits nicely into the analogy:

ďT

ďh
„

c.e. relative to
Π1

1 relative to
„

ďe

ďhe
,

where ďh is hyperarithmetic reducibility.

For example:
Proposition. A ďh B ðñ A‘A ďhe B ‘B.
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Hyper-cototality

Definition. A is called hyper-cototal if A ďhe A. An enumeration
degree is hyper-cototal if it contains a hyper-cototal set. (This is
equivalent to only containing hyper-cototal sets.)

Proposition (GJ-GMS)
An enumeration degree is hyper-cototal if and only if it contains a
(uniformly) Baire e-pointed tree with dead ends.

Facts
§ All Π1

1 sets hyper-cototal because they are in the least he-degree.

§ No 3-generic is enumeration equivalent to a Baire e-pointed tree.

§ Therefore, hyper-cototal ­ùñ Baire e-pointed.
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Joint work with Goh, Jacobsen-Grocott, and Soskova

Our main results are:

Thm. There is a uniformly
introenumerable set that does
not have cototal degree.

Thm. There is a uniformly
Baire e-pointed tree that does
not have introenumerable
degree.

We discuss the first.
cototal

(uniformly)
Cantor e-pointed
(w/ dead ends)

uniformly
introenumerable

hyper-
cototal

(uniformly)
Baire e-pointed
w/ dead ends

uniformly
Baire e-pointed

Baire e-pointed

introenumerable

total
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Uniformly introenumerable but not cototal

Theorem (Goh, Jacobsen-Grocott, M., and Soskova)
There is a uniformly introenumerable set I Ď ω that does not have
cototal degree.

We build I by forcing.

First, assume that we have fixed a suitable enumeration operator Ψ
that will witness that I is uniformly introenumerable. It must behave
well with respect to finite sets.

§ ΨpHq “ H.

§ If S Ď ω is finite, then so is ΨpSq.

§ If ΨpSq Ď T , where S and T are finite, then there is an x such
that ΨpS Y txuq “ T .

§ The previous extends (to the extent that it can) to finite
sequences of pairs Si, Ti.
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The forcing notion

A forcing condition has the form xG,Bk, . . . , B0, Ly, for some k P ω,
and satisfies 1–7 below.

1. G,Bk, . . . , B0 Ď ω are disjoint finite sets.

§ Every n P G is “good”; it will be in our introenumerable set.
§ Every n P

Ť

iďk Bi is “bad”; we keep these out of our set.
§ Let A “ GY

Ť

iďk Bi.

2. L : Aˆ PpAq Ñ ω ¨ 2Y t9u.

3. For C Ď A, we have p@nq Lpn,Cq “ 0 ðñ n P ΨpCq.

§ Lpn,Cq tells us how close we are to adding n to ΨpCq.
§ 9 will be a placeholder for finite numbers of indeterminate (but

presumably large) size.
§ We order ω ¨ 2Y t9u by

0 ă 1 ă 2 ă ¨ ¨ ¨ ă 9 ă ω ă ω ` 1 ă ω ` 2 ă ¨ ¨ ¨ .

17 / 20



The forcing notion (2)

3. For C Ď A, we have p@nq Lpn,Cq “ 0 ðñ n P ΨpCq.

4. If C Ĺ D Ď A and n P A, then either Lpn,Dq ă Lpn,Cq,
Lpn,Dq “ 9 “ Lpn,Cq, or Lpn,Dq “ 0 “ Lpn,Cq.

§ 9 allows us to sidestep the fact that ω ¨ 2 is well-founded.
§ It is only allowed if n is “worse” than any element of C.
§ Let Aj “ GY

Ť

iąj Bi. (So Ak “ G.)

5. If Lpn,Cq “ 9, then for some j we have C Ď Aj and n P Bj .

6. If C Ď Aj and n P Bj , then Lpn,Cq ě 9.

§ By 6 and 3, no bad number can be in ΨpGq.
§ Finally, we have a transitivity property for “finiteness”.

7. If Lpn,C YDq ď 9 and p@m P Cq Lpm,Dq ď 9, then
Lpn,Dq ď 9.
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The forcing notion (3)

We say that p1 “ xG1, B1k1 , . . . , B10, L
1y extends p “ xG,Bk, . . . , B0, Ly,

written as p1 ĺ p, if

§ G1 Ě G,
§ p@j ď kq B1j “ Bj ,
§ k1 ě k, and
§ L1 æpAˆ PpAqq “ L.

If F is a filter, then let IF “
Ť

pPF G
p.

Claims. If F is sufficiently generic, then

§ IF is infinite. (Uses the choice of Ψ.)

§ IF uniformly introenumerable. (This is straightforward.)

§ IF does not have cototal degree. (This is where we use the
sequence of bad sets.)
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Why do we have a sequence of bad sets?
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Thank you!

cototal
(uniformly)

Cantor e-pointed
(w/ dead ends)

uniformly
introenumerable

hyper-
cototal

(uniformly)
Baire e-pointed
w/ dead ends

uniformly
Baire e-pointed

Baire e-pointed

introenumerable

total


