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Enumeration reducibility: computing with positive
information

Definition (Friedberg, Rogers 1959)

For A,B ⊆ ω, we say A is e-reducible to B (A ≤e B) if
there is a c.e. set W such that

n ∈ A ⇔ ∃ finite D(〈n,D〉 ∈W ∧ D ⊆ B).

We think of W as an e-operator Γ, with Γ(B) = A.

A function f on ω is an enumeration of A if the range of f is A.

Theorem (Selman 1971)

A ≤e B if and only if every enumeration of B computes some
enumeration of A.
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Facts about ≤e and e-operators

A set is c.e. if and only if it is e-reducible to ∅.

A and A need not be comparable under ≤e.

A is c.e. in B if and only if A ≤e B ⊕ B.

A ≤T B if and only if A⊕ A ≤e B ⊕ B.

≤e is reflexive and transitive so we can define the structure of the
e-degrees from ≤e in the same way that the structure of the
Turing degrees is defined from ≤T.

The Turing degrees embed into the e-degrees via A 7→ A⊕ A.

If Γ is an e-operator and B ⊆ C , then Γ(B) ⊆ Γ(C ).
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Some motivations for studying enumeration reducibility

It is a natural way for modeling computation with partial functions.

It forms a broader framework for measuring the relative complexity
of mathematical objects (e.g., Miller 2004).

Unlike the Turing degrees, the e-degrees have several “natural”
subclasses which are definable using a “natural” first-order formula
in the language of partial orders (e.g., Kalimullin 2003).

Any nontrivial automorphism of the e-degrees induces a nontrivial
automorphism of the Turing degrees (Cai, Ganchev, Lempp, Miller,
Soskova 2016).
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Subclasses of the e-degrees

The total degrees are the image of the Turing degrees under the
embedding A 7→ A⊕ A. Equivalently, they are the degrees with a
representative A which satisfies A ≤e A.

The continuous degrees are, roughly speaking, the degrees of
continuous functions on [0, 1].

The cototal degrees are those with a representative A which
satisfies A ≤e A.

Theorem (Miller 2004, Andrews, Ganchev, Kuyper, Lempp,
Miller, Soskova, Soskova 2019)

Total ( continuous ( cototal ( all e-degrees.
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Defining subclasses by lifting notions from the Turing
degrees

Given a property true of all Turing degrees, we may:

I Relativize to enumeration degrees, often by replacing “c.e. in”
with “≤e”.

I Then, consider the subclass of all e-degrees which satisfy the
(relativized) property.

The resulting subclass of e-degrees contains the total degrees
(strictly, usually).

We study several such subclasses which are defined by considering
properties of Π0

1 classes and the relation “PA above”.
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Definition (Miller, Soskova)

For X ⊆ ω, a Σ0
1〈X 〉-class U ⊆ 2ω is a union of cones [σ], where

the σ ∈ 2<ω come from some W ≤e X , i.e.,

U = {Y ∈ 2ω : (∃σ ∈W )(σ ≺ Y )}.

A Π0
1〈X 〉-class is one whose complement is a Σ0

1〈X 〉-class.

Examples:

I Every Π0
1(X )-class is a Π0

1〈X ⊕ X 〉-class.

I If A,B ≤e X , then the set of separators of A and B form a
Π0
1〈X 〉-class. We call this a separating Π0

1〈X 〉-class.

Technicality: We view elements of a Π0
1〈X 〉-class as total objects.
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Degrees with a universal class

Definition
Let P〈X 〉 be a nonempty Π0

1〈X 〉-class. P〈X 〉 is a universal class
for X if for every nonempty Π0

1〈X 〉-class Q〈X 〉,
there is some Turing functional Φ such that
for every A ∈ P〈X 〉, we have ΦA ∈ Q〈X 〉.

If X is total, then X has a universal class, e.g., the class of DNCX
2

functions.

Furthermore:

Theorem (Ganchev, Kalimullin, Miller, Soskova 2020)

Every continuous degree has a universal class.

Are there other degrees which have a universal class?
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Another way to have a universal class: Low for PA

Recall that B is said to have PA degree if B computes a member
of every nonempty Π0

1 class.

Definition
X is low for PA if whenever B has PA degree, then B computes a
member of every nonempty Π0

1〈X 〉-class P.

Theorem (GKMS)

I X is low for PA if and only if every nonempty Π0
1〈X 〉-class

contains a nonempty Π0
1 class.

I If X is low for PA, then DNC2 is a universal class for X .

I 1-generics are low for PA.

Theorem (Miller, Soskova)

If X is low for PA, then X is not continuous (unless X is c.e.)
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Another way to have a universal class: Reduction property

Definition
X has the reduction property if for all pairs of sets A,B ≤e X ,
there are sets A0,B0 ≤e X such that A0 ⊆ A, B0 ⊆ B,
A0 ∩ B0 = ∅, and A0 ∪ B0 = A ∪ B.

If X is total, then it is easy to see that it has the reduction
property.

Theorem (GKMS)

If X has the reduction property, then it has a universal class.

The reduction property (for e-ideals) was first studied by Kalimullin
and Puzarenko (2004): Their results (and others) imply that the
reduction property is incomparable with being low for PA, or being
continuous.
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A related notion? Universal functions

Definition
X has a universal function if there is a partial function U with
GU ≤e X such that if ϕ is a partial function with Gϕ ≤e X , then
ϕ = λx .U(e, x) for some e ∈ ω.

Theorem (GKMS)

If X has a universal class, then it has a universal function. The
converse is false.

To prove the implication, we prove that X has a universal function
if and only if there is a Π0

1〈X 〉-class P which is universal for
separating Π0

1〈X 〉-classes, i.e., for every separating Π0
1〈X 〉-class

Q, there is some Φ such that for every A ∈ P, we have ΦA ∈ Q.
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Generics which do not have a universal class

We work with subtrees of

f <ω := {σ ∈ ω<ω : (∀n < |σ|)[σ(n) < 2n]}.

A forcing condition is a pair 〈T , ε〉, where:

I T is a finite tree where all leaves have the same height |T |
I ε is a rational number in (0, 1).

〈S , δ〉 extends 〈T , ε〉 if:

I S adds no new strings of length ≤ |T |
I Every σ ∈ S with |T | ≤ |σ| < |S | has many immediate

successors in S , specifically at least 1− ε in proportion

I δ ≤ ε

A generic object will be an infinite subtree G of f <ω with no leaves.
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A generic object will be an infinite subtree G of f <ω with no leaves.

We view its complement AG := f <ω\G as an enumeration oracle.
Then [G ] is a Π0

1〈AG 〉-class.

Later we will consider, for certain σ ∈ G , the subtree

G\[σ]� := G − {τ : τ � σ}.

Note
G\[σ]� ⊆ G

AG\[σ]� ⊇ AG

and so for any e-operator Γ,

Γ(AG\[σ]�) ⊇ Γ(AG ).

Therefore for any Π0
1〈·〉-class P,

P〈AG\[σ]�〉 ⊆ P〈AG 〉.
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Lemma (combinatorial)

If 〈S0, δ0〉 and 〈S1, δ1〉 both extend 〈T , ε/2〉, then 〈S0 ∩ S1, ε〉 is a
condition which extends 〈T , ε〉.

Lemma
If Gϕ ≤e AG , then {n : ϕ(n) = 0} and {n : ϕ(n) = 1} are
separated by a pair of disjoint c.e. sets.

Sketch of proof.

Fix e-operators Γ0 and Γ1 such that Γi (AG ) = {n : ϕ(n) = i}.
Fix a condition 〈T , ε〉 in the generic filter which forces that Γ0(AG )
and Γ1(AG ) are disjoint.

There is a condition 〈T ′, ε′〉 in the generic filter which extends
〈T , ε〉 and satisfies ε′ ≤ ε/2. Then define

Ci = {n : ∃〈S , δ〉 ≤ 〈T ′, ε′〉(n ∈ Γi (AS))},

where AS is the set of strings in f <ω of height ≤ |S | which are not
in S .
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Theorem (GKMS)

AG has a universal function.

Proof.
Define U(〈e, i〉, x) = y if

1. 〈x , y〉 ∈ Γe(AG ), and

2. there is a level n and a stage s such that for every σ ∈ 2<ω of
length n, either
I we see that σ is not an initial segment of a DNC2 function, or
I Φσ

i,s(x) ↓= y .

U is a partial function and GU ≤e AG .

Suppose Gϕ = Γe(AG ). Then there is some i such that if X is a
DNC2 function, ΦX

i is total and separates {n : ϕ(n) = 0} and
{n : ϕ(n) = 1}. (Such i exists by the previous lemma.)

By compactness of 2ω, we have ϕ = λx .U(〈e, i〉, x).
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Our next goal:

Theorem (GKMS)

AG has no universal class, i.e.,
for every nonempty Π0

1〈AG 〉-class P〈AG 〉,
there is a nonempty Π0

1〈AG 〉-class Q〈AG 〉 such that
for every Turing functional Φ, there is some X ∈ P〈AG 〉 with
ΦX /∈ Q〈AG 〉.

Tension: If, in the construction of G , we omit certain strings in
order to construct a “small” Q〈AG 〉, then we might make P〈AG 〉
smaller too, making it harder to find X ∈ P〈AG 〉.

Solution: Decouple by choosing Q〈AG 〉 to be in an appropriate
cone [σ]� of G , such that P〈AG\[σ]�〉 is always nonempty.
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Suppose P〈AG 〉 is nonempty. Fix a condition 〈T , ε〉 in the generic
filter which forces this.

Extend T to a tall tree S in a maximal way, i.e., by including every
extension of every leaf in T .

Fix a leaf σ of S . Then 〈S , ε〉 forces:

I σ is extendible in G (so [G ]∩ [σ] is a nonempty Π0
1〈AG 〉-class)

I P〈AG\[σ]�〉 is nonempty (because if 〈R, δ〉 extends 〈S , ε〉,
then 〈R\[σ]�, δ〉 is a condition which extends 〈T , ε〉.)

By genericity, we can find such 〈S , ε〉 in the generic filter.

Suppose, towards a contradiction, that there is a Turing functional
Φ such that for every X in P〈AG 〉, we have ΦX ∈ [G ] ∩ [σ].
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From before:

I 〈S , ε〉 forces “σ is extendible in G and P〈AG\[σ]�〉 is
nonempty”

I For every X in P〈AG 〉, we have ΦX ∈ [G ] ∩ [σ].

By making an extension, we can decide ΦX (|σ|) (somewhat):

Lemma
There is some 〈R, δ〉 ≤ 〈S , ε〉 and an immediate successor τ of σ
such that:

I 〈R, δ〉 forces that {X : ΦX � τ} ∩ P〈AG\[σ]�〉 is nonempty

I R contains every immediate successor of σ.

To prove the above, we use:

Lemma (easy generalization of combinatorial lemma)

If 〈S1, δ1〉, . . . , 〈Sm, δm〉 all extend 〈T , ε/m〉, then
〈S1 ∩ · · · ∩ Sm, ε〉 extends 〈T , ε〉.
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From before:

I For every X in P〈AG 〉, we have ΦX ∈ [G ] ∩ [σ]

I 〈R, δ〉 ≤ 〈S , ε〉 and 〈R, δ〉 contains every immediate successor
of σ, including τ

I 〈R, δ〉 forces that {X : ΦX � τ} ∩ P〈AG\[σ]�〉 is nonempty.

Now we diagonalize: Define R ′ = R\[τ ]�. Then:

I 〈R ′, δ〉 is a condition extending 〈S , ε〉
I 〈R ′, δ〉 still forces that {X : ΦX � τ} ∩ P〈AG\[σ]�〉 is

nonempty (because P〈AG\[σ]�〉 isn’t affected by G ∩ [σ]�)

I 〈R ′, δ〉 forces that τ is not extendible in G .

By genericity one can find such 〈R ′, δ〉 in the generic filter,
contradiction.

This completes the proof that AG has no universal class.
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Other subclasses we studied

universal
class

universal
function

reduction
property

not
separation
property

not
〈self〉-PA

quasiminimal

computable
extension
property

low for PA continuous

total

cototal

Arrows indicate inclusion. No
other inclusions hold.

In each box, the two subclasses
are closely related by our work:

I the one in bold is defined by
quantifying over all
Π0
1〈X 〉-classes, while

I the other can be
characterized by quantifying
over only separating
Π0
1〈X 〉-classes.
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Two open questions

1. Are the subclasses on the previous slide first-order definable?
(Some are known to be; most are not known to be.)

2. Does the uniformity in the definition of universal class matter?

(Recall: P〈X 〉 is a universal class for X if
for every nonempty Π0

1〈X 〉-class Q〈X 〉,
there is some Turing functional Φ such that
for every A ∈ P〈X 〉, we have ΦA ∈ Q〈X 〉.)

Thanks!
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