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Enumeration reducibility: computing with positive
information

Definition (Friedberg, Rogers 1959)

For A, B C w, we say A is e-reducible to B (A <. B) if
there is a c.e. set W such that

neA <  Ifinite D((n,D) € WA D C B).
We think of W as an e-operator I, with [(B) = A.

A function f on w is an enumeration of A if the range of f is A.

Theorem (Selman 1971)

A <, B if and only if every enumeration of B computes some
enumeration of A.
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Facts about <. and e-operators

A set is c.e. if and only if it is e-reducible to (.

A and A need not be comparable under <,.

Ais ce. in Bifand only if A<, B® B.

A<t Bifandonlyif A& A<.B&B.

<, is reflexive and transitive so we can define the structure of the
e-degrees from <, in the same way that the structure of the
Turing degrees is defined from <.

The Turing degrees embed into the e-degrees via A — A® A.

If T is an e-operator and B C C, then I'(B) C I'(C).
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Some motivations for studying enumeration reducibility

It is a natural way for modeling computation with partial functions.

It forms a broader framework for measuring the relative complexity
of mathematical objects (e.g., Miller 2004).

Unlike the Turing degrees, the e-degrees have several “natural”
subclasses which are definable using a “natural” first-order formula
in the language of partial orders (e.g., Kalimullin 2003).

Any nontrivial automorphism of the e-degrees induces a nontrivial
automorphism of the Turing degrees (Cai, Ganchev, Lempp, Miller,
Soskova 2016).
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Subclasses of the e-degrees

The total degrees are the image of the Turing degrees under the
embedding A+ A@ A. Equivalently, they are the degrees with a
representative A which satisfies A <, A.

The continuous degrees are, roughly speaking, the degrees of
continuous functions on [0, 1].

The cototal degrees are those with a representative A which
satisfies A <, A.

Theorem (Miller 2004, Andrews, Ganchev, Kuyper, Lempp,
Miller, Soskova, Soskova 2019)

Total C continuous € cototal C  all e-degrees.

= = =
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Defining subclasses by lifting notions from the Turing
degrees

Given a property true of all Turing degrees, we may:
» Relativize to enumeration degrees, often by replacing “c.e. in”
with “<,".
» Then, consider the subclass of all e-degrees which satisfy the
(relativized) property.

The resulting subclass of e-degrees contains the total degrees
(strictly, usually).

We study several such subclasses which are defined by considering
properties of 9 classes and the relation “PA above”.
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Definition (Miller, Soskova)

For X C w, a ¥9(X)-class U C 2“ is a union of cones [o], where
the 0 € 2<% come from some W <, X, i.e,,

U={Ye€2¥:(do € W)(o <Y)}

A T9(X)-class is one whose complement is a £9(X)-class.

Examples:
» Every N(X)-class is a M9(X @ X)-class.

> If A, B <, X, then the set of separators of A and B form a
N9(X)-class. We call this a separating M9 (X)-class.

Technicality: We view elements of a M{(X)-class as total objects.
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Degrees with a universal class

Definition

Let P(X) be a nonempty N?(X)-class. P(X) is a universal class
for X if for every nonempty M9(X)-class Q(X),

there is some Turing functional ® such that

for every A € P(X), we have ®* € Q(X).

If X is total, then X has a universal class, e.g., the class of DNC§<
functions.

Furthermore:

Theorem (Ganchev, Kalimullin, Miller, Soskova 2020)

Every continuous degree has a universal class.
Are there other degrees which have a universal class?
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Another way to have a universal class: Low for PA

Recall that B is said to have PA degree if B computes a member
of every nonempty N9 class.

Definition
X is low for PA if whenever B has PA degree, then B computes a
member of every nonempty N9(X)-class P.

Theorem (GKMS)

» X is low for PA if and only if every nonempty N9(X)-class
contains a nonempty MY class.

> If X is low for PA, then DNC, is a universal class for X.

» 1-generics are low for PA.

Theorem (Miller, Soskova)
If X is low for PA, then X is not continuous (unless X is c.e.)
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Another way to have a universal class: Reduction property

Definition

X has the reduction property if for all pairs of sets A, B <, X,
there are sets Ag, By <. X such that Ag C A, By C B,
AgNBy=0, and AU By =AU B.

If X is total, then it is easy to see that it has the reduction
property.

Theorem (GKMS)

If X has the reduction property, then it has a universal class.

The reduction property (for e-ideals) was first studied by Kalimullin
and Puzarenko (2004): Their results (and others) imply that the
reduction property is incomparable with being low for PA, or being
continuous.
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A related notion? Universal functions

Definition

X has a universal function if there is a partial function U with
Gy <¢ X such that if ¢ is a partial function with G, <. X, then
¢ = Ax.U(e, x) for some e € w.

Theorem (GKMS)

If X has a universal class, then it has a universal function. The
converse is false.

To prove the implication, we prove that X has a universal function
if and only if there is a M9(X)-class P which is universal for
separating M9(X)-classes, i.e., for every separating N?(X)-class
Q, there is some ® such that for every A € P, we have A e Q.
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Generics which do not have a universal class
We work with subtrees of

f~={oew:(Vn<lo|)o(n) <2"}.

A forcing condition is a pair (T,¢), where:
» T is a finite tree where all leaves have the same height |T|

» ¢ is a rational number in (0, 1).

(S,0) extends (T,¢) if:
» S adds no new strings of length < |T]|
» Every o € S with |T| < |o| < |S| has many immediate
successors in S, specifically at least 1 — ¢ in proportion
> §<e¢

A generic object will be an infinite subtree G of f<% with no leaves.
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A generic object will be an infinite subtree G of f<“ with no leaves.

We view its complement Ag := f<“\ G as an enumeration oracle.
Then [G] is a M?({Ag)-class.

Later we will consider, for certain o € G, the subtree
G\[o]? =G —{r:7 = o}

Note
G\[0]C G

Ac\[o1= 2 Ac

and so for any e-operator I,
M(Ag\[01=) 2 T(Ag)-
Therefore for any M?(-)-class P,

P(Ag\[0]z) € P{Ac).
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Lemma (combinatorial)
If (S0, d0) and (S1,01) both extend (T ,c/2), then (SN S1,¢) is a
condition which extends (T ).

Lemma

If G, <¢ Ag, then {n: p(n) =0} and {n: ¢(n) =1} are
separated by a pair of disjoint c.e. sets.

Sketch of proof.

Fix e-operators g and I'; such that I';(Ag) = {n: v(n) = i}.

Fix a condition (T, ¢) in the generic filter which forces that [o(Ag)
and 1 (Ag) are disjoint.

There is a condition (T, ") in the generic filter which extends
(T,e) and satisfies ¢’ < £/2. Then define

G ={n:3(5,0) <(T'.&")(n € Ti(As))},

where Ags is the set of strings in <% of height < |S| which are not
in S. O
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Theorem (GKMS)

A has a universal function.

Proof.
Define U((e, i), x) =y if
1. (x,y) € Te(Ag), and

2. there is a level n and a stage s such that for every o € 2<% of
length n, either

P we see that o is not an initial segment of a DNC, function, or
> ¢§fs(x) =v.
U is a partial function and Gy <, Ag.

Suppose G, = e(Ag). Then there is some i such that if X is a
DNC, function, ®X is total and separates {n : ¢(n) = 0} and
{n:¢(n) =1}. (Such i exists by the previous lemma.)

By compactness of 2¥, we have ¢ = Ax.U({e, i}, x). O
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Our next goal:

Theorem (GKMS)

A¢ has no universal class, i.e.,

for every nonempty M?(Ag)-class P(Ag),

there is a nonempty M?(Ag)-class Q(Ag) such that

for every Turing functional ®, there is some X € P(Ag) with

X ¢ Q(Ag).

Tension: If, in the construction of G, we omit certain strings in
order to construct a “small” Q(Ag), then we might make P({Ag)
smaller too, making it harder to find X € P(Ag).

Solution: Decouple by choosing Q(A¢) to be in an appropriate
cone [0]= of G, such that P(Ag\[s]=) is always nonempty.
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Suppose P(Ag) is nonempty. Fix a condition (T,¢) in the generic
filter which forces this.

Extend T to a tall tree S in a maximal way, i.e., by including every
extension of every leaf in T.

Fix a leaf o of S. Then (S, ¢) forces:
» o is extendible in G (so [G] N [o] is a nonempty M{(Ag)-class)
> P(Ag\[s]=) is nonempty (because if (R,d) extends (S, ¢),
then (R\[0]Z,d) is a condition which extends (T,e).)

By genericity, we can find such (S, ¢) in the generic filter.

Suppose, towards a contradiction, that there is a Turing functional
® such that for every X in P{Ag), we have ®X € [G] N [o].
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From before:

> (S,¢) forces "o is extendible in G and P(Ag\[]=) is
nonempty”

» For every X in P(Ag), we have ®X ¢ [G] N [o].
By making an extension, we can decide X (|o|) (somewhat):

Lemma
There is some (R, d) < (S,¢e) and an immediate successor T of o
such that:

> (R,0) forces that {X : ®X = 71N P(Ag\[s]=) is nonempty

» R contains every immediate successor of .

To prove the above, we use:

Lemma (easy generalization of combinatorial lemma)

If (51,01),..,(Sm,0m) all extend (T e/m), then
(S1N---NSm,e) extends (T,e).
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From before:
> For every X in P(Ag), we have ®X € [G] N [0]
» (R,0) < (S,¢) and (R, J) contains every immediate successor
of o, including 7

> (R,0) forces that {X : ®X = 71N P(Ag\[»]%) is nonempty.

Now we diagonalize: Define R’ = R\[7]Z. Then:
» (R',0) is a condition extending (S, ¢)
> (R',6) still forces that {X : ®X = 7} N P(Ag\[0=) 1s
nonempty (because P(Ag\[,1=) isn't affected by G N [0]7)
» (R’,§) forces that 7 is not extendible in G.

By genericity one can find such (R’,§) in the generic filter,
contradiction.

This completes the proof that Ag has no universal class.
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Other subclasses we studied

not
(self)-PA
i Arrows indicate inclusion. No
not other inclusions hold.
separation
property
,\ In each box, the two subclasses
/ : are closely related by our work:
quasiminimal ?S;vcet::;l
T / T > the one in bold is defined by
computable ) | quantifying over all
extension universa cototal HO<X>—cIasses, while
property class 1
/ T '\ ‘ » the other can be
T eductio characterized by quantifying
reduction . .
low for PA property continuous over On|y Separat|ng
\ / N9(X)-classes.

total
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Two open questions

1. Are the subclasses on the previous slide first-order definable?
(Some are known to be; most are not known to be.)

2. Does the uniformity in the definition of universal class matter?
(Recall: P(X) is a universal class for X if
for every nonempty M%(X)-class Q(X),

there is some Turing functional ¢ such that
for every A € P(X), we have ®* € Q(X).)

Thanks!
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