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Overview

> Colouring of graphs
> Recursive graphs studied for a long time (Bean, Schmerl,

etc).
> All work is joint with H.T. Koh.

Theorem (Appel, Haken (1976))
Every simple planar graph (on the plane) can be coloured with at
most 4 colours.

> Algorithmic content/strength of the 4 colour theorem.
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Map colouring

A four colouring of the map of the states of the US

> Problem is to colour each region so that no two contiguous
regions have the same colour.

> Nevada has five neighbours, so the US map cannot be
coloured using only three colours.
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The four colour theorem

> Francis Guthrie proposed this conjecture in 1852 while
trying to colour the map of England.

> Kempe (1879) and Tait (1880) gave incorrect proofs, which
got turned into the five colour theorem by Heawood in
1890.

> Appel and Haken finally proved the theorem in 1976,
building on the computer-assisted methods developed by
Heesch.

> Simplified and reproved by Robertson, Sanders, Seymour
and Thomas in 1996.
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The five colour theorem
> The five colour theorem is easy to prove: By Euler

characteristic, ∃v such that deg(v) ≤ 5.
> Then G − {v} can be coloured with five colours.
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The five colour theorem

Fix a 1-3 chain between the two vertices
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Recursive graphs and colourings

> All graphs considered are simple, i.e. no loops and no
multiple edges. (A graph in general might not be connected).

> A k-coloring of a graph (V ,E ) is a function c : V → k such
that if c(v) = c(v ′) then (v , v ′) 6∈ E .

> We of course consider infinite (countable) graphs. By
compactness, Tychonoff’s Theorem, etc:

Fact (De-Bruijn, Erdős)
An infinite graph is k-colorable iff every finite subgraph is
k-colorable (locally k-colorable).
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Recursive graphs and colourings

Theorem (Hirst)
Over RCA0, for each 2 ≤ k , we have
WKL0⇔ Every locally k-colorable graph is k-colorable.

Theorem (Gasarch, Hirst)
Over RCA0, for each 2 ≤ k , we have
WKL0⇔ Every locally k-colorable graph is 2k − 1-colorable.

Theorem (Schmerl)
Over RCA0, for each 2 ≤ k ≤ m, we have
WKL0⇔ Every locally k-colorable graph ism-colorable.
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Recursive graphs and colourings

Theorem (Bean)
Every k-colorable computable graph has a low k-coloring.

> Represent vertices as nodes of a tree and edges of the tree
as a possible color of the node.

> Any computable 2-colorable graph has a computable
2-coloring.

Theorem (Bean)
There is a computable 3-colorable planar graph that has no
computable k-coloring for any k .

> In other words, the four colour theorem is not computably
true.
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Highly recursive graphs and colourings

> A locally finite graph is highly recursive if it is computable
and the degree of each vertex is computable.

Theorem (Bean)
Given each separating Π0

1
-class P and each k ≥ 3, there is a

k-colorable highly recursive graph G such that the k-colorings of G
correspond to the paths of P in a degree-preserving way.

> This theorem almost establishes a relationship between
WKL0 and graph coloring principles. (For k = 3, G is planar).
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Highly recursive graphs and colourings

Theorem (Bean)
Every highly recursive planar graph has a computable 6-coloring.

Does every highly recursive planar graph have a computable 4-
or 5-coloring?

Theorem (Schmerl)
Every highly recursive k-colorable graph has a computable
2k − 1-coloring, and this result is sharp.

Theorem (Kierstead)
Every highly recursive k-colorable perfect graph has a computable
k + 1-coloring.
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Edge colourings

> (Kierstead) Every highly recursive k-edge-colorable perfect
graph has a computable k + 1-edge coloring.

> Vizing’s theorem: Every k-regular graph has a k + 1-edge
colouring.

> Hence, every k-regular graph has a computable k + 2-edge
colouring.

> (Schmerl) Some computable 3-regular graph has no
computable 3-edge colouring.

> (Schmerl) Is Vizing’s theorem computably true?
> (Mummert, unpublished) WKL0 is equivalent to Konig’s line

coloring theorem: Every bipartite graph with degree
bounded by k has a k-edge-colouring.
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Formalising planar graphs

> All graphs are simple. They do not have to be locally finite
or connected, unless specified.

> All results (and definitions) are over RCA0.
> A countable graph G is planar iff neither K3,3 nor K5 is a

minor (or a subdivision) of G .
> (Wagner and Kuratowski-Pontryagin) For finite graphs, this

is equivalent to having a plane diagram/embedding.
> Here we represent a plane diagram of a planar graph as a

countable set of rational coordinates representing the
coordinates of vertices, and edges. Each edge is made up of
finitely many line segments.
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Formalising planar graphs

> Each planar graph has a plane diagram with straight line as
the edges (See Wagner, Fary, Stein for finite graphs, and
Thomassen for infinite graphs).

> (Erdős, see Dirac, Schuster)
WKL0 ` Every countable planar graph has a plane diagram.

> Is this computably true?
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Plane diagrams
Proposition
There is a computable planar graph with no computable plane
diagram.

Four possible plane drawings of the gadget
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Plane diagrams

Adding the new vertex v6 in each case
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The k-color theorem

Proposition
WKL0 ⇔ Every planar graph admits a plane diagram.

> If we’re working over WKL0, we can interchangeably use
the various definitions of a planar graph.

Definition
For each k ≥ 4, define the principles:

COL(k): Every countable planar graph is k-colourable.

COL
∗(k): Every countable planar graph with a computable planar

diagram is k-colourable.

ConnCOL(k): Every countable connected planar graph is
k-colourable.
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The k-color theorem

Recall:

Theorem (Bean)
There is a computable 3-colorable planar graph that has no
computable k-coloring for any k .

> Thus COL(k) is not computably true for any k ≥ 4, but
follows from WKL0.

Theorem
WKL0 is equivalent to each of COL(4), COL∗(4) and ConnCOL(4).
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Reversing COL(4) to WKL0

Given a tree T we encode 〈〉, 0, 1 into the three gadgets respectively.
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Reversing COL(4) to WKL0

If σ0 dies, we add three new nodes:
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Reversing COL(4) to WKL0

If σ0 dies, we add three new nodes:

Now any four colouring c of the graph must satisfy
c(vσ) = c(wσ) = c(nσ1) 6= c(nσ0).
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The k-color theorem

Theorem
For each k ≥ 4, WKL0 is equivalent to each of COL(k), COL∗(k) and
ConnCOL(k).

> In the reversal RCA0 + COL(4) `WKL0, we used K4 in our
constructed graph G to force any 4-colouring of G to have
little choice.

> Obviously, we can’t use K5 to show RCA0 + COL(5) `WKL0.
> RCA0 + COL(k) `WKL0 can be proved non-uniformly, and

for k ≥ 7 this is provably necessary.
> Recall that DNR(k): ∃g : ω → {0, 1, 2, . . . , k − 1} s.t.
∀x , g(x) 6= ϕx(x).
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Reversing COL(5) to DNR(3)

To encode ϕe(e), we start with the gadget:
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Reversing COL(5) to DNR(3)

If ϕe(e) ↓= 0, we add 6 new vertices and connect them to each
K3. (This diagram can be made planar).
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Reversing COL(5) to DNR(3)

If ϕe(e) ↓= 1, we add 2 new vertices.
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Reversing COL(5) to DNR(3)

If ϕe(e) ↓= 2, we add 1 new vertex and connect to all old
vertices.
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Reversing COL(5) to DNR(3)

Now given a 5-colouring of the graph, if the left set of 9 black
vertices are coloured with only 3 colours, then ϕe(e) 6= 0.
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Reversing COL(5) to DNR(3)

If the left and right set of 9 black vertices are coloured with 4
colours, then ϕe(e) 6= 1.
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Reversing COL(5) to DNR(3)

If the black vertices are coloured with all 5 colours, then
ϕe(e) 6= 2.
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The k-color theorem and uniformity

> This shows that RCA0 + COL(5) ` DNR(3), and thus
WKL0 ↔ COL(4) and WKL0 ↔ COL(5).

> To further calibrate the complexity of statements which
might be equivalent in the RM sense, we use the tools from
computable analysis.
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Weihrauch reducibility

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer,
after Weihrauch)
Let P and Q be Π1

2
statements of second-order arithmetic.

> P ≤W Q , if ∃Φ,Ψ where Φ,Ψ are Turing reductions s.t.
whenever A is an instance of P , B = Φ(A) is an instance of
Q and if T is a solution to B , then S = Ψ (T ⊕ A) is a
solution of P .

> P ≤sW Q , if we require S = Ψ (T ) is a solution of P .

> If P ≤W Q , then usually one can turn it into a “uniform”
proof of RCA0 ` Q → P .
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The k-color theorem and uniformity

Theorem
> WKL ≤sW COL(4).
> DNR(3) ≤sW COL(5).
> DNR(4) ≤sW COL(6).
> DNR(8) ≤sW COL(7).

Obviously we should have DNR(?) ≤sW COL(8)?

Theorem
DNR �W COL(8).
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DNR �W COL(8)

> Suppose that there is a computable planar G and some Ψ

such that Ψc(x) 6= ϕx(x) for every x and every 8-colouring
c of G .

> By the Recursion Theorem, define ϕe(e) = Ψσ(e) where σ
is a 4-colouring of a finite subgraph H of G .

> Since G − H is planar, we can 4-colour G − H with a
different set of 4 colours, and so σ can be extended to an
8-colouring c of G .

> This is a contradiction since Ψc(e) = ϕe(e).
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Reversing COL(k) for k ≥ 8

> DNR(k) �W COL(8) for any k , how can we get the reversal to
WKL0?

Definition
For k , l ∈ ω, let DNR(k , l): ∃ an l-approximable function
g : ω → {0, 1, · · · , k − 1} such that ∀x , g(x) 6= J(x), where J(x)

is universal c.e. trace with l + 1 many possibilities. Hence
DNR(k, 0) = DNR(k).

Theorem
> For any l ≥ 0, DNR(k , l + 1) ` DNR(k) ∨ DNR(k , l).
> For any n > 3, there are constants kn, ln such that

DNR(kn, ln) ≤sW COL(n).
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Reversing COL(k) for k ≥ 8

Corollary
Over RCA0, for each n > 3, WKL0 is equivalent to each of
COL(n), COL∗(n), ConnCOL(n).

> Which of the principles COL(n), COL∗(n), ConnCOL(n) and WKL

is uniformly obtainable from another?
> We’ve seen that DNR �W COL(8) and therefore

WKL �W COL(n) for any n ≥ 8.
> On the other hand, WKL ≤sW COL(4).

Proposition
WKL �W COL(7).
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WKL �W COL(7)

Since DNR(8) ≤sW COL(7), the diagonalisation here must be
different from what we used for DNR �W COL(8).

Lemma
It suffices to prove that for any finite planar G ⊂ G0,G1, there is a
7-coloring of G that extend to 7-colorings of G0 and G1.

Proof.
> Suppose that WKL ≤W COL(7) with some reductions Φ,Ψ.
> Take G = Φ(2ω), G0 = Φ([0]) and G1 = Φ([1]).
> Now fix 7-colorings h ⊂ h0, h1 of G ,G0,G1 respectively.
> Wait for Ψ(h) ⊃ 0 or Ψ(h) ⊃ 1

(Ψ(h) must pick a path on 2
ω).
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WKL �W COL(7)

Lemma
It suffices to prove that for any finite planar G ⊂ G0,G1, there is a
7-coloring of G that extend to 7-colorings of G0 and G1.

Proof.
> If Ψ(h) ⊃ 0 we remove [0] from our input tree.
> Since h1 ⊃ h, Ψ(h1) ⊃ 0 which isn’t a path on Ψ−1(G1).

Now using the lemma, we fix finite planar G ⊂ G0,G1.
> Fix a 4-coloring g0 of G0 and a 4-colouring g1 of G1.
> We will have g0 � G 6= g1 � G . How to define a 7-colouring h

on G?
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WKL �W COL(7)

> Define h on G and h0, h1 on G0,G1 as shown.
> Clearly they are 7-colourings.
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Weihrauch reductions

Theorem
Every four levels of COL(k) is proper wrt ≤W , i.e.

COL(4n), COL(4n + 1), COL(4n + 2), COL(4n + 3) �W COL(4n + 4).

> It works because given planar graphs G ⊂ Ĝ (G is finite),
then any k-colouring of G extends to a k + 4-colouring of Ĝ .

> We have similar extension theorems for ConnCOL and COL
∗:
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Weihrauch reductions

Lemma
> Given connected planar graphs G ⊂ Ĝ (G is finite), then any

k-colouring of G extends to a k + 3-colouring of Ĝ .
> Given planar graphs G ⊂ Ĝ (G is finite), with respective

computable plane diagrams D ⊂ D̂ then any 3k + 1-colouring
of G extends to a 3k + 4-colouring of Ĝ .

Corollary
For almost every k ,
> COL(k) 6≤W ConnCOL(k).
> COL(k) 6≤W COL

∗(k).
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Questions
> Does WKL ≤sW COL(5) or COL(6)?
> Generally, are any of the reductions proper?

COL(4n+ 3) ≤sW COL(4n+ 2) ≤sW COL(4n+ 1) ≤sW COL(4n).

> Calibrating the exact relationships between COL(k), COL∗(n)

and ConnCOL(m) for various k , n,m.
> For instance, for each k , what is the least n such that

COL(k) ≤sW COL
∗(n) or ConnCOL(n)?

> Principles arising from other restrictions on the planar
graph, such as locally finite or highly recursive?

> Strength of Fary-Thomassen’s theorem, or Grötzsch’s
theorem.

> Compare the colouring principles with other Weihrauch
degrees, closure under parallelization, etc?
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