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> Colouring of graphs

> Recursive graphs studied for a long time (Bean, Schmerl,
etc).

> All work is joint with H.T. Koh.

Theorem (Appel, Haken (1976))
Every simple planar graph (on the plane) can be coloured with at

most 4 colours.

> Algorithmic content/strength of the 4 colour theorem.



Map colouring

A four colouring of the map of the states of the US

> Problem is to colour each region so that no two contiguous
regions have the same colour.
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Map colouring

A four colouring of the map of the states of the US

> Problem is to colour each region so that no two contiguous
regions have the same colour.

> Nevada has five neighbours, so the US map cannot be
coloured using only three colours.
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The four colour theorem

> Francis Guthrie proposed this conjecture in 1852 while
trying to colour the map of England.

> Kempe (1879) and Tait (1880) gave incorrect proofs, which
got turned into the five colour theorem by Heawood in
1890.



The four colour theorem

> Francis Guthrie proposed this conjecture in 1852 while
trying to colour the map of England.

> Kempe (1879) and Tait (1880) gave incorrect proofs, which
got turned into the five colour theorem by Heawood in
1890.

> Appel and Haken finally proved the theorem in 1976,
building on the computer-assisted methods developed by
Heesch.

> Simplified and reproved by Robertson, Sanders, Seymour
and Thomas in 1996.



The five colour theorem

> The five colour theorem is easy to prove: By Euler
characteristic, 3v such that deg(v) < 5.

> Then G — {v} can be coloured with five colours.
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The five colour theorem

Fix a 1-3 chain between the two vertices



Recursive graphs and colourings

> All graphs considered are simple, i.e. no loops and no
multiple edges. (A graph in general might not be connected).

> A k-coloring of a graph (V, E) is a function ¢ : V — k such
that if c(v) = ¢(v') then (v, V') € E.
> We of course consider infinite (countable) graphs. By
compactness, Tychonoff’'s Theorem, etc:
Fact (De-Bruijn, Erdés)
An infinite graph is k-colorable iff every finite subgraph is
k-colorable (locally k-colorable).



Recursive graphs and colourings

Theorem (Hirst)
Over RCA, for each 2 < k, we have
WKLq < Every locally k-colorable graph is k-colorable.

Theorem (Gasarch, Hirst)
Over RCAy, for each 2 < k, we have
WKLy < Every locally k-colorable graph is 2k — 1-colorable.

Theorem (Schmerl)
Over RCAy, for each 2 < k < m, we have
WKLy < Every locally k-colorable graph is m-colorable.



Recursive graphs and colourings

Theorem (Bean)
Every k-colorable computable graph has a low k-coloring.

> Represent vertices as nodes of a tree and edges of the tree
as a possible color of the node.

> Any computable 2-colorable graph has a computable
2-coloring.



Recursive graphs and colourings

Theorem (Bean)
Every k-colorable computable graph has a low k-coloring.

> Represent vertices as nodes of a tree and edges of the tree
as a possible color of the node.

> Any computable 2-colorable graph has a computable
2-coloring.

Theorem (Bean)
There is a computable 3-colorable planar graph that has no

computable k-coloring for any k.

> In other words, the four colour theorem is not computably

true.



Highly recursive graphs and colourings

> A locally finite graph is if it is computable
and the degree of each vertex is computable.

Theorem (Bean)

Given each separating I'I‘lJ-cIass P and each k > 3, thereis a
k-colorable highly recursive graph G such that the k-colorings of G
correspond to the paths of P in a degree-preserving way.

> This theorem almost establishes a relationship between
WKL, and graph coloring principles. (For kK = 3, G is planar).



Highly recursive graphs and colourings

Theorem (Bean)

Every highly recursive planar graph has a computable 6-coloring.

Does every highly recursive planar graph have a computable 4-
or 5-coloring?
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Highly recursive graphs and colourings

Theorem (Bean)
Every highly recursive planar graph has a computable 6-coloring.

Does every highly recursive planar graph have a computable 4-
or 5-coloring?

Theorem (Schmerl)
Every highly recursive k-colorable graph has a computable
2k — 1-coloring, and this result is sharp.

Theorem (Kierstead)
Every highly recursive k-colorable perfect graph has a computable
k + 1-coloring.



Edge colourings

> (Kierstead) Every highly recursive k-edge-colorable perfect
graph has a computable k + 1-edge coloring.

> Vizing's theorem: Every k-regular graph has a k + 1-edge
colouring.

> Hence, every k-regular graph has a computable k + 2-edge
colouring.

> (Schmerl) Some computable 3-regular graph has no
computable 3-edge colouring.

> (Schmerl) Is Vizing’s theorem computably true?

> (Mummert, unpublished) WKLy is equivalent to Konig's line
coloring theorem: Every bipartite graph with degree
bounded by k has a k-edge-colouring.



Formalising planar graphs

> All graphs are simple. They do not have to be locally finite
or connected, unless specified.

> All results (and definitions) are over RCA.

> A countable graph G is planar iff neither K3 3 nor Ks is a
minor (or a subdivision) of G.
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Formalising planar graphs

> All graphs are simple. They do not have to be locally finite
or connected, unless specified.

> All results (and definitions) are over RCA.

> A countable graph G is planar iff neither K3 3 nor Ks is a
minor (or a subdivision) of G.

> (Wagner and Kuratowski-Pontryagin) For finite graphs, this
is equivalent to having a plane diagram/embedding.

> Here we represent a plane diagram of a planar graph as a
countable set of rational coordinates representing the
coordinates of vertices, and edges. Each edge is made up of
finitely many line segments.



Formalising planar graphs

> Each planar graph has a plane diagram with straight line as
the edges (See Wagner, Fary, Stein for finite graphs, and
Thomassen for infinite graphs).

> (Erdds, see Dirac, Schuster)
WKL, F Every countable planar graph has a plane diagram.

> |s this computably true?



Plane diagrams

Proposition
There is a computable planar graph with no computable plane
diagram.

N v
Yo 1
.I . o
U3 V2

Four possible plane drawings of the gadget
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Plane diagrams

e
N/

V3 Vg

Adding the new vertex vg in each case
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The k-color theorem

Proposition
WKLy < Every planar graph admits a plane diagram.

> If we're working over WKLy, we can interchangeably use
the various definitions of a planar graph.



The k-color theorem

Proposition
WKLy < Every planar graph admits a plane diagram.

> If we're working over WKLy, we can interchangeably use

the various definitions of a planar graph.

Definition
For each k > 4, define the principles:

COL(k): Every countable planar graph is k-colourable.

COL*(k): Every countable planar graph with a computable planar
diagram is k-colourable.

ConnCOL(k): Every countable connected planar graph is
k-colourable.



The k-color theorem

Recall:

Theorem (Bean)
There is a computable 3-colorable planar graph that has no

computable k-coloring for any k.

> Thus COL(k) is not computably true for any k > 4, but
follows from WKL,.



The k-color theorem

Recall:

Theorem (Bean)
There is a computable 3-colorable planar graph that has no

computable k-coloring for any k.

> Thus COL(k) is not computably true for any k > 4, but
follows from WKL,.

Theorem
WKL, is equivalent to each of COL(4), COL*(4) and ConnCOL(4).



Reversing COL(4) to WKL,

)

Given a tree T we encode (), 0, 1 into the three gadgets respectively.



Reversing COL(4) to WKL,

If 00 dies, we add three new nodes:

Nox0 Nox1




Reversing COL(4) to WKL,

If 00 dies, we add three new nodes:

Nox0 Noxl




Reversing COL(4) to WKL,

If 00 dies, we add three new nodes:

1 2
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Reversing COL(4) to WKL,
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Reversing COL(4) to WKL,

If 00 dies, we add three new nodes:

1 2

0

Now any four colouring c of the graph must satisfy

c(vy) = c(wy) = c(ny1) # c(nyo).



The k-color theorem

Theorem
For each k > 4, WKL, is equivalent to each of COL(k), COL*(k) and
ConnCOL(k).

> In the reversal RCAq + COL(4) = WKLy, we used Ky in our
constructed graph G to force any 4-colouring of G to have
little choice.

> Obviously, we can’'t use Ks to show RCA( + COL(5) - WKLy.

> RCAq + COL(k) - WKLg can be proved non-uniformly, and
for k > 7 this is provably necessary.



The k-color theorem

Theorem
For each k > 4, WKL, is equivalent to each of COL(k), COL*(k) and

ConnCOL(k).

> In the reversal RCAq + COL(4) = WKLy, we used Ky in our
constructed graph G to force any 4-colouring of G to have
little choice.

> Obviously, we can’'t use Ks to show RCA( + COL(5) - WKLy.

> RCAq + COL(k) - WKLg can be proved non-uniformly, and
for k > 7 this is provably necessary.

> Recall that DNR(k): 3g : w — {0,1,2,..., k — 1} s.t.
Vx, 8(x) # ox(x)-



Reversing COL(5) to DNR(3)

To encode p.(e), we start with the gadget:

VVY VAV
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Reversing COL(5) to DNR(3)

If pe(e) J= 0, we add 6 new vertices and connect them to each
K3. (This diagram can be made planar).

Pe (6) =0

Selwyn Ng
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Reversing COL(5) to DNR(3)

If pe(e) J= 1, we add 2 new vertices.

VavAvERvAvAV,
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Reversing COL(5) to DNR(3)

If pe(e) 4= 2, we add 1 new vertex and connect to all old
vertices.

Vavavalivavav
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Reversing COL(5) to DNR(3)

Now given a 5-colouring of the graph, if the left set of 9 black
vertices are coloured with only 3 colours, then p.(e) # 0.

VAVAVARAVA,

e e

eele) =2

VVY VYV

e, | 235



Reversing COL(5) to DNR(3)

If the left and right set of 9 black vertices are coloured with 4
colours, then p.(e) # 1.

e e

VVY VYV

e, | 235



Reversing COL(5) to DNR(3)
If the black vertices are coloured with all 5 colours, then

vele) # 2.

e e

VVY VYV

e, | 235



The k-color theorem and uniformity

> This shows that RCAg + COL(5) - DNR(3), and thus
WKLy <« COL(4) and WKLg <+ COL(5).

> To further calibrate the complexity of statements which
might be equivalent in the RM sense, we use the tools from
computable analysis.



Weihrauch reducibility

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer,
after Weihrauch)
Let P and @ be M} statements of second-order arithmetic.
> P <y Q,if 30,V where &, ¥ are Turing reductions s.t.
whenever A is an instance of P, B = ®(A) is an instance of
Q and if T is a solutionto B,then S =WV (T @ A)isa
solution of P.

> P <.w Q, if we require S = W (T) is a solution of P.

> If P <y Q, then usually one can turn it into a “uniform”
proof of RCAg - Q@ — P.



The k-color theorem and uniformity

Theorem
> WKL < COL(4).

> DNR(3) <sy COL(5).
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The k-color theorem and uniformity

Theorem
> WKL < COL(4).

> DNR(3) <. COL(5).
> DNR(4) <qw COL(6).
> DNR(8) <s COL(7).

Obviously we should have DNR(?) < 4 COL(8)?



The k-color theorem and uniformity

Theorem
> WKL < COL(4).

> DNR(3) <sw COL(5).
> DNR(4) <sw COL(6).
> DNR(8) <sw COL(7).
Obviously we should have DNR(?) < 4 COL(8)?

Theorem
DNR % COL(8).



DNR «w COL(8)

> Suppose that there is a computable planar G and some ¥
such that W<(x) # ¢« (x) for every x and every 8-colouring
cof G.

> By the Recursion Theorem, define ¢.(e) = W7(e) where o
is a 4-colouring of a finite subgraph H of G.

> Since G — H is planar, we can 4-colour G — H with a
different set of 4 colours, and so ¢ can be extended to an
8-colouring ¢ of G.

> This is a contradiction since W¢(e) = @e(e).



Reversing COL(k) for k > 8

> DNR(k) £ w COL(8) for any k, how can we get the reversal to
WKLy?
Definition
For k, | € w, let DNR(k, /): 3 an /-approximable function
g:w—{0,1,---, k —1} such that Vx, g(x) # J(x), where J(x)
is universal c.e. trace with / + 1 many possibilities. Hence
DNR(k,0Q) = DNR(k).



Reversing COL(k) for k > 8

> DNR(k) £ w COL(8) for any k, how can we get the reversal to
WKLy?
Definition
For k, | € w, let DNR(k, /): 3 an /-approximable function
g:w—{0,1,---, k —1} such that Vx, g(x) # J(x), where J(x)
is universal c.e. trace with / + 1 many possibilities. Hence
DNR(k,0Q) = DNR(k).

Theorem
> Forany | > 0, DNR(k, / + 1) - DNR(k) V DNR(k, /).
> For any n > 3, there are constants k,, I, such that
DNR(Kn, In) <sw COL(n).



Reversing COL(k) for k > 8

Corollary
Over RCA, for each n > 3, WKLy is equivalent to each of
COL(n),COL*(n), ConnCOL(n).

> Which of the principles COL(n), COL*(n), ConnCOL(n) and WKL
is uniformly obtainable from another?
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Reversing COL(k) for k > 8

Corollary
Over RCA, for each n > 3, WKLy is equivalent to each of
COL(n),COL*(n), ConnCOL(n).

> Which of the principles COL(n), COL*(n), ConnCOL(n) and WKL
is uniformly obtainable from another?

> We've seen that DNR «y COL(8) and therefore
WKL £ w COL(n) for any n > 8.

> On the other hand, WKL <y, COL(4).

Proposition
WKL % w COL(7).



WKL £w COL(7)

Since DNR(8) <q COL(7), the diagonalisation here must be
different from what we used for DNR £y, COL(8).

Lemma
It suffices to prove that for any finite planar G C Gy, Gy, there is a
7-coloring of G that extend to 7-colorings of Gy and G;.

Proof.
> Suppose that WKL <, COL(7) with some reductions ¢, V.

> Take G = ®(2¥), Gop = ®([0]) and G1 = ®([1]).
> Now fix 7-colorings h C hg, hy of G, Gy, G; respectively.

> Wait for W(h) D0orW(h) D1
(W(h) must pick a path on 2¥).



WKL £w COL(7)

Lemma
It suffices to prove that for any finite planar G C Gy, Gy, there is a
7-coloring of G that extend to 7-colorings of Gy and G;.

Proof.
> If W(h) D 0 we remove [0] from our input tree.

> Since h; D h, W(hy) D 0 whichisn'ta pathon V~1(G;). [

Now using the lemma, we fix finite planar G C Gy, G;.
> Fix a 4-coloring gy of Gy and a 4-colouring g; of G;.

> We willhave gy | G # g1 | G. How to define a 7-colouring h
on G?



WKL £w COL(7)

ho(v) = go(v) hi(v) =g1(v) +3

ho(v) € {0,1,2,3} hi(v) € {3,4,5,6}

Gy Gy
All v such that All v such that
90(v) € {0,1,2} 9o(v) =3
h(v) = go(v) h(v) = g1(v)+3
h(v) € {0,1,2} h(v) € {3.4,5,6}

G

> Define hon G and hg, h; on Gy, G; as shown.
> Clearly they are 7-colourings.



Weihrauch reductions

Theorem
Every four levels of COL(k) is proper wrt <y, i.e.

COL(4n),COL(4n + 1), COL(4n + 2), COL(4n + 3) £ COL(4n + 4).

> |t works because given planar graphs G c G (G is finite),
then any k-colouring of G extends to a k + 4-colouring of G.

> We have similar extension theorems for ConnCOL and COL*:



Weihrauch reductions

Lemma
> Given connected planar graphs G C G (G is finite), then any
k-colouring of G extends to a k + 3-colouring of G.

> Given planar graphs G C G (G is finite), with respective
computable plane diagrams D C D then any 3k + 1-colouring
of G extends to a 3k + 4-colouring of G.

Corollary
For almost every k,

> COL(k) €£w ConnCOL(k).
> COL(k) £w COL*(k).
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> Generally, are any of the reductions proper?
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Questions

>

>

Does WKL <4y, COL(5) or COL(6)?

Generally, are any of the reductions proper?

COL(4n+3) <qw COL(4n+2) <sw COL(4n+1) <sw COL(4n).
Calibrating the exact relationships between COL(k), COL*(n)
and ConnCOL(m) for various k, n, m.

For instance, for each k, what is the least n such that
COL(k) <sw COL*(n) or ConnCOL(n)?

Principles arising from other restrictions on the planar
graph, such as locally finite or highly recursive?

Strength of Fary-Thomassen’s theorem, or Grotzsch's
theorem.

Compare the colouring principles with other Weihrauch
degrees, closure under parallelization, etc?



