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Learning for families of algebraic structures

I Fix a computable signature L. Let K be a countable family
of countable L-structures.

I Step-by-step, we obtain larger and larger finite pieces of
an L-structure S.
In addition, we assume that this S is isomorphic to some
structure from the class K.

Problem
Is it possible to identify (in the limit) the isomorphism type of the
structure S?

In a sense, the problem combines the approaches of algorithmic learning
theory and computable structure theory:

We want to learn the family K up to isomorphism.
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Informal examples

Example 1. Consider two undirected graphs G1 and G2:

I G1 has infinitely many cycles of size 3, and nothing else;

I G2 has infinitely many cycles of size 4, and nothing else.

One can learn the family K = {G1, G2} via the following effective
procedure:

• Wait until the input graph S shows a cycle of size 3 or 4.

• When (the first) such cycle appears in the input, start (forever)
outputting the natural guess:
“S ∼= G1” for size 3, or
“S ∼= G2” for size 4.
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• When (the first) such cycle appears in the input, start (forever)
outputting the natural guess:
“S ∼= G1” for size 3, or
“S ∼= G2” for size 4.

Remark
If S is not isomorphic to a structure from K, then we do not care about
the behavior of the learning procedure on S.
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Informal examples

Example 1. Consider two undirected graphs G1 and G2:

I G1 has infinitely many cycles of size 3, and nothing else;

I G2 has infinitely many cycles of size 4, and nothing else.

One can learn the family K = {G1, G2} via the following effective
procedure:

• Wait until the input graph S shows a cycle of size 3 or 4.

• When (the first) such cycle appears in the input, start (forever)
outputting the natural guess:
“S ∼= G1” for size 3, or
“S ∼= G2” for size 4.

Observation
The graphs G1 and G2 are “separated” by ∃-sentences (inside the class
K):

(G1 has a cycle of size 3), and (G2 has a cycle of size 4).
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Informal examples
Roughly speaking, the (classical) algorithmic learning is a ∆0

2 process
(i.e., limit computable).

Example 2. The pair of linear orders {ω, ω∗} can be learned.
Note that they are “separated” by ∃∀-sentences:

(ω has a least element), and (ω∗ has a greatest element).

Learning procedure: Our input structure S (which is isomorphic either to
ω or to ω∗) is given in stages.

At a stage s of the learning process, we find:
I `s is the ≤L-least element in the current finite linear order Ls;
I rs is the current ≤L-greatest element inside Ls.

Then we ask:
I For how many previous stages our `s has been the least element?

More formally, this is given by the counter
c[`s] = max{t ≤ s : `s−t = `s}.

I For how many stages our rs has been the greatest element?
This is given by another counter: c[rs] = max{t ≤ s : rs−t = rt}.

After that, our conjecture at the stage s is straightforward:
• if c[`s] > c[rs], then output “S ∼= ω”;
• otherwise, output “S ∼= ω∗”.
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The formal learning paradigm
Fix a computable relational signature L. For convenience, we will

consider only L-structures S with domain ω.
We fix some Gödel encoding, and we identify L-structures with

elements of the Cantor space 2ω.

Consider a family of L-structures K = {Ai : i ∈ ω}. Here we assume
that the structures Ai, i ∈ ω, are pairwise not isomorphic.

We need to specify four things:

1. The learning domain.

2. The hypothesis space.

3. What is a learner?

4. When a learning process is successful?

The discussed learning paradigm appears in:

I Martin and Osherson 1998;

I Fokina, Kötzing, and San Mauro 2019;

I B., Fokina, and San Mauro 2020.

Nikolay Bazhenov Equivalence relations, and learning for structures Luminy 2022 4 / 21



The components of our learning paradigm

(1) The learning domain

LD(K) = {S : S ∼= Ai for some i ∈ ω, and dom(S) = ω}.

The learning domain can be treated as a subspace of the Cantor space.

(2) The hypothesis space HS(K) = ω ∪ {?}.

(3) A learner M sees (stage by stage) finite pieces of data about a given
structure from LD(K), and M outputs conjectures from HS(K). More
formally,

M is a function from 2<ω to HS(K).

If M(σ) = i, then this means: “the finite piece σ looks like an
isomorphic copy of Ai”.

If M(σ) = ?, then this means that M abstains from giving a
meaningful conjecture.
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The components of our learning paradigm
(3) A learner M is a function from 2<ω to HS(K).

If M(σ) = i, then this means: “the finite piece σ looks like an
isomorphic copy of Ai”.

If M(σ) = ?, then this means that M abstains from giving a
meaningful conjecture.

(4) The learning is successful if:
for every S ∈ LD(K), if S is an isomorphic copy of Ai, then

lim
k→∞

M(S � k) = i.

Definition
The family K is learnable (up to isomorphism) if there exists a learner M
that successfully learns the family K.

[More formally, one should say that K is InfEx∼=-learnable:

I Inf means learning from informant: a learner M obtains both positive and
negative data about a structure;

I Ex means “explanatory”: this is about the particular success criterion.]
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A syntactic characterization

Theorem (B., Fokina, and San Mauro 2020)
Let K = {Ai : i ∈ ω} be a family of countable L-structures. Then the
following conditions are equivalent:

(i) The family K is learnable.

(ii) There are Σinf
2 sentences ψi, i ∈ ω, such that

Ai |= ψj if and only if i = j.

In other words, inside the class K, each Ai is distinguished by its
own Σinf

2 sentence ψi.

This gives a useful tool for studying learning in familiar algebraic
classes. For example, using the results of [Montalbán 2010], we obtain:

Theorem (B., Fokina, and San Mauro 2020)
There are no learnable infinite families of linear orders.
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One interesting further direction is the following:

Problem
What happens if we change the hypothesis space HS(K)?

For example, one can require that:

I our list of structures (Ai)i∈ω should be uniformly computable, but

I the list could contain repetitions (i.e., it could be that Ai ∼= Aj for
i 6= j).

Not much is known in this direction.

Lemma (B. and San Mauro 2021)
If K is a finite learnable family of computable L-structures, then K is
learnable by a 0′-computable learner. This fact does not depend on the
arrangement of HS(K).
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Learning families of structures
with the help of Borel equivalence relations.

Joint work with V. Cipriani and L. San Mauro.



The syntactic characterization, revisited

Theorem (B., Fokina, and San Mauro 2020)
Let K = {Ai : i ∈ ω} be a family of countable L-structures. Then the
following conditions are equivalent:

(i) The family K is learnable.

(ii) There are Σinf
2 sentences ψi, i ∈ ω, such that

Ai |= ψj if and only if i = j.

The key ingredient in the proof of (i)⇒(ii) is the (relativized) Pullback
Theorem of Knight, S. Miller, and Vanden Boom (2007). The Pullback
Theorem talks about Turing computable embeddings (tc-embeddings).

Let K0 be a class of L0-structures, and K1 be a class of L1-structures.
A Turing operator Φ is a tc-embedding from K0 into K1 if:

I for every A ∈ K0, ΦA is a structure from K1;

I for all A,B ∈ K0,
A ∼= B ⇔ ΦA ∼= ΦB.
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Here the reductions emerge

Let X and Y be non-empty sets. Let E be an equivalence relation on X,
and let F be an equivalence relation on Y . A function g is a reduction
from E to F if for all x, y ∈ X, we have

(xE y) ⇔ (g(x)F g(y)).

In descriptive set theory:
One takes X and Y as Polish spaces. If the function g is Borel, then g is
a Borel reduction.

If the function g is continuous, then g is a continuous reduction.
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A descriptive set-theoretic characterization of learning

One of the benchmark equivalence relations on 2ω is the relation E0:

(αE0 β) ⇔ (∃n)(∀m ≥ n)(α(m) = β(m)).

Recall that LD(K) = {S : S ∼= Ai for some i ∈ ω} ⊆ 2ω.

Theorem 1 (B., Cipriani, San Mauro)
Let K = {Ai : i ∈ ω} be a family of countable L-structures. Then the
following conditions are equivalent:

(a) The family K is learnable.

(b) There is a continuous function Γ: 2ω → 2ω such that for all
A,B ∈ LD(K), we have:

(A ∼= B) ⇔ (Γ(A)E0 Γ(B)).

In other words, (modulo technical details) we have a continuous
reduction from ∼= � LD(K) to the relation E0.
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How to learn non-learnable families: A descriptive set-theoretic approach

Definition
Let E be an equivalence relation on the Cantor space. Let
K = {Ai : i ∈ ω} be a family of countable L-structures.

We say that the family K is E-learnable if there is a continuous function
Γ: 2ω → 2ω such that for all A,B ∈ LD(K), we have:

(A ∼= B) ⇔ (Γ(A) E Γ(B)).

Remark
In general, one could also consider E-learnability for uncountable
families, but we will not discuss it here.
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The first example: Increase of the learning power

We can identify the Cantor space with the space of all countable
graphs: for α ∈ 2ω, we have

Gα |= Edge(i, j) ⇔ α(〈i, j〉) = 1.

Then for a countable ordinal λ > 0, we define the following equivalence
relation on 2ω:

(αRλ β) ⇔ (the graphs Gα and Gβ satisfy the same Σinf
λ sentences).

Proposition (essentially follows from B. 2017)
Let K = {Ai : i ∈ ω} be a family of countable L-structures. Then the
following conditions are equivalent:

I The family K is Rλ-learnable.

I There are Σinf
λ sentences ψi, i ∈ ω, such that

Ai |= ψj if and only if i = j.
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Case study: Some benchmark Borel equivalence relations

Id

E0

E1 E2 E3

Z0 Eset

(under continuous

reductions)

I Id is the identity relation.

I By α[m] we denote the m-th column of the
real α.
(αE1 β) if and only if

(∀∞m ∈ ω)(α[m] = β[m]).

I (αE2 β) if and only if

∞∑
k=0

(α4β)(k)

k + 1
< ∞.

I (αE3 β) if and only if (∀m)(α[m] E0 β
[m]).

I (αEset β) if and only if {α[m] : m ∈ ω} = {β[m] : m ∈ ω}.
I (α Z0 β) if and only if α4β has asymptotic density zero.

Remark
If E is continuously reducible to F , then every E-learnable family is also
F -learnable.

Nikolay Bazhenov Equivalence relations, and learning for structures Luminy 2022 15 / 21



Case study: Some benchmark Borel equivalence relations

Id

E0

E1 E2 E3

Z0 Eset

(under continuous

reductions)

I Id is the identity relation.

I By α[m] we denote the m-th column of the
real α.
(αE1 β) if and only if

(∀∞m ∈ ω)(α[m] = β[m]).

I (αE2 β) if and only if

∞∑
k=0

(α4β)(k)

k + 1
< ∞.

I (αE3 β) if and only if (∀m)(α[m] E0 β
[m]).

I (αEset β) if and only if {α[m] : m ∈ ω} = {β[m] : m ∈ ω}.
I (α Z0 β) if and only if α4β has asymptotic density zero.

Remark
If E is continuously reducible to F , then every E-learnable family is also
F -learnable.

Nikolay Bazhenov Equivalence relations, and learning for structures Luminy 2022 15 / 21



A syntactic characterization of E3-learnability
(αE3 β) if and only if (∀m)(α[m] E0 β

[m]).

Theorem 2 (BCS)
Let K = {Ai : i ∈ ω} be a family of countable L-structures. Then the
following conditions are equivalent:

I The family K is E3-learnable.

I There exists a family of Σinf
2 sentences Θ such that:

(a) For every θ ∈ Θ, there exists a formula ξ ∈ Θ such that for every
A ∈ K, we have A |= (θ ↔ ¬ξ).

(b) If i 6= j, then there is a formula θ ∈ Θ such that Ai |= θ and
Aj |= ¬θ.

In other words, each pair (Ai,Aj), for i 6= j, is “separated” by a
property which is “∆inf

2 -definable” inside K.

Corollary 1
Every finite E3-learnable family is already E0-learnable.
There exists an infinite E3-learnable family which is not E0-learnable.
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Learning-related reducibilities

Corollary 1
Every finite E3-learnable family is already E0-learnable.
There exists an infinite E3-learnable family which is not E0-learnable.

It is natural to consider the following learning-related reducibilities.

Definition
Let E and F be equivalence relations on 2ω.

(1) E ≤Learn F if every countable E-learnable family is also F -learnable.

(2) E ≤<ωLearn F if every finite E-learnable family is also F -learnable.

It is clear that:

continuous reducibility ⇒ ≤Learn ⇒ ≤<ωLearn .

Corollary 1, reformulated
We have E0 ≡<ωLearn E3 and E0 <Learn E3. Hence, ≤Learn ��⇐ ≤<ωLearn.
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Finite families and benchmark relations
E ≤<ωLearn F if every finite E-learnable family is also F -learnable.

Theorem 3 (BCS)
With respect to ≤<ωLearn, we have:

Id

E0, E1, E2, E3, Z0

Eset

In addition, the family {ω, ζ} is Eset-learnable but not E0-learnable.

Id

E0

E1 E2 E3

Z0 Eset

(under continuous reductions)

Id

E0, E1, E2

E3, Z0, Eset

(under the reducibility ≤<ω
0 [R. Miller 2020])
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Id

E0, E1, E2

E3, Z0, Eset

(under the reducibility ≤<ω
0 [R. Miller 2020])

Nikolay Bazhenov Equivalence relations, and learning for structures Luminy 2022 18 / 21



Finite families and benchmark relations
E ≤<ωLearn F if every finite E-learnable family is also F -learnable.

Theorem 3 (BCS)
With respect to ≤<ωLearn, we have:

Id

E0, E1, E2, E3, Z0

Eset

In addition, the family {ω, ζ} is Eset-learnable but not E0-learnable.

Id

E0

E1 E2 E3

Z0 Eset

(under continuous reductions)

Id

E0, E1, E2

E3, Z0, Eset

(under the reducibility ≤<ω
0 [R. Miller 2020])

Nikolay Bazhenov Equivalence relations, and learning for structures Luminy 2022 18 / 21



Infinite families and benchmark equivalence relations

E ≤Learn F if every countable E-learnable family is also F -learnable.

Theorem 4 (BCS)
With respect to ≤Learn, we have:

Id

E0, E1, E2

E3

Eset

In particular, this shows that: ≤Learn ��⇒ Borel reducibility.

It is still open what happens with the ≤Learn-degree of Z0.
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Further problems

Problem 1
What is the ≤Learn-degree of the benchmark relation Z0? What about
other popular benchmark relations?

Problem 2
Can one obtain a “nice” syntactic characterization of Eset-learnability?
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Further problems

Problem 3
Obtain descriptive set-theoretic characterizations for other learning
paradigms.

Example. A countable family K = {Ai : i ∈ ω} is InfFin-learnable if it
is InfEx-learnable by a learner M which satisfies the following additional
property: if S ∼= Ai, then there is k∗ ∈ ω such that

M(S � l) =

{
?, if l < k∗,

i, if l ≥ k∗.

In other words, M never says wrong conjectures on the input S.

Proposition (BCS)
A family K is InfFin-learnable if and only if there is a continuous
function Γ: 2ω → 2ω such that:

I for any A,B ∈ LD(K), we have A ∼= B iff Γ(A) = Γ(B);

I the set Γ(LD(K)) has no limit points.

In other words, K is Id-learnable with an additional topological property.

Nikolay Bazhenov Equivalence relations, and learning for structures Luminy 2022 21 / 21



Further problems

Problem 3
Obtain descriptive set-theoretic characterizations for other learning
paradigms.

Example. A countable family K = {Ai : i ∈ ω} is InfFin-learnable if it
is InfEx-learnable by a learner M which satisfies the following additional
property: if S ∼= Ai, then there is k∗ ∈ ω such that

M(S � l) =

{
?, if l < k∗,

i, if l ≥ k∗.

In other words, M never says wrong conjectures on the input S.

Proposition (BCS)
A family K is InfFin-learnable if and only if there is a continuous
function Γ: 2ω → 2ω such that:

I for any A,B ∈ LD(K), we have A ∼= B iff Γ(A) = Γ(B);

I the set Γ(LD(K)) has no limit points.

In other words, K is Id-learnable with an additional topological property.

Nikolay Bazhenov Equivalence relations, and learning for structures Luminy 2022 21 / 21



References

I E. Martin and D. Osherson, Elements of Scientific Inquiry,
MIT Press, 1998.

I E. Fokina, T. Kötzing, and L. San Mauro,
Limit learning equivalence structures, Proceedings of Machine
Learning Research, 98 (2019), 383–403.

I N. Bazhenov, E. Fokina, and L. San Mauro,
Learning families of algebraic structures from informant, Information
and Computation, 275 (2020), article id 104590.

I N. Bazhenov, V. Cipriani, and L. San Mauro,
Learning algebraic structures with the help of Borel equivalence
relations, arXiv:2110.14512.


	Introduction
	Learning and Borel equivalence relations
	References

