Equivalence Relations on Reals, and Learning for Algebraic Structures

Nikolay Bazhenov

Sobolev Institute of Mathematics, Novosibirsk, Russia

New Directions in Computability Theory
Luminy, France
March 10, 2022

Learning for families of algebraic structures

- Fix a computable signature L. Let \mathcal{K} be a countable family of countable L-structures.
- Step-by-step, we obtain larger and larger finite pieces of an L-structure \mathcal{S}.
In addition, we assume that this \mathcal{S} is isomorphic to some structure from the class \mathcal{K}.

Problem
Is it possible to identify (in the limit) the isomorphism type of the structure \mathcal{S} ?

Learning for families of algebraic structures

- Fix a computable signature L. Let \mathcal{K} be a countable family of countable L-structures.
- Step-by-step, we obtain larger and larger finite pieces of an L-structure \mathcal{S}.
In addition, we assume that this \mathcal{S} is isomorphic to some structure from the class \mathcal{K}.

Problem

Is it possible to identify (in the limit) the isomorphism type of the structure \mathcal{S} ?

In a sense, the problem combines the approaches of algorithmic learning theory and computable structure theory:

We want to learn the family \mathcal{K} up to isomorphism.

Informal examples

Example 1. Consider two undirected graphs G_{1} and G_{2} :

- G_{1} has infinitely many cycles of size 3 , and nothing else;
- G_{2} has infinitely many cycles of size 4 , and nothing else.

Informal examples

Example 1. Consider two undirected graphs G_{1} and G_{2} :

- G_{1} has infinitely many cycles of size 3 , and nothing else;
- G_{2} has infinitely many cycles of size 4 , and nothing else.

One can learn the family $\mathcal{K}=\left\{G_{1}, G_{2}\right\}$ via the following effective procedure:

- Wait until the input graph \mathcal{S} shows a cycle of size 3 or 4 .
- When (the first) such cycle appears in the input, start (forever) outputting the natural guess:
" $\mathcal{S} \cong G_{1}$ " for size 3 , or
" $\mathcal{S} \cong G_{2}$ " for size 4 .

Informal examples

Example 1. Consider two undirected graphs G_{1} and G_{2} :

- G_{1} has infinitely many cycles of size 3 , and nothing else;
- G_{2} has infinitely many cycles of size 4 , and nothing else.

One can learn the family $\mathcal{K}=\left\{G_{1}, G_{2}\right\}$ via the following effective procedure:

- Wait until the input graph \mathcal{S} shows a cycle of size 3 or 4 .
- When (the first) such cycle appears in the input, start (forever) outputting the natural guess:
" $\mathcal{S} \cong G_{1}$ " for size 3 , or
" $\mathcal{S} \cong G_{2}$ " for size 4 .

Remark

If \mathcal{S} is not isomorphic to a structure from \mathcal{K}, then we do not care about the behavior of the learning procedure on \mathcal{S}.

Informal examples

Example 1. Consider two undirected graphs G_{1} and G_{2} :

- G_{1} has infinitely many cycles of size 3 , and nothing else;
- G_{2} has infinitely many cycles of size 4 , and nothing else.

One can learn the family $\mathcal{K}=\left\{G_{1}, G_{2}\right\}$ via the following effective procedure:

- Wait until the input graph \mathcal{S} shows a cycle of size 3 or 4 .
- When (the first) such cycle appears in the input, start (forever) outputting the natural guess:
" $\mathcal{S} \cong G_{1}$ " for size 3 , or
" $\mathcal{S} \cong G_{2}$ " for size 4 .

Observation

The graphs G_{1} and G_{2} are "separated" by \exists-sentences (inside the class $\mathcal{K})$:
(G_{1} has a cycle of size 3), and (G_{2} has a cycle of size 4).

Informal examples

Roughly speaking, the (classical) algorithmic learning is a Δ_{2}^{0} process (i.e., limit computable).

Example 2. The pair of linear orders $\left\{\omega, \omega^{*}\right\}$ can be learned.
Note that they are "separated" by $\exists \forall$-sentences:
(ω has a least element), and (ω^{*} has a greatest element).

Informal examples

Example 2. The pair of linear orders $\left\{\omega, \omega^{*}\right\}$ can be learned.
Learning procedure: Our input structure \mathcal{S} (which is isomorphic either to ω or to ω^{*}) is given in stages.

At a stage s of the learning process, we find:

- ℓ_{s} is the $\leq_{\mathcal{L}}$-least element in the current finite linear order \mathcal{L}_{s};
- r_{s} is the current $\leq_{\mathcal{L}}$-greatest element inside \mathcal{L}_{s}.

Informal examples

Example 2. The pair of linear orders $\left\{\omega, \omega^{*}\right\}$ can be learned.
Learning procedure: Our input structure \mathcal{S} (which is isomorphic either to ω or to ω^{*}) is given in stages.

At a stage s of the learning process, we find:

- ℓ_{s} is the $\leq_{\mathcal{L}}$-least element in the current finite linear order \mathcal{L}_{s};
- r_{s} is the current $\leq_{\mathcal{L}}$-greatest element inside \mathcal{L}_{s}.

Then we ask:

- For how many previous stages our ℓ_{s} has been the least element?

More formally, this is given by the counter
$c\left[\ell_{s}\right]=\max \left\{t \leq s: \ell_{s-t}=\ell_{s}\right\}$.

- For how many stages our r_{s} has been the greatest element? This is given by another counter: $c\left[r_{s}\right]=\max \left\{t \leq s: r_{s-t}=r_{t}\right\}$.

Informal examples

Example 2. The pair of linear orders $\left\{\omega, \omega^{*}\right\}$ can be learned.
Learning procedure: Our input structure \mathcal{S} (which is isomorphic either to ω or to ω^{*}) is given in stages.

At a stage s of the learning process, we find:

- ℓ_{s} is the $\leq_{\mathcal{L}}$-least element in the current finite linear order \mathcal{L}_{s};
- r_{s} is the current $\leq_{\mathcal{L}}$-greatest element inside \mathcal{L}_{s}.

Then we ask:

- For how many previous stages our ℓ_{s} has been the least element?

More formally, this is given by the counter
$c\left[\ell_{s}\right]=\max \left\{t \leq s: \ell_{s-t}=\ell_{s}\right\}$.

- For how many stages our r_{s} has been the greatest element? This is given by another counter: $c\left[r_{s}\right]=\max \left\{t \leq s: r_{s-t}=r_{t}\right\}$.

After that, our conjecture at the stage s is straightforward:

- if $c\left[\ell_{s}\right]>c\left[r_{s}\right]$, then output " $\mathcal{S} \cong \omega$ ";
- otherwise, output " $\mathcal{S} \cong \omega^{*}$ ".

The formal learning paradigm

Fix a computable relational signature L. For convenience, we will consider only L-structures \mathcal{S} with domain ω.

We fix some Gödel encoding, and we identify L-structures with elements of the Cantor space 2^{ω}.

Consider a family of L-structures $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$. Here we assume that the structures $\mathcal{A}_{i}, i \in \omega$, are pairwise not isomorphic.

We need to specify four things:

1. The learning domain.
2. The hypothesis space.
3. What is a learner?
4. When a learning process is successful?

The discussed learning paradigm appears in:

- Martin and Osherson 1998;
- Fokina, Kötzing, and San Mauro 2019;
- B., Fokina, and San Mauro 2020.

The components of our learning paradigm

(1) The learning domain

$$
\operatorname{LD}(\mathcal{K})=\left\{\mathcal{S}: \mathcal{S} \cong \mathcal{A}_{i} \text { for some } i \in \omega, \text { and } \operatorname{dom}(\mathcal{S})=\omega\right\} .
$$

The learning domain can be treated as a subspace of the Cantor space.

The components of our learning paradigm

(1) The learning domain

$$
\operatorname{LD}(\mathcal{K})=\left\{\mathcal{S}: \mathcal{S} \cong \mathcal{A}_{i} \text { for some } i \in \omega, \text { and } \operatorname{dom}(\mathcal{S})=\omega\right\} .
$$

The learning domain can be treated as a subspace of the Cantor space.
(2) The hypothesis space $\operatorname{HS}(\mathcal{K})=\omega \cup\{?\}$.

The components of our learning paradigm

(1) The learning domain

$$
\operatorname{LD}(\mathcal{K})=\left\{\mathcal{S}: \mathcal{S} \cong \mathcal{A}_{i} \text { for some } i \in \omega, \text { and } \operatorname{dom}(\mathcal{S})=\omega\right\} .
$$

The learning domain can be treated as a subspace of the Cantor space.
(2) The hypothesis space $\operatorname{HS}(\mathcal{K})=\omega \cup\{?\}$.
(3) A learner M sees (stage by stage) finite pieces of data about a given structure from $\operatorname{LD}(\mathcal{K})$, and M outputs conjectures from $\operatorname{HS}(\mathcal{K})$. More formally,

$$
M \text { is a function from } 2^{<\omega} \text { to } \operatorname{HS}(\mathcal{K}) .
$$

If $M(\sigma)=i$, then this means: "the finite piece σ looks like an isomorphic copy of $\mathcal{A}_{i}{ }^{\prime \prime}$.

If $M(\sigma)=$?, then this means that M abstains from giving a meaningful conjecture.

The components of our learning paradigm

(3) A learner M is a function from $2^{<\omega}$ to $\operatorname{HS}(\mathcal{K})$.

If $M(\sigma)=i$, then this means: "the finite piece σ looks like an isomorphic copy of \mathcal{A}_{i} ".

If $M(\sigma)=$?, then this means that M abstains from giving a meaningful conjecture.
(4) The learning is successful if:
for every $\mathcal{S} \in \operatorname{LD}(\mathcal{K})$, if \mathcal{S} is an isomorphic copy of \mathcal{A}_{i}, then

$$
\lim _{k \rightarrow \infty} M(\mathcal{S} \upharpoonright k)=i
$$

Definition

The family \mathcal{K} is learnable (up to isomorphism) if there exists a learner M that successfully learns the family \mathcal{K}.

The components of our learning paradigm

(3) A learner M is a function from $2^{<\omega}$ to $\operatorname{HS}(\mathcal{K})$.

If $M(\sigma)=i$, then this means: "the finite piece σ looks like an isomorphic copy of \mathcal{A}_{i} ".

If $M(\sigma)=$?, then this means that M abstains from giving a meaningful conjecture.
(4) The learning is successful if:
for every $\mathcal{S} \in \operatorname{LD}(\mathcal{K})$, if \mathcal{S} is an isomorphic copy of \mathcal{A}_{i}, then

$$
\lim _{k \rightarrow \infty} M(\mathcal{S} \upharpoonright k)=i
$$

Definition

The family \mathcal{K} is learnable (up to isomorphism) if there exists a learner M that successfully learns the family \mathcal{K}.
[More formally, one should say that \mathcal{K} is $\operatorname{InfEx} \cong$-learnable:

- Inf means learning from informant: a learner M obtains both positive and negative data about a structure;
- Ex means "explanatory": this is about the particular success criterion.]

A syntactic characterization

Theorem (B., Fokina, and San Mauro 2020)
Let $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ be a family of countable L-structures. Then the following conditions are equivalent:
(i) The family \mathcal{K} is learnable.
(ii) There are $\Sigma_{2}^{\inf }$ sentences $\psi_{i}, i \in \omega$, such that

$$
\mathcal{A}_{i} \models \psi_{j} \text { if and only if } i=j .
$$

In other words, inside the class \mathcal{K}, each \mathcal{A}_{i} is distinguished by its own $\Sigma_{2}^{\inf }$ sentence ψ_{i}.

A syntactic characterization

Theorem (B., Fokina, and San Mauro 2020)
Let $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ be a family of countable L-structures. Then the following conditions are equivalent:
(i) The family \mathcal{K} is learnable.
(ii) There are $\Sigma_{2}^{\inf }$ sentences $\psi_{i}, i \in \omega$, such that

$$
\mathcal{A}_{i} \models \psi_{j} \text { if and only if } i=j .
$$

In other words, inside the class \mathcal{K}, each \mathcal{A}_{i} is distinguished by its own $\Sigma_{2}^{\inf }$ sentence ψ_{i}.

This gives a useful tool for studying learning in familiar algebraic classes. For example, using the results of [Montalbán 2010], we obtain:
Theorem (B., Fokina, and San Mauro 2020)
There are no learnable infinite families of linear orders.

One interesting further direction is the following:

Problem

What happens if we change the hypothesis space $\mathrm{HS}(\mathcal{K})$?
For example, one can require that:

- our list of structures $\left(\mathcal{A}_{i}\right)_{i \in \omega}$ should be uniformly computable, but
- the list could contain repetitions (i.e., it could be that $\mathcal{A}_{i} \cong \mathcal{A}_{j}$ for $i \neq j$).

One interesting further direction is the following:

Problem

What happens if we change the hypothesis space $\operatorname{HS}(\mathcal{K})$?
For example, one can require that:

- our list of structures $\left(\mathcal{A}_{i}\right)_{i \in \omega}$ should be uniformly computable, but
- the list could contain repetitions (i.e., it could be that $\mathcal{A}_{i} \cong \mathcal{A}_{j}$ for $i \neq j$).

Not much is known in this direction.

Lemma (B. and San Mauro 2021)

If \mathcal{K} is a finite learnable family of computable L-structures, then \mathcal{K} is learnable by a $\mathbf{0}^{\prime}$-computable learner. This fact does not depend on the arrangement of $\mathrm{HS}(\mathcal{K})$.

Learning families of structures with the help of Borel equivalence relations.

Joint work with V. Cipriani and L. San Mauro.

The syntactic characterization, revisited

Theorem (B., Fokina, and San Mauro 2020)

Let $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ be a family of countable L-structures. Then the following conditions are equivalent:
(i) The family \mathcal{K} is learnable.
(ii) There are $\sum_{2}^{\inf }$ sentences $\psi_{i}, i \in \omega$, such that

$$
\mathcal{A}_{i} \models \psi_{j} \text { if and only if } i=j
$$

The key ingredient in the proof of $(\mathrm{i}) \Rightarrow(\mathrm{ii})$ is the (relativized) Pullback Theorem of Knight, S. Miller, and Vanden Boom (2007). The Pullback Theorem talks about Turing computable embeddings ($t c$-embeddings).

Let \mathcal{K}_{0} be a class of L_{0}-structures, and \mathcal{K}_{1} be a class of L_{1}-structures.
A Turing operator Φ is a $t c$-embedding from \mathcal{K}_{0} into \mathcal{K}_{1} if:

- for every $\mathcal{A} \in \mathcal{K}_{0}, \Phi^{\mathcal{A}}$ is a structure from \mathcal{K}_{1};
- for all $\mathcal{A}, \mathcal{B} \in \mathcal{K}_{0}$,

$$
\mathcal{A} \cong \mathcal{B} \Leftrightarrow \Phi^{\mathcal{A}} \cong \Phi^{\mathcal{B}}
$$

Here the reductions emerge

Let X and Y be non-empty sets. Let E be an equivalence relation on X, and let F be an equivalence relation on Y. A function g is a reduction from E to F if for all $x, y \in X$, we have

$$
(x E y) \Leftrightarrow(g(x) F g(y)) .
$$

In descriptive set theory:
One takes X and Y as Polish spaces. If the function g is Borel, then g is a Borel reduction.

If the function g is continuous, then g is a continuous reduction.

A descriptive set-theoretic characterization of learning

One of the benchmark equivalence relations on 2^{ω} is the relation E_{0} :

$$
\left(\alpha E_{0} \beta\right) \Leftrightarrow(\exists n)(\forall m \geq n)(\alpha(m)=\beta(m)) .
$$

Recall that $\operatorname{LD}(\mathcal{K})=\left\{\mathcal{S}: \mathcal{S} \cong \mathcal{A}_{i}\right.$ for some $\left.i \in \omega\right\} \subseteq 2^{\omega}$.

Theorem 1 (B., Cipriani, San Mauro)
Let $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ be a family of countable L-structures. Then the following conditions are equivalent:
(a) The family \mathcal{K} is learnable.
(b) There is a continuous function $\Gamma: 2^{\omega} \rightarrow 2^{\omega}$ such that for all $\mathcal{A}, \mathcal{B} \in \operatorname{LD}(\mathcal{K})$, we have:

$$
(\mathcal{A} \cong \mathcal{B}) \Leftrightarrow\left(\Gamma(\mathcal{A}) E_{0} \Gamma(\mathcal{B})\right) .
$$

In other words, (modulo technical details) we have a continuous reduction from $\cong \upharpoonright L D(\mathcal{K})$ to the relation E_{0}.

Definition

Let E be an equivalence relation on the Cantor space. Let $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ be a family of countable L-structures.
We say that the family \mathcal{K} is E-learnable if there is a continuous function $\Gamma: 2^{\omega} \rightarrow 2^{\omega}$ such that for all $\mathcal{A}, \mathcal{B} \in \operatorname{LD}(\mathcal{K})$, we have:

$$
(\mathcal{A} \cong \mathcal{B}) \Leftrightarrow(\Gamma(\mathcal{A}) E \Gamma(\mathcal{B}))
$$

Remark

In general, one could also consider E-learnability for uncountable families, but we will not discuss it here.

The first example: Increase of the learning power

We can identify the Cantor space with the space of all countable graphs: for $\alpha \in 2^{\omega}$, we have

$$
G_{\alpha} \models \operatorname{Edge}(i, j) \Leftrightarrow \alpha(\langle i, j\rangle)=1 .
$$

Then for a countable ordinal $\lambda>0$, we define the following equivalence relation on 2^{ω} :
$\left(\alpha R_{\lambda} \beta\right) \Leftrightarrow$ (the graphs G_{α} and G_{β} satisfy the same $\Sigma_{\lambda}^{\inf }$ sentences).

The first example: Increase of the learning power

We can identify the Cantor space with the space of all countable graphs: for $\alpha \in 2^{\omega}$, we have

$$
G_{\alpha} \models \operatorname{Edge}(i, j) \Leftrightarrow \alpha(\langle i, j\rangle)=1 .
$$

Then for a countable ordinal $\lambda>0$, we define the following equivalence relation on 2^{ω} :
$\left(\alpha R_{\lambda} \beta\right) \Leftrightarrow$ (the graphs G_{α} and G_{β} satisfy the same $\Sigma_{\lambda}^{\inf }$ sentences).

Proposition (essentially follows from B. 2017)

Let $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ be a family of countable L-structures. Then the following conditions are equivalent:

- The family \mathcal{K} is R_{λ}-learnable.
- There are $\Sigma_{\lambda}^{\inf }$ sentences $\psi_{i}, i \in \omega$, such that

$$
\mathcal{A}_{i} \models \psi_{j} \text { if and only if } i=j .
$$

Case study: Some benchmark Borel equivalence relations

-Id is the identity relation.

(under continuous reductions)

- By $\alpha^{[m]}$ we denote the m-th column of the real α.
$\left(\alpha E_{1} \beta\right)$ if and only if

$$
\left(\forall^{\infty} m \in \omega\right)\left(\alpha^{[m]}=\beta^{[m]}\right)
$$

- $\left(\alpha E_{2} \beta\right)$ if and only if

$$
\sum_{k=0}^{\infty} \frac{(\alpha \triangle \beta)(k)}{k+1}<\infty
$$

- $\left(\alpha E_{3} \beta\right)$ if and only if $(\forall m)\left(\alpha^{[m]} E_{0} \beta^{[m]}\right)$.
$>\left(\alpha E_{\text {set }} \beta\right)$ if and only if $\left\{\alpha^{[m]}: m \in \omega\right\}=\left\{\beta^{[m]}: m \in \omega\right\}$.
- $\left(\alpha Z_{0} \beta\right)$ if and only if $\alpha \triangle \beta$ has asymptotic density zero.

Case study: Some benchmark Borel equivalence relations

- Id is the identity relation.

(under continuous reductions)
- By $\alpha^{[m]}$ we denote the m-th column of the real α.
$\left(\alpha E_{1} \beta\right)$ if and only if

$$
\left(\forall^{\infty} m \in \omega\right)\left(\alpha^{[m]}=\beta^{[m]}\right)
$$

- $\left(\alpha E_{2} \beta\right)$ if and only if

$$
\sum_{k=0}^{\infty} \frac{(\alpha \triangle \beta)(k)}{k+1}<\infty
$$

- $\left(\alpha E_{3} \beta\right)$ if and only if $(\forall m)\left(\alpha^{[m]} E_{0} \beta^{[m]}\right)$.
$>\left(\alpha E_{\text {set }} \beta\right)$ if and only if $\left\{\alpha^{[m]}: m \in \omega\right\}=\left\{\beta^{[m]}: m \in \omega\right\}$.
- $\left(\alpha Z_{0} \beta\right)$ if and only if $\alpha \triangle \beta$ has asymptotic density zero.

Remark

If E is continuously reducible to F, then every E-learnable family is also F-learnable.

A syntactic characterization of E_{3}-learnability

$\left(\alpha E_{3} \beta\right)$ if and only if $(\forall m)\left(\alpha^{[m]} E_{0} \beta^{[m]}\right)$.
Theorem 2 (BCS)
Let $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ be a family of countable L-structures. Then the following conditions are equivalent:

- The family \mathcal{K} is E_{3}-learnable.
- There exists a family of $\Sigma_{2}^{\inf }$ sentences Θ such that:
(a) For every $\theta \in \Theta$, there exists a formula $\xi \in \Theta$ such that for every $\mathcal{A} \in \mathcal{K}$, we have $\mathcal{A} \vDash(\theta \leftrightarrow \neg \xi)$.

A syntactic characterization of E_{3}-learnability

$\left(\alpha E_{3} \beta\right)$ if and only if $(\forall m)\left(\alpha^{[m]} E_{0} \beta^{[m]}\right)$.
Theorem 2 (BCS)
Let $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ be a family of countable L-structures. Then the following conditions are equivalent:

- The family \mathcal{K} is E_{3}-learnable.
- There exists a family of $\Sigma_{2}^{\inf }$ sentences Θ such that:
(a) For every $\theta \in \Theta$, there exists a formula $\xi \in \Theta$ such that for every $\mathcal{A} \in \mathcal{K}$, we have $\mathcal{A} \models(\theta \leftrightarrow \neg \xi)$.
(b) If $i \neq j$, then there is a formula $\theta \in \Theta$ such that $\mathcal{A}_{i} \models \theta$ and $\mathcal{A}_{j} \vDash \neg \theta$.
In other words, each pair $\left(\mathcal{A}_{i}, \mathcal{A}_{j}\right)$, for $i \neq j$, is "separated" by a property which is " $\Delta_{2}^{\inf }$-definable" inside \mathcal{K}.

A syntactic characterization of E_{3}-learnability

$\left(\alpha E_{3} \beta\right)$ if and only if $(\forall m)\left(\alpha^{[m]} E_{0} \beta^{[m]}\right)$.

Theorem 2 (BCS)

Let $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ be a family of countable L-structures. Then the following conditions are equivalent:

- The family \mathcal{K} is E_{3}-learnable.
- There exists a family of $\sum_{2}^{\text {inf }}$ sentences Θ such that:
(a) For every $\theta \in \Theta$, there exists a formula $\xi \in \Theta$ such that for every $\mathcal{A} \in \mathcal{K}$, we have $\mathcal{A} \models(\theta \leftrightarrow \neg \xi)$.
(b) If $i \neq j$, then there is a formula $\theta \in \Theta$ such that $\mathcal{A}_{i} \models \theta$ and $\mathcal{A}_{j} \models \neg \theta$.
In other words, each pair $\left(\mathcal{A}_{i}, \mathcal{A}_{j}\right)$, for $i \neq j$, is "separated" by a property which is " $\Delta_{2}^{\text {inf }}$-definable" inside \mathcal{K}.

Corollary 1

Every finite E_{3}-learnable family is already E_{0}-learnable.
There exists an infinite E_{3}-learnable family which is not E_{0}-learnable.

Learning-related reducibilities

Corollary 1

Every finite E_{3}-learnable family is already E_{0}-learnable.
There exists an infinite E_{3}-learnable family which is not E_{0}-learnable.
It is natural to consider the following learning-related reducibilities.

Definition

Let E and F be equivalence relations on 2^{ω}.
(1) $E \leq_{\text {Learn }} F$ if every countable E-learnable family is also F-learnable.
(2) $E \leq_{\text {Learn }}^{<\omega} F$ if every finite E-learnable family is also F-learnable.

It is clear that:

$$
\text { continuous reducibility } \Rightarrow \leq_{\text {Learn }} \Rightarrow \leq_{\text {Learn }}^{<\omega}
$$

Learning-related reducibilities

Corollary 1

Every finite E_{3}-learnable family is already E_{0}-learnable.
There exists an infinite E_{3}-learnable family which is not E_{0}-learnable.
It is natural to consider the following learning-related reducibilities.

Definition

Let E and F be equivalence relations on 2^{ω}.
(1) $E \leq_{\text {Learn }} F$ if every countable E-learnable family is also F-learnable.
(2) $E \leq_{\text {Learn }}^{<\omega} F$ if every finite E-learnable family is also F-learnable.

It is clear that:

$$
\text { continuous reducibility } \Rightarrow \leq_{\text {Learn }} \Rightarrow \leq_{\text {Learn }}^{<\omega}
$$

Corollary 1, reformulated
We have $E_{0} \equiv_{\text {Learn }}^{<\omega} E_{3}$ and $E_{0}<{ }_{\text {Learn }} E_{3}$. Hence, $\leq_{\text {Learn }} \notin \leq_{\text {Learn }}^{<\omega}$.

Finite families and benchmark relations

$E \leq_{\text {Learn }}^{\leq \omega} F$ if every finite E-learnable family is also F-learnable.
Theorem 3 (BCS)
With respect to $\leq_{\text {Learn }}^{<\omega}$, we have:

In addition, the family $\{\omega, \zeta\}$ is $E_{\text {set }}$-learnable but not E_{0}-learnable.

Finite families and benchmark relations

$E \leq \leq_{\text {Learn }}^{<\omega} F$ if every finite E-learnable family is also F-learnable.
Theorem 3 (BCS)
With respect to $\leq_{\text {Learn }}^{<\omega}$, we have:

In addition, the family $\{\omega, \zeta\}$ is $E_{\text {set }}$-learnable but not E_{0}-learnable.

(under continuous reductions)

Finite families and benchmark relations

$E \leq \leq_{\text {Learn }}^{<\omega} F$ if every finite E-learnable family is also F-learnable.
Theorem 3 (BCS)
With respect to $\leq_{\text {Learn }}^{<\omega}$, we have:

In addition, the family $\{\omega, \zeta\}$ is $E_{\text {set }}$-learnable but not E_{0}-learnable.

(under continuous reductions)
(under the reducibility $\leq_{0}^{<\omega}$ [R. Miller 2020])

Infinite families and benchmark equivalence relations

$E \leq \leq_{\text {Learn }} F$ if every countable E-learnable family is also F-learnable.
Theorem 4 (BCS)
With respect to $\leq_{\text {Learn }}$, we have:

In particular, this shows that: $\leq_{\text {Learn }} \Rightarrow$ Borel reducibility.

It is still open what happens with the $\leq_{\text {Learn }}$-degree of Z_{0}.

Infinite families and benchmark equivalence relations

$E \leq \leq_{\text {Learn }} F$ if every countable E-learnable family is also F-learnable.

(under $\leq_{\text {Learn }}$)

(under continuous reductions)

(under the reducibility \leq_{0}^{ω} [R. Miller 2020])

Further problems

Problem 1
What is the $\leq_{\text {Learn }}$-degree of the benchmark relation Z_{0} ? What about other popular benchmark relations?

Problem 2
Can one obtain a "nice" syntactic characterization of $E_{\text {set }}$-learnability?

Further problems

Problem 3

Obtain descriptive set-theoretic characterizations for other learning paradigms.

Example. A countable family $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ is InfFin-learnable if it is InfEx-learnable by a learner M which satisfies the following additional property: if $\mathcal{S} \cong \mathcal{A}_{i}$, then there is $k^{*} \in \omega$ such that

$$
M(\mathcal{S} \upharpoonright l)= \begin{cases}?, & \text { if } l<k^{*}, \\ i, & \text { if } l \geq k^{*}\end{cases}
$$

In other words, M never says wrong conjectures on the input \mathcal{S}.

Further problems

Problem 3

Obtain descriptive set-theoretic characterizations for other learning paradigms.

Example. A countable family $\mathcal{K}=\left\{\mathcal{A}_{i}: i \in \omega\right\}$ is InfFin-learnable if it is InfEx-learnable by a learner M which satisfies the following additional property: if $\mathcal{S} \cong \mathcal{A}_{i}$, then there is $k^{*} \in \omega$ such that

$$
M(\mathcal{S} \upharpoonright l)= \begin{cases}?, & \text { if } l<k^{*}, \\ i, & \text { if } l \geq k^{*}\end{cases}
$$

In other words, M never says wrong conjectures on the input \mathcal{S}.

Proposition (BCS)

A family \mathcal{K} is InfFin-learnable if and only if there is a continuous function $\Gamma: 2^{\omega} \rightarrow 2^{\omega}$ such that:

- for any $\mathcal{A}, \mathcal{B} \in \operatorname{LD}(\mathcal{K})$, we have $\mathcal{A} \cong \mathcal{B}$ iff $\Gamma(\mathcal{A})=\Gamma(\mathcal{B})$;
- the set $\Gamma(L D(\mathcal{K}))$ has no limit points.

In other words, \mathcal{K} is Id-learnable with an additional topological property.

References

- E. Martin and D. Osherson, Elements of Scientific Inquiry, MIT Press, 1998.
- E. Fokina, T. Kötzing, and L. San Mauro, Limit learning equivalence structures, Proceedings of Machine Learning Research, 98 (2019), 383-403.
- N. Bazhenov, E. Fokina, and L. San Mauro, Learning families of algebraic structures from informant, Information and Computation, 275 (2020), article id 104590.
- N. Bazhenov, V. Cipriani, and L. San Mauro, Learning algebraic structures with the help of Borel equivalence relations, arXiv:2110.14512.

