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Cousin’s lemma

Cousin’s lemma is a principle of compactness:

» LetJ = {I, : x € [0, 1]} be a collection of intervals, open in
[0, 1], with x € I, for all x. Then J has a finite sub-cover.

Compare with countable compactness:

» If 3= {l, : ne N} is a countable collection of intervals, open in
[0,1], and [0,1] = |, /n, then J has a finite sub-cover.

Recall that countable compactness is equivalent to WKLy [Simpson
IV.1.2].



A reformulation

Definition
» A gauge is a function d: [a,b] — (0, 0).
» A 0-fine partition is a tagged partition
a=x0<& <x1 <& < X2 <+ <& < Xxp = b such that for all
i=1,...,n,
5(5,) > Xi — Xj—1.

This generalises the mesh size of a partition: if § is a constant, then
a o-fine partition is one with mesh size < §.

Lemma (Cousin’s lemma)
For every gauge 0 there is a -fine partition.









The gauge integral

Also known as the Henstock-Kurzweil integral; equivalent to the
Denjoy integral and the Perron integral.

Definition
Let f: [a,b] — R be a function.

b
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if for every € > 0 there is a gauge ¢ such that for any ¢-fine tagged
partition P, the associated partial sum is within € of r.

This clearly generalises the Riemann integral.



An example

Let 1 be Dirichlet’s function.

Fix an enumeration {qx : k€ N) of Q@ n [0, 1].

Given e > 0, let
> 3(qk) = €275
» forirrational x € [0,1], §(x) = 1.

1
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(but it is not Riemann integrable).

This shows that



Another example

Let f(x) = 1/4/x.

The reason f is not Riemann integrable is that no matter how small
a mesh size §, we can choose a tag £ with f(£) » 4. This is
prevented if §(§) « f(x).



Nice properties

The gauge integral:

» Extends the Lebesgue integrals;
» If f is differentiable on [a, b] then f’ is gauge integrable and

b
J f' = f(b) — f(a).

a

» No improper integrals: if for all ¢ > 0, f is gauge integral on
[a + €, b], then f is gauge integrable on [a, b] and

b . b
§,f=lim_o SaJre f.

Cousin’s lemma is required for the notion not to be vacuous.



The strength of Cousin’s lemma

The similarities between the proof of the existence of §-fine
tagged partitions of [a, b] and the proof (at least one of the
standard proofs) that the interval [a, b] is a compact set
are evident. This is no accident — the two statements are
actually equivalent.

—Russell A. Gordon, The use of tagged partitions in elementary real
analysis



Gordon’s evidence

Cousin’s lemma implies:

» The intermediate value theorem;
» A continuous function on a closed interval is bounded,;
» A continuous function on a closed interval obtains a maximum;

» A continuous function on a closed interval is unifomrly
continuous;

» A continuous function on a closed interval is Riemann
integrable;

» Mean value inequalities.

Note that most are equivalent to WKL,.



For example

Theorem
If f is differentiable on [a,b] and f' > 0 on [a, b] then f is increasing
on [a,b].

Proof.

By applying the argument on each sub-interval, it suffices to show
that f(b) > f(a).

For every ¢ € [a, b], since f'(£) > 0, there is some §(§) > 0 such that
if £ € [x,y] and |y — x| < §(&) then f(y) — f(x) > 0.

If (xk, &) is a o-fine partition then f(xg) < f(x1) < -+ < f(xp). O



Second-order?

Cousin’'s lemma is a statement of third-order arithmetic. In this
context, Normann and Sanders showed that it is equivalent to full
second-order arithmetic.

Within second-order arithmetic, we need to restrict ourselves to
classes of countably-coded functions. We will look at classes of
Borel functions.



The proof of Cousin’s lemma

Let 6 be a gauge on [0, 1].

» Aninterval I is good if it can be a part of a §-fine partition: there
is some z € [ with 6(z) > |/|.

» Let T be the tree of all bad binary rational intervals

I=[k27" (k+1)27"].

If T is finite then the children of the leaves of T form a ¢-fine

partition of [0, 1].

» T cannot be infinite: say the intersection of an infinite path is a
singleton {z*}; since §(z*) > 0, any sufficiently small interval
on the path is good.

v

Conclusion:

» Cousin’s lemma for Borel functions is provable in M} — CA,.



Continuous functions

Theorem
Cousin’s lemma for continuous functions is equivalent to WKLg.

Proof from WKL,:

Since ¢ is continuous, if I is good then there is a rational witness.
Hence T is NY.

Easier proof from WKL,:

In WKLy, a continuous gauge § has a minimum, which is positive.
So any partition with sufficiently small mesh size suffices.



Continuous functions: the reversal

Suppose that M is a model of RCAq in which WKL, fails.

» There is a closed set C < [0, 1] with code in M which is
nonempty “in the real world”, but M thinks that C is empty.

> Let §(x) = 3d(x,C); then § is not a gauge, but M thinks that it is.

» In the real world, there is no §-fine partition, as such a partition
cannot cover any points in C.

» But being a ¢-fine partition is absolute, so there are none in M.



Baire class 1

Recall: A Baire class 1 function is a pointwise limit of continuous
functions.

Theorem
Cousin’s lemma for Baire class 1 functions is equivalent to ACA.

Proof from ACA:

» A Baire class 1 function pulls back open sets to Zg sets.

» (" can tell whether a given ¥9 set is empty or not.

» Hence in ACAy, the tree T of the proof of Cousin’s lemma exists.
Nonstandard model complication: the set of leaves of T is M-finite. We need to

choose a point & € I with §(&) > |/| for each child / of a leaf. In ACAg, we can choose
points from a sequence of nonempty Zg sets. O



Baire class 1: the reversal

Let M be a model in which ACA, fails.

» There is a left-c.e. real z* which is not in M.
> Let §(x) = 3|z* — x|. Then M thinks that § is a gauge.

» M does not have a code of § as a continuous function: but it has
a definition of § as a Baire class 1 function.

» There cannot be a §-fine partition, as no such partition can
cover z*. So again, there are none in M.

Nonstandard model complication: we use Z[l’ induction to argue that if P is a partition
then z* must lie in one of the P-intervals. We need z* to be left-c.e. rather than any
A real.
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Borel functions

Theorem

The following are equivalent (modulo some induction):
1. Cousin’s lemma for Baire class 2 functions
2. Cousin’s lemma for Borel functions
3. ATRq.

Proof from ATRp+induction:

> In ATRo+X1-induction: if T < 2<% is M} and infinite, then it has a
path.

Note that T need not exist in the model.

> In ATRo+a bit more than ¥1-induction: if T < 2<“ is 1] and has
bounded height, then it exists.

» Choosing a tag for each leaf: use Z%-choice (or Z%-induction).

O



Cantor space

For simplicity, work in Cantor space. Cousin’s lemma for Baire class
2 functions implies:

» If f: 2“ — N is Baire class 2, then there is a finite set P — 2%

such that
2 = |Jix 1 (x)].

XeP

(Call this an f-fine cover.)

Note that a Baire class 2 function f: 2 — N is one for which f(x) is
uniformly computable from x”.



Baire class 2 functions and iterated jumps

» Suppose that M is a standard model of ACAq in which Cousin’s
lemma for Baire class 2 functions holds. Then for all
computable o, @@ e M.

Proof for o = w:
Suppose that &) ¢ M. Recall that &) = @, &M,

» For each x # @J“), there is some least n = n, such that
x[ o2 gg(n),
» For such x, there is some least k = k, such that
X (ky # @™ (k).
» The relation y = (™ is 9. Hence x” can compute n, and k.
» So x” computes some m sufficiently large so that
x(m) # @ (m). Let f(x) = m + 1; so @) ¢ [x | f(x)].
» There is no f-fine cover, since &) really exists.
As usual, this is absolute for M.
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Baire class 2 functions: the reversal

Let M be a model of ACAq in which ATR, fails. Then there is some
M-ordinal * such that in M, there is no jump hierarchy along §*.

Note that for all 8 < 6%, by ACAq, there is at most one jump hierarcy
along /3 in M. Denote it by (%),

Let
I = {B < &* . &P exists in M}.

This is an initial segment of 6* (of course, not in M). ACA, implies
that .# does not have a greatest element.



Baire class 2 functions: the reversal

Let x e M.
» There is a least 3 = fBx € & such that xI#l = &),
» There is a least k = k, such that x[#l(k) = &(® (k).
» x” can find these.

» So x” computes some m = f(x) such that [x | m] does not
contain @) forany v > B in .#.

If Pis an f-fine cover, let f* = max {8, : x € P} + 1.
Then 3* € .# but P does not cover &5(8™).

v

v



Thank you



