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Cousin’s lemma

Cousin’s lemma is a principle of compactness:

§ Let I “ tIx : x P r0,1su be a collection of intervals, open in
r0,1s, with x P Ix for all x. Then I has a finite sub-cover.

Compare with countable compactness:

§ If I “ tIn : n P Nu is a countable collection of intervals, open in
r0,1s, and r0,1s “

Ť

n In, then I has a finite sub-cover.

Recall that countable compactness is equivalent to WKL0 [Simpson
IV.1.2].



A reformulation

Definition

§ A gauge is a function δ : ra,bs Ñ p0,8q.

§ A δ-fine partition is a tagged partition
a “ x0 ď ξ1 ď x1 ď ξ2 ď x2 ď ¨ ¨ ¨ ď ξn ď xn “ b such that for all
i “ 1, . . . ,n,

δpξiq ą xi ´ xi´1.

This generalises the mesh size of a partition: if δ is a constant, then
a δ-fine partition is one with mesh size ă δ.

Lemma (Cousin’s lemma)
For every gauge δ there is a δ-fine partition.







The gauge integral

Also known as the Henstock-Kurzweil integral; equivalent to the
Denjoy integral and the Perron integral.

Definition
Let f : ra,bs Ñ R be a function.

ż b

a
f “ r

if for every ε ą 0 there is a gauge δ such that for any δ-fine tagged
partition P, the associated partial sum is within ε of r.

This clearly generalises the Riemann integral.



An example

Let 1Q be Dirichlet’s function.

Fix an enumeration xqk : k P Ny of QX r0,1s.

Given ε ą 0, let

§ δpqkq “ ε2´k;

§ for irrational x P r0,1s, δpxq “ 1.

This shows that
ż 1

0
1Q “ 0

(but it is not Riemann integrable).



Another example

Let fpxq “ 1{
?

x.

The reason f is not Riemann integrable is that no matter how small
a mesh size δ, we can choose a tag ξ with fpξq " δ. This is
prevented if δpξq ! fpxq.



Nice properties

The gauge integral:

§ Extends the Lebesgue integrals;

§ If f is differentiable on ra,bs then f 1 is gauge integrable and

ż b

a
f 1 “ fpbq ´ fpaq.

§ No improper integrals: if for all ε ą 0, f is gauge integral on
ra` ε,bs, then f is gauge integrable on ra,bs and
şb
a f “ limεÑ0

şb
a`ε f .

Cousin’s lemma is required for the notion not to be vacuous.



The strength of Cousin’s lemma

The similarities between the proof of the existence of δ-fine
tagged partitions of ra,bs and the proof (at least one of the
standard proofs) that the interval ra,bs is a compact set
are evident. This is no accident — the two statements are
actually equivalent.

—Russell A. Gordon, The use of tagged partitions in elementary real
analysis



Gordon’s evidence

Cousin’s lemma implies:

§ The intermediate value theorem;

§ A continuous function on a closed interval is bounded;

§ A continuous function on a closed interval obtains a maximum;

§ A continuous function on a closed interval is unifomrly
continuous;

§ A continuous function on a closed interval is Riemann
integrable;

§ Mean value inequalities.

Note that most are equivalent to WKL0.



For example

Theorem
If f is differentiable on ra,bs and f 1 ą 0 on ra,bs then f is increasing
on ra,bs.

Proof.
By applying the argument on each sub-interval, it suffices to show
that fpbq ą fpaq.

For every ξ P ra,bs, since f 1pξq ą 0, there is some δpξq ą 0 such that
if ξ P rx, ys and |y´ x| ă δpξq then fpyq ´ fpxq ą 0.

If pxk, ξkq is a δ-fine partition then fpx0q ă fpx1q ă ¨ ¨ ¨ ă fpxnq.



Second-order?

Cousin’s lemma is a statement of third-order arithmetic. In this
context, Normann and Sanders showed that it is equivalent to full
second-order arithmetic.

Within second-order arithmetic, we need to restrict ourselves to
classes of countably-coded functions. We will look at classes of
Borel functions.



The proof of Cousin’s lemma

Let δ be a gauge on r0,1s.

§ An interval I is good if it can be a part of a δ-fine partition: there
is some z P I with δpzq ą |I|.

§ Let T be the tree of all bad binary rational intervals
I “ rk2´n, pk ` 1q2´ns.

§ If T is finite then the children of the leaves of T form a δ-fine
partition of r0,1s.

§ T cannot be infinite: say the intersection of an infinite path is a
singleton tz˚u; since δpz˚q ą 0, any sufficiently small interval
on the path is good.

Conclusion:

§ Cousin’s lemma for Borel functions is provable in Π1
1 ´ CA0.



Continuous functions

Theorem
Cousin’s lemma for continuous functions is equivalent to WKL0.

Proof from WKL0:

Since δ is continuous, if I is good then there is a rational witness.
Hence T is Π0

1.

Easier proof from WKL0:

In WKL0, a continuous gauge δ has a minimum, which is positive.
So any partition with sufficiently small mesh size suffices.



Continuous functions: the reversal

Suppose that M is a model of RCA0 in which WKL0 fails.

§ There is a closed set C Ď r0,1s with code in M which is
nonempty “in the real world”, but M thinks that C is empty.

§ Let δpxq “ 1
2dpx,Cq; then δ is not a gauge, but M thinks that it is.

§ In the real world, there is no δ-fine partition, as such a partition
cannot cover any points in C.

§ But being a δ-fine partition is absolute, so there are none in M.



Baire class 1

Recall: A Baire class 1 function is a pointwise limit of continuous
functions.

Theorem
Cousin’s lemma for Baire class 1 functions is equivalent to ACA0.

Proof from ACA0:

§ A Baire class 1 function pulls back open sets to Σ0
2 sets.

§ H2 can tell whether a given Σ0
2 set is empty or not.

§ Hence in ACA0, the tree T of the proof of Cousin’s lemma exists.

Nonstandard model complication: the set of leaves of T is M-finite. We need to
choose a point ξI P I with δpξIq ą |I| for each child I of a leaf. In ACA0, we can choose
points from a sequence of nonempty Σ0

2 sets.



Baire class 1: the reversal

Let M be a model in which ACA0 fails.

§ There is a left-c.e. real z˚ which is not in M.

§ Let δpxq “ 1
2 |z

˚ ´ x|. Then M thinks that δ is a gauge.

§ M does not have a code of δ as a continuous function: but it has
a definition of δ as a Baire class 1 function.

§ There cannot be a δ-fine partition, as no such partition can
cover z˚. So again, there are none in M.

Nonstandard model complication: we use Σ0
1 induction to argue that if P is a partition

then z˚ must lie in one of the P-intervals. We need z˚ to be left-c.e. rather than any
∆0

2 real.



Borel functions

Theorem
The following are equivalent (modulo some induction):

1. Cousin’s lemma for Baire class 2 functions

2. Cousin’s lemma for Borel functions

3. ATR0.

Proof from ATR0+induction:

§ In ATR0+Σ1
1-induction: if T Ď 2ăω is Π1

1 and infinite, then it has a
path.

Note that T need not exist in the model.

§ In ATR0+a bit more than Σ1
1-induction: if T Ď 2ăω is Π1

1 and has
bounded height, then it exists.

§ Choosing a tag for each leaf: use Σ1
1-choice (or Σ1

1-induction).



Cantor space

For simplicity, work in Cantor space. Cousin’s lemma for Baire class
2 functions implies:

§ If f : 2ω Ñ N is Baire class 2, then there is a finite set P Ă 2ω

such that
2ω “

ď

xPP

rxæ fpxqs.

(Call this an f -fine cover.)

Note that a Baire class 2 function f : 2ω Ñ N is one for which fpxq is
uniformly computable from x2.



Baire class 2 functions and iterated jumps

§ Suppose that M is a standard model of ACA0 in which Cousin’s
lemma for Baire class 2 functions holds. Then for all
computable α, Hpαq P M.

Proof for α “ ω:
Suppose that Hpωq R M. Recall that Hpωq “

À

nH
pnq.

§ For each x ‰ Hpωq, there is some least n “ nx such that
xrns ‰ Hpnq.

§ For such x, there is some least k “ kx such that
xrnspkq ‰ Hpnqpkq.

§ The relation y “ Hpnq is Π0
2. Hence x2 can compute nx and kx.

§ So x2 computes some m sufficiently large so that
xpmq ‰ Hpωqpmq. Let fpxq “ m` 1; so Hpωq R rxæ fpxqs.

§ There is no f -fine cover, since Hpωq really exists.

§ As usual, this is absolute for M.



Baire class 2 functions: the reversal

Let M be a model of ACA0 in which ATR0 fails. Then there is some
M-ordinal δ˚ such that in M, there is no jump hierarchy along δ˚.

Note that for all β ă δ˚, by ACA0, there is at most one jump hierarcy
along β in M. Denote it by Hpβq.

Let
I “

!

β ă δ˚ : Hpβq exists in M
)

.

This is an initial segment of δ˚ (of course, not in M). ACA0 implies
that I does not have a greatest element.



Baire class 2 functions: the reversal

Let x P M.

§ There is a least β “ βx P I such that xrβs ‰ Hpβq.

§ There is a least k “ kx such that xrβspkq ‰ Hpβqpkq.

§ x2 can find these.

§ So x2 computes some m “ fpxq such that rxæms does not
contain Hpγq for any γ ą β in I .

§ If P is an f -fine cover, let β˚ “ max tβx : x P Pu ` 1.

§ Then β˚ P I but P does not cover Hpβ
˚
q.



Thank you


