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Abstract

We will describe how the perspectives of Recursion Theory and Set
Theory suggest lines of investigation into Geometric Measure Theory. We
will discuss the existence problem for sets of strong gauge dimension
zero, which is a property generalizing that of strong measure zero.
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Gauge Functions and General Hausdorff Dimension

Definition

A gauge function is a function h : (0,∞) → (0,∞) which has the
following properties:

▶ continuous

▶ increasing

▶ limt→0+ h(t) = 0

Example

h(t) = ts , for s > 0.
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Gauge Functions and General Hausdorff Dimension

Definition

Let h be a gauge function. For a set E ⊆ 2ω (or ωω, Rd etc.), define

Hh(E ) = lim
δ→0

inf
E⊆∪Fi

max d(Fi )<δ

∞∑
i=1

h(d(Fi ))

where {Fi} is a sequence of closed (open) sets covering E and d(Fi ) is
the diameter of Fi .

▶ When h(t) is ts , Hh = Hs is the usual s-dimensional Hausdorff outer
measure of E .

▶ Gauge functions provide a more finely graded calibration of measure
and thereby of dimension than is given by the family
{t 7→ ts : s ∈ [0, 1]}.
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Gauge Functions and General Hausdorff Dimension

Definition

Write h ≺ g to indicate that limt→0+
g(t)
h(t) = 0.

Note, h ≺ g means that is it easier for a set to be Hg -null than it is to be
Hh-null.

Example

t log(2)/ log(3) ≺ t1, since limt→0+
t

t log(2)/ log(3) = 0.
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Gauge Functions and General Hausdorff Dimension

The Hausdorff dimension of a set A ⊂ R is the number d such that
whenever d0 < d < d1, H

d0(A) = ∞ and Hd1 = 0.

Example

The Cantor middle-third set, which has dimension log(2)/ log(3) is null
with respect to linear (Lebesgue) measure.
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Gauge Functions and General Hausdorff Dimension

The clarity of Hausdorff dimension transfers only partially to gauge
measures.

Similarities:

▶ If Hh(A) is finite and h ≺ g then Hg (A) = 0.

▶ If Hh(A) is not zero and j ≺ h then H j(A) is infinite.

Difference:

▶ (Besicovitch 1956) If Hh(A) = 0 then there is a j with j ≺ h such
that H j(A) = 0.
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Sets of non-σ-finite measure

Definition

A set A is σ-finite for Hh iff A is a countable union of sets Ai , such that
each Hh(Ai ) is finite.

Improved observation from previous slide:

▶ If Hh(A) is not zero and j ≺ h then A is non-σ-finite for H j(A).
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Capacitability

Theorem (Davies 1956 for x s , Sion and Sjerve 1962)

If E is analytic and is non-σ-finite for Hh, then there is a compact subset
of E that is non-σ-finite for Hh.
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Sets of Strong Dimension h

Definition

A set E has strong dimension h iff

∀f [f ≺ h ⇒ H f (E ) = ∞]

∀g [h ≺ g ⇒ Hg (E ) = 0]

As a limiting case, E has strong dimension 0 iff for all g , Hg (E ) = 0.

Example

A line segment within the plane has strong dimension 1.
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Sets of Strong Dimension h

Theorem (Besicovitch 1956, generalized Rogers 1962)

If E is compact and is non-σ-finite for Hh, then there is a g such that
h ≺ g and E is non-σ-finite for Hg .

▶ Thus, if E is compact then E cannot have strong dimension h and
be non-σ-finite for Hh.

▶ By the capacitability theorem, the same is true if E is analytic.

It would be interesting to find a proof of this theorem using effective
methods: Is there a point-to-set formulation of a set’s not having σ-finite
measure for Hh?
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Sets of Strong Dimension h

Theorem (Besicovitch 1963)

If CH then there is a set E ⊂ R2 such that E has strong linear dimension
and is not σ-finite for linear measure.

Theorem (Combining Besicovitch 1963 with Erdős, Kunen and Mauldin
1981)

If V = L there there is a Π1
1 set E ⊆ R2 such that E has strong linear

dimension and is not σ-finite for linear measure.
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Borel Conjecture

Definition

A set E ⊆ R has strong measure 0 iff for any sequence of positive real
numbers {ϵi} there is a sequence of open intervals {Oi} such that for
each i , Oi has length ϵi , and E ⊆ ∪∞

i=1Oi .

Borel (1919) conjectured that strong measure 0 implies countable (BC).

Theorem

▶ (Sierpiński 1928) CH implies that there is an uncountable set of
strong measure 0.

▶ (Laver 1976) Con(ZFC ) implies Con(ZFC + BC ).
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Borel Conjecture

Theorem (Besicovitch 1955)

A set E has strong dimension 0 iff it has strong measure 0.

Theorem (Another variation on Besicovitch 1963)

¬BC implies that there is a subset of R2 which has strong linear
dimension and which is not σ-finite for linear measure.
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A Challenge

Question

Does the Borel Conjecture imply that there do not exist f and E such
that E has strong dimension f and E is not σ-finite for H f ?

The conceptual challenge is to overcome the intractability of the property
that A is non-σ-finite for Hh.
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Understanding Non-σ-finiteness
A case study

Consider Π0
1 subsets of 2ω × 2ω and linear measure H1.

Exercise

The set of indices for Π0
1 subsets C of 2ω × 2ω such that H1(C ) ̸= 0 is

arithmetic.

By the compactness of 2ω × 2ω, we can assume that all the open covers
in the definition of H1(C ) are finite, which means that the prima facie
definition of “H1(C ) ̸= 0” can be expressed arithmetically.
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Understanding Non-σ-finiteness

Definition

Let NσF be the of indices for Π0
1 subsets C of 2ω × 2ω such that C is

non-σ-finite for H1

Theorem

NσF is Σ1
1-complete.

Here is an analogous but more familiar situation.

Exercise

The set of indices for Π0
1 subsets C of 2ω such that C is uncountable

Σ1
1-complete.

Use Cantor’s theorem: C is uncountable iff C has a perfect subset.

17/21



Understanding Non-σ-finiteness

Definition

Let NσF be the of indices for Π0
1 subsets C of 2ω × 2ω such that C is

non-σ-finite for H1

Theorem

NσF is Σ1
1-complete.

Here is an analogous but more familiar situation.

Exercise

The set of indices for Π0
1 subsets C of 2ω such that C is uncountable

Σ1
1-complete.

Use Cantor’s theorem: C is uncountable iff C has a perfect subset.

17/21



Understanding Non-σ-finiteness

Definition

Let NσF be the of indices for Π0
1 subsets C of 2ω × 2ω such that C is

non-σ-finite for H1

Theorem

NσF is Σ1
1-complete.

Here is an analogous but more familiar situation.

Exercise

The set of indices for Π0
1 subsets C of 2ω such that C is uncountable

Σ1
1-complete.

Use Cantor’s theorem: C is uncountable iff C has a perfect subset.

17/21



Understanding Non-σ-finiteness
NσF is Σ1

1

The ingredients in the proof of Davies’s (1956) theorem about
capacitability of non-σ-finiteness entail the following:

C is non-σ-finite for H1 iff there is perfect tree of closed sets
such that each path corresponds to a closed set of H1-positive
measure.

It follows that NσF is a Σ1
1 set.
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Understanding Non-σ-finiteness
NσF is Σ1

1-hard

Davies’s insight above points the way toward proving Σ1
1-hardness:

▶ Consider closed sets that are disjoint unions of sets of finite
H1-measure.

▶ The canonical subset of 2ω × 2ω of finite positive H1-measure is a
line segment.
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Understanding Non-σ-finiteness
NσF is Σ1

1-hard

First note that whether a tree T ⊂ ω<ω has an infinite path is
Σ1

1-complete condition, so it is sufficient to reduce that property to NσF :

Given T , build a closed subset C of 2ω × 2ω so that the following
dichotomy holds.

▶ If T has an infinite path then C is a union of uncountably many
disjoint line segments.

▶ If T does not have an infinite path, then C is a union of countably
many line segments.
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The End

21/21


